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Abstract

This informal story is dedicated to Jonathan Seldin, with congrat-
ulations on the occasion of his 80th anniversary. The focus of
interest is formed by the two polyhedra known as permutohedron
and associahedron, and their embedding relation. The embedding
and the corresponding lattice homomorphism is well-known, but
we arrive to it in a new way, as far as we know, consisting of exploit-
ing the resemblance between the classical Yang-Baxter Equation
(YBE), and a ’degenerate’ form of that equation, known as the
(quantum) pentagon equation or relation (PE). The latter can be
seen as an abstraction of the YBE by replacing one of the gener-
ator symbol occurrences by T, the famous silent step in Milner’s
CCS, adopted also in the process theory ACP. We discuss some
well-known phenomena around this embedding of associahedron
into permutohedron, including a glimpse of homotopical comple-
tion concerning the monoid presentations of these polyhedra.
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Figure 1: Books on Lambda Calculus and Combinatory Logic co-authored by

Jonathan Seldin [41], [42], [43], [40]. An extensive bibliography of books on com-
binators can be found in Wolfram [2021], [74]. (All displayed books grace the author’s
book shelves, and were and are an inspiration.)
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Introduction

This informal tale concerns the emergence of two objects of beauty, the permutohe-
dron and the associahedron, and how they are related, by a lattice homomorphism.
The permutohedron arises in the study of permutations as the name suggests, and
the associahedron in the study of the associativity equation (xy)z = x(yz). Because
braids are an enhanced version of permutations, by passing ’over ’and ’under’ of
strands, the permutohedron is also instrumental to visualize simple positive braids, a
notion that already caught the attention of Gauss. Also the associahedron goes back
in time a long way, namely to Euler who was interested in triangulations of regular
n-gons, at least in their number, later known as Catalan numbers, ubiquitous in the
area of combinatorics.

What makes the scrutiny of these two jewels and their relation so rewarding and
captivating is that here we have a focal point where a lot of disciplines meet, from
logic to mathematics to computer science. Indeed, we encounter universal algebra,
word problems, finite state transducers, combinatorics, Catalan numbers, geometrical
group theory, Garside theory, pattern avoiding permutations, Dyck languages, algo-
rithms on trees, homological rewriting, term rewriting, confluence and termination
problems, critical pair completion. Enough to fill a number of interesting teaching
courses on all levels, basic to advanced!

When writing this paper we were surprised to find exactly the same formula as we
will encounter for the associahedron in papers in fields totally different from ours, to
wit incidence geometry about Desargues configurations and quantum theories about
anyons. The equation is called there the (quantum) pentagon relation or pentagon
equation. It has been noted in some papers that this equation seems a degenerate
form of the classical YBE for braids, that we will discuss extensively and intensively. A
historical nice to know item is that the pentagon relation already occurred a century
ago in the work of Veblen, as the Veblen flip, see Doliwa [22].

As to the picture-oriented style of rendering this story, which is more a graphic
novel than a paper, most of the story is told in the extended figure captions. As
observed frequently (Henrik Ibsen, Confucius, Napoleon Bonaparte, Turgenev, Alan
Watts and many more), a picture is worth a thousand words.

Contribution of this paper

Almost all matters of our story are very well-known in the impressive theory about
braids and Tamari lattices, including the permutohedron and associahedron. The
book [57] is a real treasure chest. Maybe new in our paper is the attention for

the colored braid representation, the well-known YBE in the «i; version, not the

1On the other hand, according to Edsger Dijkstra: "A picture may be worth a
thousand words, a formula is worth a thousand pictures". (It would follow that a
formula amounts to a million words.) And John McCarthy stated: "As the Chinese
say, 1001 words is worth more than a picture."
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Artin ’relative’ notation, and the relation with its degenerate form of the (quantum)

pentagon equation PE.
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1 The Cube equation in A-calculus

Because this story is dedicated to Jonathan Seldin we like to have the
A-calculus as point of departure, in particular starting in volume I of
Combinatory Logic of Curry and coauthors [16], for Volume II including
Jonathan. In Volume I starting on page 113 the analysis of A-calculus is
concerned with the behaviour of residuals, also known in Bethke, Klop,
de Vrijer [6] as descendants of A-terms and (-redexes. The theorem is
stated by Curry as follows, on p. 120:

Theorem 1.1. Let R,S,;Q be three 3- or d-redexes in M. Then the
residuals of Q after a complete reduction relative to R and S are the
same no matter whether R or S is contracted first.

The proof takes two densely worded pages 120,121. Jean-Jacques
Lévy captured the essence of this theorem picturally in the form of a
cube after introducing his notion of projection, see the historical picture
Some more history of 40 years ago concerning the Cube Equation CE
is in Figure

Explaining the statement of CE is easy, see Figure[4} it just amounts
to two ways of evaluating the repeated projection along the red and the
blue route in the figure. Whether it holds for a rewrite system is an-
other matter. It holds for A-calculus, Combinatory Logic, in general for
first-order orthogonal term rewriting systems. It holds by definition for
Van Oostrom’s abstract residual systems. Whether it holds for monoid
presentations such as for braids, or for generalized braids, is something
to verify meticulously. E| As we will see it holds for the two jewels in this
story, the dramatis personae permutohedron and associahedron. The
CE is the key unlocking much syntactic information as obtained by the
theory of residual systems, an off-spring of the culture of A-calculus and
its twin Combinatory Logic, further developed by Mellies and van Oost-
rom. And, see Figure[d it figures prominently in Garside theory, under
a different name, to wit, coherence property EL or the Cube-condition.

