An Introduction to Process Algebra

J.A. Bergstra

Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
Department of Philosophy, State University of Utrecht
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

J.W. Klop

Department of Software Technology, Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Department of Mathematics and Computer Science, Free University
P.O. Box 7161, 1007 MC Amsterdam, The Netherlands

This article serves as an introduction to the basis of the theory, that will be
used in the rest of this book. To be more precise, we will discuss the axiomatic
theory ACP, (Algebra of Communicating Processes with abstraction), with
additional features added, which is suitable for both specification and
verification of communicating processes. As such, it can be used as back-
ground material for the other articles in the book, where all basic axioms are
gathered. But we address ourselves not exclusively to readers with previous
exposure to algebraic approaches to concurrency (or, as we will call it, process
algebra). Also newcomers to this type of theory could find enough here, to get
started. For a more thorough treatment of the theory, we refer to [1], which
will be revised, translated and published in this CWI Monograph series.
There, most proofs can also be found; we refer also to the original papers
where the theory was developed. This article is an abbreviated version of
reference [11].

Our presentation will concentrate on process algebra as it has been
developed since 1982 at the Centre for Mathematics and Computer Science,
Amsterdam (see [7]), since 1985 in cooperation with the University of Amster-
dam and the University of Utrecht. This means that we make no attempt to
give a survey of related approaches though there will be references to some of
the main ones.

This paper is not intended to give a survey of the whole area of activities in
process algebra.

We acknowledge the help of Jos Baeten in the preparation of this paper.

Partial support received from the European Community under ESPRIT project no. 432, An In-
tegrated Formal Approach to Industrial Software Development (METEOR).

2 J.A. Bergstra, J.W. Kiop

1. THE BASIC CONSTRUCTORS

The processes that we will consider are capable of performing atomic steps or
actions a,b,c, ..., with the idealization that these actions are events without
positive duration in time; it takes only one moment to execute an action. The
actions are combined into composite processes by the operations + and -, with
the interpretation that (a+b)-c is the process that first chooses between execut-
ing a or b and, second, performs the action ¢ after which it is finished. (We
will often suppress the dot and write (4 +b)c.) These operations, ‘alternative
composition’ and ‘sequential composition” (or just sum and product), are the
basic constructors of processes. Since time has a direction, multiplication is not
commutative; but addition is, and in fact it is stipulated that the options (sum-
mands) possible at some stage of the process form a set. Formally, we will
require that processes x,y, ... satisfy the following axioms:

BPA
xty=y-+x
(x +y)tz=x+(y +z)
xX+x=x
(x +y)z=xz+yz
(xp)z =x(yz)

TaBLE 1

Thus far we used ‘process algebra’ in the generic sense of denoting the area
of algebraic approaches to concurrency, but we will also adopt the following
technical meaning for it: any model of these axioms will be a process algebra.
The simplest process algebra, then, is the term model of BPA (Basic Process
Algebra), whose elements are BPA-expressions (built from the atoms a.b,c,...
by means of the basic constructors) modulo the equality generated by the
axioms. This process algebra contains only finite processes; things get more
lively if we admit recursion enabling us to define infinite processes. Even at
this stage one can define, recursively, interesting processes:

COUNTER
X =(zero+up'Y)X
Y =down+upY-Y

TABLE 2

where ‘zero’ is the action that asserts that the counter has value 0, and ‘up’
and ‘down’ are the actions of incrementing resp. decrementing the counter by
one unit. The process COUNTER is now represented by X; Y is an auxiliary
process. COUNTER is a ‘perpetual’ process, that is, all its execution traces are
infinite. Such a trace is e.g. zero-zero-up-down-zero-up-up-up-....

An introduction to process algebra 3

Equations as in Table 2 are also called fixed point equations. An important
property of such equations is whether or not they are guarded. A fixed point
equation is guarded if every occurrence of a recursion variable in the right
hand side is preceded (‘guarded’) by an occurrence of an action. For instance,
the occurrence of X in the RHS of X =(zero+up-Y)-X is guarded since, when
this X is accessed, one has to pass either the guard zero or the guard up. A
non-example: the equation X=X +a-X is not guarded.

Before proceeding to the next section, let us assure the reader that the omis-
sion of the other distributive law, z(x +y)=zx +zy, is intentional. The reason
will become clear after the introduction of ‘deadlock’.

2. DEADLOCK

A vital element in the present set-up of process algebra is the process 8, signi-
fying “deadlock’. The process ab performs its two steps and then stops, silently
and happily; but the process b8 deadlocks (with a crunching sound, one may
imagine) after the a- and b-action: it wants to do a proper action but it can-
not. So § is the acknowledgement of stagnation. With this in mind, the axioms
to which 8 is subject, should be clear:

DEADLOCK
d+x=x
dx=3§

TABLE 3

(In fact, it can be argued that ‘deadlock’ is not the most appropriate name for
the process constant 8. In the sequel we will encounter a process which can
more rightfully claim this name: 78, where 7 is the silent step. We will stick to
the present terminology, however.)

The axiom system of BPA (Table 1) together with the present axioms for &
is called BPA;. Now suppose that the distributive law z(x + y)=zx +zy is
added to BPA;. Then: ab =a(b +8)=ab +a8. This means that a process with
deadlock possibility is equal to one without; and that conflicts with our inten-
tion to model also deadlock behaviour of processes.

3. INTERLEAVING OR FREE MERGE

If x, y are processes, their ‘parallel composition’ x|ly is the process that first
chooses whether to do a step in x or in y, and proceeds as the parallel compo-
sition of the remainders of x, ». In other words, the steps of x, y are inter-
leaved. Using an auxiliary operator || (with the interpretation that x|y is
like x|[y but with the commitment of choosing the initial step from x) the
operation || can be succinctly defined by the axioms:

4 J.A. Bergstra, JW. Kiop

FREE MERGE

xlly=xlLy+ylx

all x=ax
ax|ly=a(xly)
(x+pll z=x|l z+yl =z

TABLE 4

One can show that an equivalent axiomatization of || without an auxiliary
operator like [|_, would require infinitely many axioms.

The system of nine axioms consisting of BPA and the four axioms for free
merge will be called PA. Moreover, if the axioms for & are added, the result
will be PA;. The operators || and [will also be called merge and lefi-merge
respectively.

An example of a process recursively defined in PA, is: X=a(bl|X). It turns
out that this process can already be defined in BPA, by the two fixed point
equations X=aYX, Y=b+aYY. (This is a simplified version of the counter
in Table 2, without the action zero.) To see that both ways of defining X yield
the same process, one may ‘unwind’ according to the given equations:

X=a(blIX)=a(lX +XILb)=a(bX +a(blX)|Lb)
=a(bX+a((bIX)|b)=a(bX +a..),
while on the other hand
X=aYX=a(b+a¥YVX=a(bX+aYYX)=a(bX +a..);

so at least up to level 2 the processes are equal. In fact they can be proved
equal up to each finite level. Later on, we will introduce an infinitary proof
rule enabling us to infer that, therefore, the processes are equal.

So, is the defining power (or expressibility) of PA greater than that of BPA?
Indeed it is, as is shown by the following process:

BAG
X =in (0)(out (0)|| X)) +in (1)out (1)||.X)

TABLE 5

This equation describes the process behaviour of a ‘bag’ or ‘multiset’ that may
contain finitely many instances of data 0, 1. The actions in(0), out (0) are: put-
ting a 0 in the bag resp. getting a 0 from the bag, and likewise for 1. This pro-
cess does not have a finite specification in BPA, that is, a finite specification
without merge (Il).

If we want to define a bag over a general finite data set D (instead of just
over {0,1}) we use a sum notation as an abbreviation, so

X = 3 in(dy(out (d)||X).

deD

| =S

An introduction to process algebra 5

4. FIXED POINTS

We have already alluded to the existence of infinite processes; this raises the

question how one can actually construct process algebras (for BPA or PA)

containing infinite processes in addition to finite ones. Such models can be

obtained by means of:

(1) projective limits ([8,10]);

(2) complete metrical spaces, as in the work of De Bakker and Zucker [5,6];

(3) quotients of graph domains (a graph domain is a set of process graphs or
transition diagrams), as in Milner [18], Baeten, Bergstra and Klop [4]; or
Van Glabbeek [14];

(4) the ‘explicit’ models of Hoare [16];

(5) ultraproducts of finite models (Kranakis [17]).

In Section 12 we will discuss a model as in (3).

5. COMMUNICATION

So far, the parallel composition or merge (|/) did not involve communication in
the process x|ly: x and y are ‘freely’ merged. However, some actions in one
process may need an action in another process for an actual execution, like the
act of shaking hands requires simultaneous acts of two persons. In fact, ‘hand
shaking’ is the paradigm for the type of communication which we will intro-
duce now. If 4 ={a,b,, ..,} is the aciion alphabet, let us adopt a partial
binary function y on 4, that is required to be commutative and associative. If
¥(a,b) is defined, @ and b communicate, and y(a,b) is the result of the com-
munication; if y(a,b) is not defined, @ and 5 do not communicate. We can
extend y 10 a total function | on A4 U {8}, by putting a|b=4§ whenever y(a,b) is
not defined (so also when one of a,b equals 8). The result is a binary commun-
ication function | on 4 U (§) satisfying

COMMUNICATION FUNCTION
alb=b|a

(alb)lc=a|(b|c)

dla=48

TABLE 6

(Here a,b vary over A U {8}.) We can now specify merge with communication:
we use the same notation || as for the free merge, since in fact free merge is an
instance of merge with communication (by choosing the communication func-
tion trivial, i.e. alb =8 for all a,b). There are now two auxiliary operators,
allowing a finite axiomatization: left-merge () as before and | (communica-
tion merge or ‘bar’), which is an extension of the communication function to
all processes, not only the constants. The axioms for Il and its auxiliary opera-
tors are:

6 J.A. Bergstra, J.W. Kiop

MERGE WITH COMMUNICATION
xlly=xlLy+yllx+xly

all x=ax

ax| y=a(xly)

(x+y)llz=xllz+yl 2

ax|b=(alb)x

albx =(a|b)x

ax|by =(alb)x|ly)

(x+y)z=x|z+yz

x|(y +z)=x|y +x|z

TABLE 7

We also need the so-called encapsulation operators dy(H CA) for removing
unsuccessful attempts at communication:

ENCAPSULATION
dy(a)y=aif agH
dy(a)==6if acH
dp(x+y)=0g(x)+ay(y)
dp(xy)=0u(x)du(y)

TABLE 8

The axioms for BPA, DEADLOCK together with the present ones constitute
the axiom system ACP (Algebra of Communicating Processes). Typically, a
system of communicating processes Xi, ..., X, is now represented in ACP by
the expression dy(x |l - - Ilx,). Prefixing the encapsulation operator says that
the system x, ...,X, 1§ to be perceived as a separate unit w.r.t. the communica-
tion actions mentioned in H; no communications between actions in H with
an environment are expected or intended.