2This is done in part by an admirable recent (2021) paper by Zantema and van
Oostrom, soon to be published, titled: The paint pot problem and common multiples
in Artin- Tits monoids.

3Caveat: this is not the coherence as in Mac Lane’s coherence theorems; the latter
notion is adressed in the contribution of Huet in this book.
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2.2.1, Lerwe du cube :

Soient F,,Fz,F3 des ensembles de radicaux
dans une expression M. Si DI’DZ'DJ sont les trois réductions M _f A, M_ %8B,

Hf} C, on a la figure suivante :

ol on a les réductions suivantes :

((04/0,)/(,/0,))
(0,/0)/(0,/0,)) =
(©,/0,)/(0,/0,))

0,/0) : C+E
(va/v,) tA>F
(01103) :tC+F,

= ((04/0,)/(®,/0)) : D+ N
((©,/0,)/(0,/0,)) : E > N
(@,/0,)/(0,/0,)) : F N

Figure 2: The Cube Equation and the presupposed notion of projection originated in
the PhD.-thesis (1978) of Jean-Jacques Lévy. The equality in the three Cube formulae
is Lévy’s projection equivalence. See also Huet (1994) for a formal development of
residual theory, geared towards employment in computer verification. With consent
of Jean-Jacques, compiled and copied by present author.
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Figure 3: Regarding the crucial Cube Equation some more history: Page 323 of
Barendregt [4] contains two very interesting exercises in particular 12.4.4 connecting
the CE with category theory, subsequently around that time verified in detail in
a 12-page unpublished handwritten note by Gordon Plotkin. The proofs in that
manuscript refer repeatedly to the corresponding proofs in the Ph.D.-thesis of Jean-
Jacques Lévy. For a recent (2022) account by Lévy of his construction at that time of
the labeled A-calculus, codifying the notion of residuals, see his [52]. Fragments from
Barendregt’s 1984 book with Henk’s consent and a manuscript note of Plotkin, copied
by present author, included with Gordon’s consent.
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(Bla)|(vla) = (Blv)l(aly)

Figure 4: The Cube Equation CE. A fundamental theorem of residuals in A-calculus
in Curry [I6]; made explicit as in this figure using his notion of projection by Jean-
Jacques Lévy in his Ph.D.-thesis, subsequently used by Mellies and Van Oostrom for
their axiomatic theory of (abstract) residual systems. It is included in Barendregt [4],
p-315,12.2.6 as the Cube Lemma. It is also a key property in Garside monoid theory,
where it occurs frequently, see location pointers mentioned in Endrullis-Klop [28]. In
Dehornoy [17] p.59, Figure 2.1 it is called the Coherence property. In Dehornoy et al.
[20] p.67, Prop. 4.16 it is called the (6-)Cube condition. Picture by author.
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Figure 5: Newman’s Lemma in three dimensions: spatial tiling with elementary
cubes (e.c’s) for a terminating (SN) reduction relation yields confluence (conver-
gence): the tiling process will result in a big completed cube. In analogy of a 2-
dimensional e.d. (elementary diagram) an e.c. has three single steps as initial steps
and arbitrarily many converging steps. This lemma is useful in in establishing the
Cube Equation (CE) for suitable monoid presentations, such as identified in Garside
theory. The CE is valid for A-calculus, orthogonal rewrite systems, and also for the
permutohedron and the associahedron presentations; but e.g. not for the Artin-Tits
monoid as in Figure Picture by author.

Btw, Figure (] fails to say what equality is meant: it is in A-calculus
Lévy-equivalence, in monoid presentations the monoid equality as given
by the equations. We will encounter below the example of the asso-
ciahedron equality given by the Pentagon Equation; there it is literal
syntactic equality. Another bytheway: Lévy-equivalence is actually a
homotopic notion, as will be clarified somewhat in a later part of this
story. It refers to transforming a given reduction by nudges to another
reduction.
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2 The Yang-Baxter Equation YBE

There are numerous ways in which the Yang-Baxter Equation appears,
in very different contexts, from presentations of permutations and simple
positive braids, to complicated settings in quantum theory. The follow-
ing pictures give an impression. First a naive way of an ’intuitive deriva-
tion’ of the YBE, in Figure [l Next, in Figure [7} a more sophisticated
way of manifesting the YBE, as the hexagon in a the threedimensional
cube Cz. This has already the flavour of homotopical rewriting: the
two-step reductions are rewritten by the red and blue arrows. Third, an
even more sophisticated rendering of YBE, by filling up the faces of the
cube C3. This yields the YBE as an equation between cells, also with
the flavour of homotopical rewriting. A glimpse of such rewritings will
be discussed in a later section.