We will often adopt the following special format for the communication
function, called read/write (receive/send) communication. Let a finite set D of
data d and a set {1, ..,p) of ports be given. Then the alphabet consists of
read actions ri(d) and send actions si(d), for i=1, ...,p and deD. The
interpretation is: read datum d at port i, resp. send datum d at port i. Further-
more, the alphabet contains actions ci(d) for i=1, ...,p and deD, with
interpretation: communicate d at i. These actions will be called transactions.
The only non-trivial communications (i.e. not resulting in §) are:
si(d)|ri(d)=ci(d). Instead of si(d) we will also see the notation wi(d) (write d
along i).

An introduction to process algebra 7

6. ABSTRACTION

A fundamental issue in the design and specification of hierarchical (or modu-
larized) systems of communicating processes is abstraction. Without having an
abstraction mechanism enabling us to abstract from the inner workings of
modules to be composed to larger systems, specification of all but very small
systems would be virtually impossible. We will now extend the axiom system
ACP, obtained thus far, with such an abstraction mechanism. Consider two
bags B,, B,; (cf. Section 3) with action alphabets {rl(d),s2(d)|deD) resp.
{r2(d),s3(d)|[deD}. That is, B, is a bag-like channel reading data d at port 1,
sending them at port 2; B,; reads data at 2 and sends them to 3. (That the
channels are bags means that, unlike the case of a queue, the order of incom-
ing data is lost in the transmission.) Suppose the bags are connected at 2; that
18, we adopt communications s2(d)|r2(d)= c2(d) where c2(d) is the transaction
of d at 2,

— By, 5 Bas 3

FIGURE 1

The composite system Bi3=04(B,/|B;;) where H ={s2(d), r2(d)|deD)
should, intuitively, be again a bag between locations 1, 3. However, some
(rather involved) calculations learn that B]_;:Edsﬂrl(d)‘((cz(dlﬁ'3(d))“813); S0
By; is a ‘transparant’ bag: the passage of d through 2 is visible as the transac-
tion event c2(d).

How can we abstract from such internal details, if we are only interested in
the external behaviour at 1, 3? The first step to obtain such an abstraction is to
remove the distinctive identity of the actions to be abstracted, that is, to
rename them all into one designated action which we call, after Milner, 7: the
silent action (this is called ‘pre-abstraction’ in [2])- This renaming operator is
the abstraction operator r;, parameterized by a set of actions 7 CA4 and subject
to the following axioms:

ABSTRACTION
Ti(r)=1
m(a)=aif agl
Ti(@a)=rifael
Tr(x +y)=11(x)+7,(y)
1Y) =15(x) 7 (y)

TABLE 9

The second step is to attempt to devise axioms for the silent step 7 by means
of which r can be removed from expressions, as e.g, in the equation ath = ab.

8 J.A. Bergstra, J.W. Klop

However, it is not possible (nor desirable) to remove all 7’s in an expression if
one is interested in a faithful description of deadlock behaviour of processes.
For, consider the process (expression) a+76; this process can deadlock,
namely if it chooses to perform the silent action. Now, if one would propose
naively the equations 7x =x7=x, then a +r8=a+8§=a, and the latter process
has no deadlock possibility. It turns out that one of the proposed equations,
xT=x, can safely be adopted, but the other one is wrong. Fortunately, Milner
[19] has devised some simple axioms which can be used to give a complete
description of the properties of the silent step (complete w.r.t. a certain
semantical notion of process equivalence called bisimulation, which does
respect deadlock behaviour; this notion is discussed in the sequel), as follows.

SILENT STEP
XT=X
™ =7X +x
a(tx+ty)=a(rx+y)+ax

TasLe 10

To return to our example of the transparant bag B3, after abstraction of the
set of transactions I = {c2(d)|deD} the result is indeed an ‘ordinary’ bag:

71 (Bpa) = 11(Sr1(d)c2(d)s3(d)IByy) = Er1(d)(rs3(d)lir (By3))

= 2(rl(d)rs3(d))|L7i(By3) = Z(r l(d)-s3(d))L7/(By3)
= Zrl(d)s3(d)llT;(By3))

from which it follows that 7,(By3) = B13, the bag defined by
B[_:, = Erl(d)(s3{d)||313]

Here we were able to eliminate all silent actions, but this will not always be
the case. In fact, this computation is not as straightforward as was maybe sug-
gested: to justify the equations marked with (*) and (**) we need more power-
ful principles, which we will discuss in the sequel. (Specifically, in (*) an
appeal to the ‘alphabet calculus’ of Section 9 is needed and (**) requires the
principle RSP, see Section 8 below.)

7. PROJECTION AND AUXILIARY AXIOMS
First, we define the projection operators m,(n=1), cutting off a process at level
n.

PROJECTION
mi(a)=a Ta(X +)) =T (0) F7a(y)
m(ax)=a (1) =17
Ty 41(@x)=amy(x) m,(1X) =7, (x)

TasLE 11

An introduction to process algebra 9

E.g., for X defining BAG as in Table 5
m(X) = in (0)(out (0) + in (0) + in(1)) + in (1)(out (1) + in (0) + in(1)).

We have that r-steps do not add to the depth; this is enforced by the r-laws
(since, e.g. ath=ab and ra=ra +a).

By means of these projections a distance between processes x, y can be
defined: d(x,y)=2"" where n is the least natural number such that
Ta(X)7Fm,(p), and d(x,y)=0 if there is no such n. If the term model of BPA
(or PA) as in Section 1 is equipped with this distance function, the result is an
ultrametrical space. By metrical completion we obtain a model of BPA (resp.
PA) in which all systems of guarded recursion equations have a unique solu-
tion. This model construction has been employed in various settings by De
Bakker and Zucker [5,6).

In the articles of Vaandrager in this volume a slightly different definition of
the projection operators is used, which lead to the same theorems below, but
which have the advantage that they also can be defined for n =0, and are
definable in our theory ACP, (see Section 11). We present the new axioms
below.

PROJECTION, Second version
mo(ax)=4§

Tn + |(ax)=a'ar,,(x)

Ta(x +y):ﬂ'n(x)+wn(y)
To(T)=7

Ty(rx) =7 (x)

TABLE 12

In ACP,, systems are described as the parallel composition of their com-
ponents, and so a system of communicating processes X, ...,x, is represented
by the expression dy(x,|| - - - llx,). When we want to focus on the external
actions of such a system, we apply an abstraction operator, that abstracts from
all communications between actions from H. A useful theorem to break down
these expressions is the Expansion Theorem which holds under the assumption
of the handshaking axiom x|y|z=8. This axiom says that all communications
are binary.

THEOREM (EXPANSION THEOREM).
xXall ==l = Sl X + 30 fx) Xy
i ij
Here X} denotes the merge of xi, ..,x; except x;, and X} denotes the same
merge except x;,x;(k=3). In order to prove the Expansion Theorem, one first

proves by simultaneous induction on term complexity that for all closed
ACP,-terms (i.e. terms without free variables) the following holds:

10 J.A. Bergstra, JW. Klop

AXIOMS OF STANDARD CONCURRENCY
(Ll z=xIL(yllz)

(x|ay)lLz=x|(ayl_2)

xly=ylx

xlly=ylix

x|(ylz)=(xp)lz

x|y llz)=(x1y)llz

TaABLE 13

8. PROOF RULES FOR RECURSIVE SPECIFICATIONS
We have now presented a survey of ACP,; we refer to [9] for an analysis of
this proof system. Note that ACP, (displayed in full in Section 11) is entirely
equational. Without further proof rules it is not possible to deal (in an algebra-
ical way) with infinite processes, obtained by recursive specifications, such as
BAG: in the derivation above we tacitly used such proof rules which will be
made explicit now.
(i) RDP, the Recursive Definition Principle: Every guarded and abstraction-

free recursive specification has a solution.
(ii) RSP, the Recursive Specification Principle: Every guarded and abstraction-

free recursive specification has at most one solution.
(iii) AIP, the Approximation Induction Principle: A process is determined by its

finite projections.
In a more formal notation, AIP can be rendered as the infinitary rule

Vn mu(x)=7(y)
x=y

As to (i), the restriction to guarded specifications is not very important (for the
definition of ‘guarded’ see Section 1); in the process algebras that we have
encountered and that satisfy RDP, also the same principle without the guard-
edness condition is true. More delicate is the situation in principle (ii): first, 7-
steps may not act as guards: e.g. the recursion equation X =7X +a has infi-
nitely many solutions, namely r(a +¢) is a solution for arbitrary g; and se-
cond, the recursion equations must not contain occurrences of abstraction opera-
tors 7;. That is, they are ‘abstraction-free’ (but there may be occurrences of rin
the equations). The latter restriction is in view of the fact that, surprisingly, the
recursion equation X =a-7(,)(X) possesses infinitely many solutions, even
though it looks very guarded. (The solutions are: a-q where ¢ satisfies
T(a)(¢)=¢.) That the presence of abstraction operators in recursive specifica-
tions causes trouble, was first noticed by Hoare [15,16].

The unrestricted form of AIP as in (iii) will turn out to be too strong in
some circumstances; it does not hold in one of the main models of ACP,,
namely the graph model which is introduced in Section 12. Therefore we also
introduce the following weaker form.

An introduction to process algebra 11

(iv) AIP~ (Weak Approximation Induction Principle): Every process which has
an abstraction-free guarded specification is determined by its finite projec-
tions.

Roughly, a process which can be specified without abstraction operators is
one in which there are no infinite 7-traces (and which is definable). E.g. the
process X defined by the infinite specification {Xo=bX\, X, 4, =bX, .2+
a"}, where a” is g'a- - - -- a (n times), contains an infinite trace of b-actions;
after abstraction w.r.t. b, the resulting process, Y =74,(Xp), has an infinite
trace of 7-steps; and (at least in the main model of ACP; of Section 12) this ¥
is not definable without abstraction operators.