By the way, the naive rendering of YBE has a nice generalization,
mentioned in a math forum discussion by the 2022 Abel prize recipient
topologist Dennis Sullivan, who called it a trick from chemistry. See
Figure 9]

Remark 2.1. A comment on these two different but equivalent notations as in Figure|[f]
isin order. The majority of the literature containing the YBE about braids favours the
asymmetrical Artin notation like aba = bab. The advantage is that multiplication
of words amounts to just concatenation. This is so because the underlying category
for this monoid has only a single object. For the ajij-notation that simple feature is
lost, we have to take into account when multiplying words, the 'states’. It is akin to a
‘typed ’ framework; multiplication is only possible if the state of the source coincides
with the state of the target of the first word. So we have just as in typed A-calculus:

W0 T VTP — (W-v):0—>p

Suggestively, we also could write employing left- and right superscripts:

Wt = T(wev)?

So there is a kind of ’cut-rule’ applied. This state-dependent framework is based
on categories with several objects; see Dehornoy [20], Ch. 1, The category context,
page 29 — 39 for more explanation about this framework, including presentations of
categories, that in that marvellous encyclopedic book on Garside theory is generally
used.

Question 2.2. Is there a version of Tietze moves able to deal with such state-dependent

presentations, or in other words, categories with presentations as just referenced?
For term rewriters, the two notation styles, Artin-style versus oj;-

style, have an important consequence: in the aij-notation it is entirely
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(a) The YBE in oyj-notation, or
colored notation: the strands have  (b) YBE in Artin-notation: the gaps between
a color 1,2, 3. the strands are numbered in green 1, 2.

Figure 6: The Yang-Baxter Equation (YBE) arises in many contexts where three
objects are permuted to their reverse order. (a) The lower figure permutes two disjoint
pairs of objects, which amounts to commutativity. The red line is a time-line: sliding
it downwards, the successive crossings manifest themselves in the order as in the
equation. The upper figure is sometimes called the star-triangle relation. Note the
resemblance with one of the Reidemeister moves to manipulate knots. (b) The Yang-
Baxter Equation (YBE) in another notation, originally due to Artin. Here the green
numbers denote the gaps between the objects 1,2,3,4. This notation is commonly
used in literature about (simple positive) braids and in homotopical rewriting. Picture
by author.

clear how symbols in the [hs propagate to those in the rhs of the equation.
This is not so in the Artin notation. This facilitates some proofs in the
basic set-up of simple positive braids, e.g. that so-called simplicity of
such braids is preserved by projections, as defined in Endrullis-Klop [28§].
How important such tracing of symbols is, is witnessed by Lévy’s labeled
A-calculus, see [52].

There are more term rewriting advantages for the oyj-notation. For
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one thing, it is an absolute notation, whereas the Artin-notation is rel-
ative: in a braid word occurrence of a generator designating a crossing,
its meaning, which strands are crossing, depends of its place in the word.
A symbol 1 here means something different than a 1 in another place.
Not so for the oyj-notation. Another benefit of the oyj-notation, called
"colored’ braids notation in Endrullis-Klop [28], is that the presenta-
tions for braids or permutations yield decreasing diagrams. In recent
homotopy rewriting theory this technique of decreasing diagrams of De
Bruijn and Van Ooostrom [58], Endrullis [31] , [30] has been used by
Ivan Yudin [76] for homotopical completion of Hecke-algebras, leading
to Zamolodchikov-cells, a notion that we will encounter later on in this
story for the permutohedron.

By contrast, the Artin presentation with 121 = 212 etc., is a stan-
dard example of corresponding elementary diagrams that do not yield
decreasing diagrams. So we then do not have automatically the conflu-
ence property 'for free’, such as decreasing diagrams deliver.

There is yet another reason for a rewriters preference for the o;-
notation, a reason which pertains to the present paper. It is not only
directly linked to the equational presentation of the permutohedron, but
surprisingly, also to that of the associahedron; and by combining these,
also to the equational presentation of the permutoassociahedron. This
is in fact the main observation of this paper, namely that the (quantum)
pentagon equation PE is an abstraction of the YBE, which yields a (well-
known) embedding of associahedron into permutohedron, more precisely
of An. into Py.

https://math.stackexchange.com/users/232583/
dennis-sullivan

See the Endnote

3 The permutohedron P4

Just as we have seen the hexagon, which is P3, the permutohedron of
order 3, arising from the cube C3z in Figure [7 or also simply by the
transpositions from 123 to its reverse 321 in Figure[§] and also in Figure
[49] we obtain P4 by drawing the transpositions of 1234 to 4321. It can
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Figure 7: The hexagon is the permutohedron of order 3, P3, residing in the cube
Cs, displaying the Yang-Baxter Equation YBE. The red and blue arrows suggest
the consecutive flipping steps, but that is more clearly visible in the visualisation of
Figure @, which is essentially the same. Picture by author.

also be viewed as arising by filling in the faces of the the tessaract Cy,
the 4-dimensional cube. Figure [32| sketches how that is done; the first
few steps are the colored faces there. Analogous renderings work for
all n. And thus a chain is arising of permutohedra of increasing order,
with P, embedded in its successor P17 having as a limit the infinite
permutohedron Po,, as Figure [57] suggests.There is much to explore in
this gem-like object. For one thing, it is a truncated octahedron, as
Figure [[2 shows. An even more amazing fact is that Py is able to fill up,
tessellate, the 3-dimensional space; and for every n P, tessellates n-
dimensional space. Noteworthy is Figure [I4] displaying a walk around
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12
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120013023
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Figure 8: The hexagon of hexagons, again displaying the YBE. The equation at
the bottom is an equation between words composed of cells, a typical endeavour of
homotopic rewriting. Compare with Figurem Picture by author.
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Figure 9: The chemical trick. If the red time-line is moved downwards, the varous
cross-points that are encountered indicate the transpositions that constitute the per-
mutation from upper sequence 123456 to lower sequence 315264. In this example
X23045X13025X46. In fact, the red line needs not to be strictly horizontally moved
downwards, we can do it in a slanted way. Even more, it can be drawn somewhat
curved. Also the straight lines from upper side to lower side can be continuously
deformed in a somewhat curvy way, as long as we take care that each pair still inter-
sects only once. The different «ij-words so obtained, which are in fact paths on the
permutohedron Pg will be equivalent anyway by the YBE-equations. This observation
works also for the alternative Artin gap-notation of the YBE, by looking at the gap
above’ a cross-point, the usual Artin-style of denoting positive braids. Picture by
author.
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Figure 10: P4, the permutohedron of order 4, with dual labeling of the edges,
in Artin notation using the three gaps 1,2,3 and in colored braid notation, using
the six transpositions 12, ®13, @14, %23, %24, ®34. This polyhedron can be viewed in
various ways: as an abstract reduction system, which is confluent and terminating,
as a lattice, as a finite state transducer translating the Artin notation into the «y;
notation and vice versa. Picture tikzed by J. Endrullis.

the P4 sphere by repeatedly flipping a face. This walk around has a
homotopical flavour, and embodies in fact a homotopical completion of
the monoid that gave rise to P4, known as the Zamolodchikov cycle, to
which we will come back in Figures [30] and [31]
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Figure 11: A cyclic walk around the P4-globe. On the permutohedron P4 the edge
labels propagate in an ’orthogonal’ fashion around the globe. Note that this holds for
the ouj-notation, but not for the Artin gap-notation with the three generators 1,2, 3.
The walk as displayed in green can be seen as one half of the Zamolodchikov-cycle
that will be displayed later. Picture by author.

4 The associahedron

Now that we have surfed around the permutohedron in a dozen homo-
topic moves by flipping faces, it is time for our second jewel in this story.
Looking around on the web for the permutohedron, we soon encounter a
less well-known jewel, a polyhedron known as the associahedron, with 9
faces consisting of 3 squares and 6 pentagons. It can be rendered in sev-
eral geometric ways as the next figures will show. It arises from the basic
equation for associativity (xy)z = x(yz), applied on terms generated by
constants aj,...,a, and application. In fact, we use the associativity
rule as a rewrite rule (xy)z — x(yz). Now starting for n =5, and con-
stants a, b, c, d, e from the initial term a(b(c(de))) with association to
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Figure 12: The skeleton of the permutohedron P4 can also be obtained as a trun-
cated octahedron, as is well-known. This figure is convenient in visualizing how the
faces of P4 are adjacent to each other; every of the 6 squares is adjacent to 4 of
the 8 hexagons, these 4 are connected in a ring HHHH around the square. Every
hexagon is surrounded by a connected ring of 6 faces, of the form SHSHSH, for S
a square, H a hexagon. So this figure gives a good impression of the language of
S, H-words formed when travelling over the globe P4. (In turn, the octahedron itself
is the graph displaying how the 6 faces of the 3D-cube C3 are adjacent.) Picture
tikzed by J.Endrullis.

the right as top vertex, we get as reduction graph with the normal form
(((ab)c)d)e as bottom vertex L the skeleton of the polyhedron As, the
associahedron of order 5. It is a gem-like object, first discovered and
studied by Dov Tamari [70]. It turned out to be surprisingly ubiquitous.
The number of such parenthesized expressions or terms on n generators
is the equally ubiquitous Catalan number, whose definition can be found
everywhere, in particular in the books by Richard Stanley [67]. The se-
quence of Catalan numbers starts with 1,1,2,5,14,42,132,429, . ...

These numbers were almost 300 years ago also determined by Leon-
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Figure 13: Frank Garside in his seminal paper [36] on the braids group gave (es-
sentially) this drawing of the permutohedron P4. The edge labels 1,2,3 are the usual
Artin notation for braids, enumerating the gaps between the strands of the braids.
This notation is also present in the permutohedron P4 in Figure[I9] there next to the
alternative colored braid notation employing the waj-generators. (Figure copypasted
from Garside [36], page 247, Fig.7.)

hard Euler in another context, namely in how many parts one can divide
a regular n-gon in pieces by non-intersecting diagonals. Actually, the
two counting problems turned out to be the same, there is a now very
well-known isomorphism between such n-gon triangulations and paren-
thesized terms, or binary trees with the constants as end points, as in the
Figures 22| 23] What is more, not only their number is the same,
also their structure under a certain move is the same. For the n-gon tri-
angulations this is the diagonal flip, see the figures just mentioned. For
the corresponding binary trees that is the tree rotation, which is just an
application of the associativity rewrite step on the binary trees that are
the term trees. The pictures make this clear without formal definition,
Btw, tree rotations are important in data algorithms.