Even the Weak Approximation Induction Principle is rather strong. In fact
a short argument shows the following:

THEOREM. AIP =RSP.

As a rule, we will be very careful in admitting abstraction operators in recur-
sive specifications. Yet there are processes which can be elegantly specified by
using abstraction inside recursion,

9. ALPHABET CALCULUS

In computations with infinite processes one often needs information about the
alphabet a(x) of a process x. E.g. if x is the process uniquely defined by the
recursion equation X =aX, we have a(x)={a}. An example of the use of this
alphabet information is given by the implication a(x)NH = @ =0y(x)=x. For
finite closed process expressions this fact can be proved with induction to the
structure, but for infinite processes we have to require such a property
axiomatically. In fact, the example will be one of the ‘conditional axioms’
below (conditional, in contrast with the purely equational axioms we have
introduced thus far). First we have to define the alphabet:

ALPHABET
a(d)=@
a(t)= @
ala)={a} (if a5£d)
a(Tx)=a(x)

alax)={a}Ua(x) (if a8)
alx +y)=a(x)Ua(y)

G(I): Unbla("rﬂ(x))
a(ry(x))=a(x)—1I

TABLE 14

To appreciate the non-triviality of the concept a(x), let us mention that a finite
specification can be given of a process for which the alphabet is uncomputable
(see [3] for an example).

12 J.A. Bergstra, J.W. Klop

Now the following conditional axioms will be adopted:

CONDITIONAL AXIOMS

a(x)|(a(y)NH)CH = Au(xlly)=0u(xl105(y))
aX)|(ap)NH=2 = mi(xly)=i(xllmr(y))
a(x)NH=@ = dy(x)=x

a(x)NI=2 = 7/(x)=x

H=H,UH; = 0y(x)=0y,°0p,(x)
I1=1Ul, = m(x)=70°7,(x)

HNI=8 = T;"BH(X):aHUT‘r(X)

TABLE 15

Using these axioms, one can derive for instance the following fact: if commun-
ication is of the read-write format and I is disjoint from the set of transactions
(communication results) as well as disjoint from the set of communication

actions, then the abstraction 7; distributes over merges x|ly.

10. KOOMEN'S FAIR ABSTRACTION RULE

Suppose the following statistical experiment is performed: somebody flips a
coin, repeatedly, until head comes up. This process is described by the recur-
sion equation X = flip-(tail-X +head). Suppose further that the experiment
takes place in a closed room, and all information to be obtained about the
process in the room is that we can hear the experimenter shout joyfully:
‘Head?”. That is, we observe the process ;(X) where I ={flip,tail}. Now, if the
coin is “fair’, it is to be expected that sooner or later (i.e., after a 7-step) the
action *head’ will be perceived. Hence, intuitively, T(X)=rhead. (This vivid
example is from Vaandrager [21])

Koomen’s Fair Abstraction Rule (KFAR) is an algebraic rule enabling us to
arrive at such a conclusion formally. The rule was introduced in this form in
Bergstra and Klop [12]. (For an extensive analysis of the rule see [4].) The
simplest form is

x=ix+y (iel) KFAR
() =77(y) d
So, KFAR, expresses the fact that the ‘r-loop’ (originating from the i-loop)

in 7,(x) will not be taken infinitely often. In case this ‘r-loop’ is of length 2,
the same conclusion is expressed in the rule

=iyxy+y1, Xa=iox; +yz (siz€l
xy=i1xy+y1, xa=lx +yy (i1,i2€1) KFAR,
mi(x))=r1(y) +y2)

and it is not hard to guess what the general formulation (KFAR,, n=1) will
be. In fact, we will need an even more general formulation, CFAR (the Cluster
Fair Abstraction Rule). This principle was introduced by Vaandrager [21].
There, he showed that CFAR can already be derived from KFAR,; (at least in

An introduction to process algebra 13

the framework to be discussed below).

Suppose E is a recursive specification (a system of fixed point equations)
over variables ¥, and suppose / is the set of atomic actions to be abstracted
from. We call a subset C of V a cluster of I in E if for all X in C the equation
for X in E has the form

m n
X = sz'Xk+ 2}'{.
k=1 =1

where m=1, n=0, iy,...,i,eIU{r}, X,,..,X,€C, Y,,...Y,eV—C. The va-
riables in C are called cluster variables. For variables X, Y eV we write X ~ Y
if ¥ occurs in the right hand side of the equation of X. Then, the exits of the
cluster are those variables outside C, that can be reached from C, i.e.

exits(C) = {YeV —C : X~»Y for some XeC).

Let ~»* be the transitive and reflexive closure of ~». We call a cluster C of I
in E conservative if every exit can be reached from every cluster variable, i.e.
for all XeC and all Y eexits(C) we have X ~»* Y. Now we can formulate the
rule CFAR as follows.

DEFINITION. The Cluster Fair Abstraction Rule is the following statement: let E
be a guarded recursive specification; let / CA be such that [7|=2; let C be a
finite conservative cluster of 7 in E; and let XeC. Then:

X)) =7 3 m(Y)
Yeexits(C)
We see that CFAR can only be applied when we are dealing with a conserva-
tive cluster. In practice, most specifications will not contain conservative clus-
ters. If, in such a situation, we state that a certain result is obtained by the use
of CFAR, we mean that there is a specification which is equivalent to the one
we are dealing with (using RSP), which contains a conservative cluster, and
that the result follows when we apply CFAR to this second specification.