Now to analyze this situation further, it is necessary to have some
notation on the polygons and the trees. For the polygons this is done
as in the figures, the constants a,b,c,d,... are placed on the edges of
the polygon, the upper edge is mostly left blank and serves as the result
edge when we determine the term that corresponds with the polygon
diagonalisation. Figures [20] [23] give examples. In between the letters at
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Figure 14: A walk around the permutohedron in 12 face flips. Blue is before the
flip of that face, still cool; red is after the flip, as a still warm afterglow of the flipped
part.The original starting blue path from North pole to South pole is in the last
snapshot 12 restored. Each flipped face contains its name, in the same notation as in
Figure Picture by author, on the underlying permutohedron tikzed by J. Endrullis.
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the sides we place natural numbers at the corner points of the polygon.
These numbers give rise to what we call the canonical numbering of the
binary tree that is determined by the cake cutting. It arises by letting
the polygon corner numbers ’percolate upwards’ to the nodes of the
inscribed binary trees. In fact, the node numbers are then the inorder
numbering of the binary trees, a fact coming back in the theorem of
Knuth that we include below. This numbering will be the key for
the embedding of the associahedron into the permutohedron, but we are
not yet on that point. See footnote E] .

5 Cutting the cake and flipping diagonals
equals rotating the tree

Before we capture the moves and the equations that constitute the sec-
ond jewel in this story, the associahedron, we must understand that
there are different ’isomorphic’ views on these moves or actions. They
are depicted in Figure See also Figure

The Figures and [37 give a closer view on the relations between
these equivalent views, and how the objects are related by the moves.

We now turn to the equations that govern this associahedron struc-
ture, in analogy to the YBE that gave rise to the permutohedron P;,.
It turns out that the crucial equation for the present associahedron is
very close to the YBE! We only have to cross out the middle symbol in
the rhs of YBE. See Figure This suggests that we can embed the
associahedron into the permutohedron. Here is how that can be done.

6 Embedding the associahedron into the
permutohedron

First we use the canonical numbering of the tree to give a notation to
the tree rotation moves. Such a tree rotation step consists in flipping

“Dehornoy [61] uses another node numbering of the binary trees, using 01-
sequences that increment by 0 or 1 when going to the left or right. Employing
this notation he arrives at a new presentation for the Thompson monoid, i.e. for the
associahedron, that includes quasi-commutation equations. For the canonical node
numbering that we use here, these extra equations disappear.
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36 RICE UNIVERSITY STUDIES

For n=5 the proof may be visualized in the following graph, where
AB is short for A® B and A-BC is short for A(BC):

la

A[(B-CD)E] A[B(CD"E)]

e -

1(a1) | [A(B-CD)]E L‘a [(AB)(CD)]E <-L (AB)(CD-E) |1(1a)

(a1 (ha
A[(BC-D)E] % [A(BC-D)JE “ (4B)(C-DE) < A[B(C-DE)]
al a

[(4-BODIE 225 [(4B-C)DJE «*— (4B-C)(DE)

la \ %) la

(A-BC)(DE)

L-—— A[(BC)DE)] <~————

Each complementary region for the graph is either a pentagon (an instance
of [3.5]) or a square (an instance of naturality). The whole graph may
be regarded as the skeleton of a 3-cell; the regions are its faces and cor-
respond to products ABCDE with two pairs of parentheses omitted, while
the edges correspond to products with one pair of parentheses omitted.
Stasheff [10] has shown that the corresponding graph for every n gives
an (n — 2)-cell.

Figure 15: The associahedron As occurs in category theory in Mac Lane 1963 [53]),
demonstrating the coherence of ® for n = 5. We leave the small puzzle to decipher
Mac Lane’s notation for the edges, the arrows are directed just opposite to ours, to
the puzzle-minded reader. See also Huet’s lecture from 1987, page 6, included in this
book. Picture plus caption copied from cited reference.

one edge from going left to going right, thereby swapping the numbers
of the nodes at start and end of the flipped edge. So it makes sense
to notate such a tree rotation flip step by o;. The figures contain sev-
eral examples. Now this reduction relation is easily seen to be WCR,
weak Church-Rosser. That means we have elementary diagrams, nowa-
days often called cells, that have two diverging steps completed by some
converging sequences of steps to a common reduct. Such e.d’s con-
stitute an equation by equating the two reductions of that cell. The
surprise is that we then get the following equation as in Figure [21]
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(zy)z — x(yz)
reassoctation

diagonal swap
retransitivisation

592
—

I tree rotation

Figure 16: Four different views of the same action. Note the blue bracket pair
in the equation at the top. The word ’retransitivisation’ is explained in Section [TI}
Picture by author.
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Figure 17: Tree rotations work on the Cantor space C of 01-streams, and thereby
can be seen as elements of the Thompson group F, see Dehornoy [I8] and Clay
[14]. The figure shows the action on C of the tree rotation &1, corresponding to the
rewrite step (ab)c — a(bc), which is according to Dehornoy one of the two generating
basis elements of F. This tree rotation can also be rendered as the FST, finite state
transducer, depicted in the lower grey window. Picture by author.
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Figure 18: From parentheses to diagonals in a regular polygon. In the blue strip is
the parenthesized term, ((ab)(cd))e), extended to a ’linear’ Venn-diagram. The upper
half is the same as the diagonalisation of the polygon, as can be seen by by rolling
up the line with abcde. The half Venn-diagram is also isomorphic to the binary tree.
Going to the left in the tree the node numbers are decreasing, to the right increasing.
The moves in the three formats are isomorphic too: first a shift of a pair of brackets,
second a diagonal flip; third a tree rotation. Picture by author.
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that is very reminiscent to the YBE of before; except it has not the
hexagon form WWW = WWW as the YBE, but instead the pentagon
form WWW = WW. It seems a degenerate form of the YBE. It is also
rather ubiquitous and well-known as the (quantum) pentagon relation
or equation. We will call it PE. Given the resemblance with the YBE,
it is a plausible conjecture that the polyhedron connected to this PE,
will be embeddable in the YBE-polyhedron, being the permutohedron.
We have endeavoured to realize such an embedding guided by the form
of the YBE and PE: comparing these equations which in our notation,
based on the canonical tree node numbering, employ the same ’action’
labels 5, we know precisely which edges «;j should be collapsed, sup-
pressed. With the intuition of process algebra a la CCS or ACP in the
back of our mind, we could view this as an abstraction by replacing the
symbol «; by the silent move T of Robin Milner in his CCS.

It is well-known in the theory of Tamari lattices and polyhedra that
indeed there are many ways to embed the As into the permutohedron Py,
but we want something extra, namely satisfying the notation of the steps,
which is in both cases oy;. We have done so, 'manually’, by starting to
embed the faces at the top of both structures, then successively adding
adjacent faces, thereby noting what steps should be collapsed, to satisfy
the collaps in the equation PE, where the middle symbol in the rhs
is collapsed. We then arrived at the Figure where the 10 collapsed
edges have been marked in red. Now it turned out that this embedding is
exactly the same as the one in the authoritive paper on Tamari lattices
by Nathan Reading [60], which convinced us of the canonicity of this
embedding, that according to the theory is also a lattice homomorphism,
and gives a lattice congruence for the equivalence classes of the collapsed
edges.

Summarizing, we have devised a process simulation of the associahe-
dron process into the permutohedron process satisfying the preservation
of paths in the former modulo the t-steps. If the embedding is named
@ : A5 — P4, we have:

Theorem 6.1. Let s,t be vertices of As. Let —»a5 denote paths in As,
and —»134 paths in P4 modulo T, i.e. possibly containing t-steps. Then

s a5t = @(s) =5, @(t)
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Figure 19: Collapsing the 10 red edges in the permutohedron P4 yields the associa-
hedron As. Green underlined are permutations containing the pattern 312; they are
minimal in the red fibres. Green overlined are permutations containing the pattern
132; they are maximal in the red fibres. Nodes in the middle of the boomerang-
shaped fibres have over- and underlining, they contain both patterns. The purple
bold numbers 1,..., 14 refer to the nodes of the associahedron As that is embedded.
The capital Roman digits I,..., IX refer to the 9 faces of A5 mapped to that face of
P4. The typical boomerang shape of the red fibres, equivalence classes of the embed-
ding, is witnessing that the embedding is in fact a lattice homomorphism, and that
the equivalence is a lattice congruence; see N. Reading [61], p.298, 299, Fig. 5, Local
forcing requirements. Picture by J. Endrullis and author.
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(((ab)(cd))e) ((@b)(cd))e)

N\

(@b)ed) ©

(ab)  (cd)

ARA

a b ¢ d

(a(b)((cd)e))) (ab)(cd)e)))

@ (b((cd)e))

Y N\

b ((cd)e)

\
(cd) e

Y\
c d

Figure 20: A regular hexagon with non-intersecting diagonals is tantamount to a
parenthesized expression of five letters a, b, ¢, d, e. Each orange diagonal stands for a
subterm; the whole term is on the upper edge, the 'result’ edge. Picture by author.

7 Puzzles of Noyes Chapman and Donald Knuthj

The permutohedron is all about permutations, or what is the same,
about simple positive braids. Thinking about permutations we remem-
ber the classical 15-puzzle of Noyes Chapman, that needs no explanation.
There are also analogous puzzles for sale, namely (n? — 1)-versions for
n = 3,5,6,7, materially realized in wood or plastic. The strategy for
their solution to restore the initial position 1,...,n? — 1 is well-known,
by a repeated cyclic rotation of the numbers. For n =4 there is a nice
app available in the App store, if you have the right operating system
on your iphone. (And not the obsolete one of the author.)