KFAR and CFAR are of great help in protocol verifications. As an exam-
ple, KFAR can be used to abstract from a cycle of internal steps which is due
to a defective communication channel; the underlying fairness assumption is
that this channel is not defective forever, but will function properly after an
undetermined period of time. (Just as in the coin flipping experiment the
wrong option, tail, is not chosen infinitely often.)

An interesting peculiarity of the present framework is the following. Call
the process 7 (=777 ---) livelock. Formally, this is the process 7(;(x)
where x is uniquely defined by the recursion equation X =i-X. Noting that
x =ix=ix+8 and applying KFAR, we obtain m=r(,(x)=78. In words:
livelock = deadlock. There are other semantical frameworks for processes, also
in the scope of process algebra but not in the scope of this paper, where this
equality does not hold (see [13]).

14 J.A. Bergstra, J.W. Klop

11. A FRAMEWORK FOR PROCESS SPECIFICATION AND VERIFICATION

We have now arrived at a framework which contains all the axioms and proof
rules introduced so far. In Table 16 the list of all components of this system is
given; Table 17 contains the equational system ACP, and Table 18 contains
the extra features and furthermore the proof principles which were introduced.
Note that for specification purposes one only needs ACP,; for verification one
will need the whole system. Also, it is important to notice that this framework
resides entirely on the level of syntax and formal specifications and verification
using that syntax - even though some proof rules are infinitary. No semantics
has been provided yet; this will be done in Section 12. The idea is that ‘users’
can stay in the realm of this formal system and execute algebraical manipula-
tions, without the need for an excursion into the semantics. That this can be
done is demonstrated throughout this book. This does not mean that the
semantics is unimportant; it does mean that the user needs only be concerned
with formula manipulation. The underlying semantics is of great interest for
the theory, if only to guarantee the consistency of the formal system; but
applications should not be burdened with it, in our intention.

A PROCESS SPECIFICATION AND VERIFICATION FRAMEWORK
Basic Process Algebra Al-5
Deadlock A6,7
Communication Function Cl1-3
Merge with Communication CMI1-9
Encapsulation Dl1-4
Silent Step T1-3
Silent Step: Auxiliary Axioms TML,2; TC1-4
Abstraction DT; TI1-5
Projection PR1-6
Hand Shaking HA
Standard Concurrency SC
Expansion Theorem ET
Alphabet Calculus CA
Recursive Definition Principle RDP
Recursive Specification Principle RSP
Weak Approximation Induction Principle AIP~
Cluster Fair Abstraction Rule CFAR

TABLE 16

I

An introduction to process algebra

ACP,

x+y=y+x Al XT=x Tl
(x+y)tz=x+(y +2) A2 X =7X +Xx T2
x+x=x A3 a(tx +y)=a(rx +y)+ax T3
(x +y)z=xz+yz A4
(xy)z=x(yz) A5
x+d=x A6
8x =6 A7
alb=b|a Cl
(a|b)|c =al(b|c) C2

la =8 c3
xlly=xlLy +ylLx+x|y CM1
all_x =ax CM2 |l x=mx TM1
ax|ly =a(x|ly) CM3 =x|Ly =n(xlly) T™2
(x+y)llz=x|lz+yllz CM4 Tlx =8 TCl
ax|b =(al|b)x CM5 x|r=8 TC2
albx =(alb)x CM6 x|y =x|y TC3
ax|by =(a|b)x|ly) CM7 x|ry =x|y TC4
(x +y)|z =x|z +y|z CM8
x|y +z)=x|y +x|z CM9 Oy(n)=r1 DT

Ti(T)="7 TI1

dg(a)=aif agH D1 Ti(a)=aif agl TI2
dy(a)=8if acH D2 T{a)=1ifacl TI3
Ig(x +y)=0y(x)+d4(y) D3 T(x +y)=7(x)+1,(p) TI4
A (xp) =5 (x)u(») D4 mxy)=m(x)m(y) TI5

TABLE 17

16

J.A. Bergstra, J.W. Klop

REMAINING AXIOMS AND RULES

m(ax)=a PRI
My +1(ax)=a-my(x) PR2
m(a)=a PR3
ma(x +y)=m,(x)+m,(y) PR4
m(T)=T PRS
WH(TX):T'“::(:[) PR6
x|ylz =8 HA
x|y =ylx SC1
xlly =yllx SC2
xl(yl2)=(x)lz SC3
(xlLy)lLz =xIL(yllz) SC4
(x|ay)ll_z =x|(ayll_2) SC5
xliyliz)=(xlly)llz SC6
Xyl oo <l = l!g:ﬁnxj L(I(L"xk)"' Iﬁgjﬂ(xfle)u_(I‘H“xk) (n=3) ET
ki ki k7
a8)=2 ABI
a(t)= @ AB2
a(a)={a} (if a0) AB3
a(Tx)=a(x) AB4
afax)= {a) Ua(x) (if a0) AB5
a(x +y)=a(x)Ualy) AB6
a(x)= U,z a(m,(x)) AB7
a(ry(x))=a(x)—1 ABS
a(x)|(a(y)NH)CH = Au(xlly)=0x(x05(y)) CAl
a(x)|(apy)NN=2 = m(xy)=71(xllm(y)) CA2
a(x)NH=9 = dy(x)=x CA3
a(x)NI=@ = 7(x)=x CA4
HZHI UH; = aﬂ(x)r-ﬂ;;l QBH](X) CAS
I=I| UII = T;(X):Thofh(X) CA6
HNI=@ = TJDGH(x)=BH°1';(x) CA7

RDP Every guarded and abstraction-free specification has a solution
RSP Every guarded and abstraction-free specification has at most one solution
AIP~ Every process which has an guarded abstraction-free specification is

determined by its finite projections

CFAR If E is a guarded recursive specification, and C a finite conservative

cluster of 1 in E, then for each XelC:
X)) =+ X mY)

Yeexits(C)

TaBLE 18

An introduction to process algebra 17

It should be noted that there is reclundancy in this presentation; as we already
stated, AIP™ implies RSP and there are other instances where we can save
some axioms or rules (for instance, the axioms CM2,5,6 turn out to be deriv-
able from the other axioms). This would however not enhance clarity.

So we have here a medium for formal process specifications and
verifications; let us note that we also admit infinite specifications. As the sys-
tem is meant to have practical applications, we will only encounter computable
specifications.

12. THE GRAPH MODEL FOR ACP,

We will give a quick introduction to what we consider to be the ‘main’ model
of ACP,. The basic building material consists of the domain of countably
branching, labeled, rooted, connected, directed multigraphs. Such a graph, also
called a process graph, consists of a possibly infinite set of nodes s with one
distinguished node s¢, the root. The edges, also called transitions or steps,
between the nodes are labeled with an element from the action alphabet; also
8 and 7 may be edge labels. We use the notation s—,f for an a-transition from
node s to node #; likewise s—,f is i 7-transition and s—st is a d-step. That the
graph is connected means that every node must be accessible by finitely many
steps from the root node.

Corresponding to the operatiors +,,IL,IL_,].94,7,m,,a in our theory we
define operations in this domain of process graphs. Precise definitions can be
found in [1,4]; we will sketch some of them here. The sum g+h of two process
graphs g.h is obtained by glueing together the roots of g and h (see Figure
2(i)); there is one caveat: if a root is cyclic (i.e. lying on a cycle of transitions
leading back to the root), then the initial part of the graph has to be
‘unwound’ first so as to make the root acyclic (see Figure 2(ii)). The product
g*h is obtained by appending copizs of 4 to each terminal node of g; alterna-
tively, one may first identify all terminal nodes of g and then append one copy
of h to the unique terminal node if it exists (see Figure 2 (iii)). The merge gllh
is obtained as a cartesian product of both graphs, with ‘diagonal’ edges for
communications (see Figure 2(v) for an example without communication, and
Figure 2(vi) for an example with communication action a|b). Definitions of the
auxiliary operators are somewhat more complicated and not discussed here.
The encapsulation and abstracticn operators are simply renamings, that
replace the edge labels in H resp. in I by & resp. 7. Definitions of the projec-
tion operators 7, and « should be clear from the axioms by which they are
specified. As to the projection operators, it should be emphasized that 7-steps
are ‘transparent’: they do not increzse the depth.

18

J.A. Bergstra, JW. Kiop

OPERATIONS ON PROCESS GRAPHS

(i)
+ =
a b
(i) ¥ " _
- b
a b
a
(111)
a b ¢ = 5 b
c
(iv) ¥ _ 4

FIGURE 2

An introduction to process algebra 19

This domain of process graphs equipped with the operations just introduced, is
not yet a model of ACP,: for instance the axiom x +x =x does not hold. In
order to obtain a model, we define an equivalence on the process graphs which
is moreover a congruence w.r.t. the operations. This equivalence is called
bisimulation congruence or bisimilarity. (The original notion is due to Park
[20]; it was anticipated by Milner’s observational equivalence, see [18].) In
order to define this notion, let us first introduce the notation s=, for nodes s,
t of graph g, indicating that from node s to node ¢ there is a finite path con-
sisting of zero or more 7-steps and one a-step followed by zero or more r-steps.
Let us say that in this situation there is a ‘generalized a-step’ from s to 1. Like-
wise with ‘a’ replaced by ‘r’. Next, let a coloring of process graph g be a surjec-
tive mapping from a set of ‘colors’ C to the node set of g, such that the color
assigned to the root of g is different from all other colors, and furthermore,
such that all end nodes are assigned the same color which is different from
other colors. Now two process graphs g, h are bisimilar if there are colorings of
& h such that (1) the roots of g, 4 have the same color and (2) whenever some-
where in the two graphs a generalized a-step is possible from a node with color
¢ to a node with color ¢’, then every c-colored node admits a generalized a-step
to a ¢’-colored node (be it in g or in h). We use the notation g=h to indicate
that g, A are bisimilar. One can prove that = is a congruence and, if G is the
original domain of countably branching process graphs:

THEOREM ([4]). G/ is a model of all axioms in Tables 17 and 18,

Remarkably, this graph model does not satisfy the unrestricted Approximation
Induction Principle. A counterexample is given (in a self-explaining notation)
by the two graphs g =2,.,a" and h =2, ,a"+a*; while g and h have the
same finite projections #"(g)= #'(h)= a+a’*+a’+ --- +a", they are not
bisimilar due to the presence of the infinite trace of a-steps in h. It might be
thought that it would be helpful to restrict the domain of process graphs to
finitely branching graphs, in order to obtain a model which satisfies AIP, but
there are two reasons why this is not the case: (1) the finitely branching graph
domain would not be closed under the operations, in particular the communi-
cation merge (|); (2) a similar counterexample can be obtained by considering
the finitely branching graphs g’=7(,,(g"”) where g” is the graph defined by
{X,= a"+1X, 1 |n=1} and h'=g'+a".