For our other jewel in this story there is another noteworthy puz-
zle. More interesting mathematically, at least less well-known, is Donald
Knuth’s stack permutation puzzle, that is directly pertaining to the as-
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@ Q21 (x31 32 = (¥32(x31 (V21

@ Qo1 (¥310032 = (¥32(¥310¢2]

Figure 21: From hexagon to pentagon, yielding the embedding of associahedron
into the permutohedron. The Yang-Baxter Equation YBE for the hexagon and the
permutohedron yields the Pentagon Equation PE for pentagon and associahedron,
by crossing out the middle generator in the righthand-side. This equation called
(quantum) pentagon relation or equation is well-known in quantum theory, but also
in incidence geometry, where it is called the Veblen flip. (See Adam Doliwa et al.
[22].) Picture by author.

sociahedron and its embedding in the permutohedron. We looked in
vain in the App store whether someone had already realized that puz-
zle as an app, but that is still an open opportunity for an industrious
app-designer. The puzzle and corresponding theorem of Knuth refers to
pattern-avoiding permutations, a subject pursued and well-studied in the
art of combinatorics. There is even a sequence of satellite conferences
or workshops dedicated to permutations during already two decades.
In the case of Knuth’s puzzle the patterns that are avoided are 312
and its inverse 231. The first pattern is avoided if the permutation at
hand does not have a non-contiguous subword ’"high-low-medium’. For
instance the permutation 423 or 5672435 is not 312-avoiding; the of-
fending pattern is painted in textcolor red. Note that the pattern needs
not to be consecutive. See Nathan Reading’s paper [6I] about their
emergence in the canonical embedding of associahedron into the permu-
tohedron, well-known in the theory of Tamari-lattices and polyhedra,
that we reconstructed (but only for the case n = 4) along the route
of the equational rendering of the two jewels, to wit the Yang-Baxter
Equation YBE and its degenerate form, the quantum pentagon equation
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Figure 22: The pentagon A4 of pentagons. The blue node numbers in the trees are
corresponding in an obvious way to the way the pentagon cake is cut by the diagonals.
The blue italics permutations 123,213, ... are a record of how the cake is cut, in what
order, or equivalently, how the tree is constructed. In one case there are two ways;
of which one, 312, has the peculiarity that it contains a 'wrong’ pattern, it is not
312-avoiding. Picture by author.
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Q 4 yani
o= Cx — c(act)

Figure 23: A regular octagon with non-intersecting diagonals and the ensuing paren-
thesized terms on generators a, b, c, d, e, f, g. Note the direction of all arrows; all 'cells’
are commuting, in other words all paths are homotopy equivalent. The binary tree
is displayed corresponding to the bracketed term; its node numbers are inherited
from the octagon vertices. Note that left is decreasing, right is increasing. Next to
the binary tree is the condensed tree, by removing the constants (terminal symbols)
a,...,d and edges to them. It is drawn horizontal-vertical. The vertical edges are
the 'redexes’ with respect to tree rotation, or diagonal flip or bracket shift. The con-
densed tree can be even given without the node labels; these can only be in a unique
way restored satisfying the h-v- restraint of increasing-decreasing. The form of the
condensed tree is easily recognizable in the cuttings of the octogonal cake. The green
pieces are the horizontal edges, the red parts the vertical redexes. The grey part
down is an artefact by cutting away to the condensed tree. The condensed tree is a

snapshot of an intermediate stage of sorting vertical sequence 6,...,1 to horizontal
ordered sequence 1,...,6. Another example of this sorting process is in Figures [25]

Picture by author.
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Figure 24: The associahedron As as a matchstick game. The binary trees on
a,b,c,d,e can be written in a condensed form, by omitting the constants and the
edges leading to these end nodes. Even the node numbers can be omitted (not in
this Figure), because the h-v-invariant, stating that horizontally numbers increase
and vertically numbers decrease, forces a unique possibility of restoring the numbers
1,2,3,4 at the nodes. Thus we have a game of abstract forms. Btw, note that the
forms are generated only by steps to the right and steps down; so some mirror images
do not exist. Note that the associahedron is a two-dimensional sorting process from
the vertical decreasing position at the top to the horizontal increasing position at the
bottom L, vertex 7. Remarkably, the sorting is faster than the permutohedron does
in 6 steps; here it is only 3,4,5 steps, one can choose. It would be interesting to sort
out this comparison for general n. See also the bigger example in Figure 5] Picture
by author.
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Figure 25: A tree (a vertex) on the associahedron, in this Figure Aj¢, corresponds
with a snapshot of how far the sorting of the initial numbers 15,...,1 has proceeded.
In horizontal direction the numbers are already sorted in the correct increasing order;
in the vertical stretches they are still in the wrong, decreasing order. Each redex
contraction flips one wrong pair to its correct order. This horizontal-vertical property
(h-v-property) of horizontal increasing, vertical decreasing is an invariant under tree
rotation moves. Picture by author.
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Figure 26: Cutting the 17-gon cake for Carl Friedrich Gauss. The cake cutting
corresponds with Figure 25 where this cutting is presented as binary tree, first in
full, middle in condensed form, below after the indicated redex contraction a53. The
7 green diagonals are the 'redexes’, i.e. flippable; they correspond with the 7 green
down edges in Figure@ middle tree. See also Figure@ Picture by author.
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Figure 27: In reduction diagrams of orthogonal rewrite systems such as A-calculus,
Combinatory Logic or other orthogonal term or string rewriting systems, a homotopy
feature is already present, in particular corresponding to the crucial notion of Lévy-
equivalence. Namely, parallel reduction paths inside a reduction diagram, composed
of cells that are otherwise known as elementary reduction diagrams (e.d’s) in Klop
80 or Terese 03, the two paths are Lévy-equivalent, and indeed homotopy equivalent
with respect to flipping the e.d’s. Picture by author, copied from p.118, Figure 4.21
in Terese 03.