REFERENCES

1. JCM. BAeteN (1986). Procesalgebra, Kluwer Programmatuurkunde,
Deventer (in Dutch).

2. J.CM. BAETEN, J.A. BERGSTRA (1988). Global renaming operators in
concrete process algebra. Information and Computation 78(3), 205-245.

3. J.CM. BaetEN, J.A. BERGSTRA, J.W. Krop (1987). Conditional axioms
and a/p calculus in process algebra. M. WIRSING (ed.). Proc. IFIP Conf.
on Formal Description of Programming Concepts - I1I, Ebberup 1986,
North-Holland, Amsterdam, 53-75.

20

10.

11.

12.

13.

14.

15.

16.
17.

J.A. Bergstra, J.W. Kiop

J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLoP (1987). On the consistency of
Koomen’s Fair Abstraction Rule. Theoretical Computer Science 51 (1/2),
129-176.

JW. pE BAkkER, JI. Zucker (1982). Denotational semantics of con-
currency. Proc. 14th ACM Symp. Theory of Comp., 153-138.

J.W. DE BAKKER, JI. Zucker (1982). Processes and the denotational
semantics of concurrency. Information and Control 54 (1/2), 70-120.

J.A. BERGSTRA, J.W. K1LoP (1982). Fixed Point Semantics in Process Alge-
bras, MC Report IW 206, Centre for Mathematics and Computer Science,
Amsterdam.

T.A. BERGSTRA, J.W. KLoP (1984). Process algebra for synchronous com-
munication. Information and Control 60 (1/3), 109-137.

J.A. BERGSTRA, J.W. KroP (1985). Algebra of communicating processes
with abstraction. Theoretical Computer Science 37 (1), T7-121.

J.A. BERGSTRA, J.W. Krop (1986). Algebra of communicating processes.
J.W. DE BAKKER, M. HAZEWINKEL, J.K. LENSTRA (eds.). Mathematics and
Computer Science, CWI Monograph 1, North-Holland, Amsterdam, 89-
138.

J.A. BERGSTRA, J.W. KroP (1986). Process algebra: specification and
verification in bisimulation semantics. M. HAZEWINKEL, J.K. LENSTRA,
L.G.L.T. MEERTENS (eds.). Mathematics and Computer Science 11, CWI
Monograph 4, North-Holland, Amsterdam, 61-94.

J.A. BERGSTRA, J.W. KLoP (1986) Verification of an Alternating Bit Pro-
tocol by means of process algebra. W. BiseL, K.P. JANTKE (eds.). Math.
Methods of Spec. and Synthesis of Software Systems ‘85, Math. Research
31, Akademie-Verlag Berlin, 9-23. Also appeared as CWI Report CS-
R8404, Centre for Mathematics and Computer Science, Amsterdam, 1984.
J.A. BERGSTRA, J.W. Krop, E-R. OLDEROG (1987). Failures without
chaos: a new process semantics for fair abstraction. M. WIRSING (ed.).
Proc. IFIP Conf. on Formal Description of Programming Concepts - 111,
Ebberup 1986, North-Holland, Amsterdam, 77-103.

R.J. VAN GLABBEEK (1987). Bounded nondeterminism and the approxi-
mation induction principle in process algebra. F.J. BRANDENBURG, G.
VIDAL-NAQUET, M. WIRSING (eds.). Proc. STACS 87, LNCS 247,
Springer-Verlag, 336-347.

C.A.R. HoARe (1984). Notes on Communicating Sequential Processes,
International Summer School in Marktoberdorf: Control Flow and Data
Flow, Munich.

C.A.R. HOARE (1985). Communicating Sequential Processes, Prentice Hall.
E. KRANAKIS (1986). Approximating the Projective Model, CW1 Report
CS-R8607, Centre for Mathematics and Computer Science, Amsterdam.

An introduction to process algebra 21

18.

19.

20.

2l.

To appear in: Proc. of Conf. on Math. Logic and Applications, Druzhba,
Plenum Publ. Corp., New York, 273-282.

R. MILNER (1980). A Calculus of Communicating Systems, LNCS 92,
Springer-Verlag.

R. MILNER (1984). A complete inference system for a class of regular
behaviours. Journal of Computer and System Sciences 28 (3), 439-466.
D.M.R. PArk (1981). Concurrency and automata on infinite sequences.
Proc. 5th GI Conference, LNCS 104, Springer-Verlag,

F.W. VAANDRAGER (1986). Verification of Two Communication Protocols
by means of Process Algebra, CWI Report CS-R8608, Centre for
Mathematics and Computer Science, Amsterdam.