(a) All marbles at the sphere (b) The hole in the sphere with-
are in their place out marble

Figure 28: Spherical fidget: an analogon to the 15-puzzle of Noyes Chapman.
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Stack permutations

2431 1234 4132 1234
output from stack input to stack output from stack input to stack

4_

>

>
-
°

Figure 29: Some permutations can be realized by shunting as in a railway station,
using a stack with the usual pop and push actions; but some permutations are not
stack realizable. (The basic railway figure, inspired from a similar one in Knuth [50],
Section 2.2.1, p. 236, is tikzed by J. Endrullis; the adornations are from the author.

PE.

An example of two instances of Knuth’s puzzle, one positive, one
negative, is depicted in the Figure Here as in Knuth [49], the puzzle is
depicted in the format of a train-shunting-puzzle. The figure is inspired
by the one in Knuth [50], redrawn in the wonderful tool tikz (but not
by the present author). See Footnotelﬂ .

The notion of 312-avoiding permutation is also present in Knuth’s
theorem in [49], p.239, section 2.2.1, Exercise 5 as follows. We quote
Knuth’s wording verbatim, except for the phrase about 312-avoiding.

Theorem 7.1. (Knuth [{9])

1. Show that one can obtain the permutation p1pz2...pn from12...m

5 Caveat: in Figurethe upward arrow in the stack might be slightly misleading,
by suggesting that the stack content may be moved upwards back to the input. That
is not allowed, it may be moved upwards but only as a pop action to the left, the
output area. So we must not move cars against the right-to-left arrow displayed in
the input area. Otherwise we could compose every permutation! Come to think of
it, that would not be a bad idea for the railway shunting supervisor...
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using a stack <= there are no indices i < j < k such that
Pj < Px < Pi- In other words, the permutation is 312-avoiding.

2. p.329, Exercise 6: Suppose that a binary tree has n nodes which
are WUy ... Uy in preorder and Up,Up, ...Up, in inorder. Show
that the permutation p1pz ... Ppn can be obtained by passing 12...1
through a stack , in the sense of the previous part 1 above.

3. Conversely, show that any permutation p1p2...pn obtainable with
a stack corresponds to some binary tree in this way.

Proof. For the notions of preorder and inorder for binary trees see the
cited book on page 317.

1. 1. See Solution in Knuth’s book on page 533.
2. 2. See solution in Knuth’s book, page 559.
3. 3. See solution in Knuth’s book on page 560.

O

Rumination. How about other orders on permutations than the present
one, often called the weak order on permutations? One other ordering is
depicted in Forcey [34]. The permutohedron then obtained has the same
skeleton, but maintaining the oy; notation, a different labeling of the
edges; the structure then obtained is not isomorphic to the weak order,
not even bisimilar, when these structures are viewed as processes. There
are other Bruhat-orders on permutations that could be considered; we do
not know if these have been studied or compared as to what polyhedra
they generate. Given the impressively rich culture in combinatorics and
geometry of groups we would expect that there is knowledge about that
digressing path.

Another thought in that direction: what happens with the permu-
tohedron if we consider cyclic permutations, of which the end coincides
with the beginning? So they are strings of pearls as it were. Also these
are of course well-known in combinatorics. Then the P4 would collapse
considerably; its 24 vertices 1234, ...,4321 would reduce to the following.
(We postpone their determination to a leasure moment in the future.)
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Fantasizing is free. What if the swaps are as on the spherical fidget
puzzle that grand-daughter Charléne showed the author? What is the
polyhedron then arising, with as vertices the different configurations of
the marbles. Also this is a sorting puzzle, with a topological flavour.
See footnote ] and footnote [1 .

8 A glimpse of the homological /homotopical per-}
spective of rewriting

Consider C3, the Cube in 3 dimensions, with its edges oriented as in
Figure [7] We can view this structure as an Abstract Reduction System
(ARS) with the corner points of C3 as objects and the arrows labeled
1,2,3 as reduction or rewrite relations. This ARS is complete, that is,
confluent (CR) and terminating (SN). Cube C3 can be seen in forward
direction of its arrows as a process changing the initial object 1 to the
final object 8 , the single normal form, in various ways, that actually
can be enumerated as the permutations 123,213,132,231,321. We note
that the three reductions 1,2,3 are commuting relations, satisfying the
squares as in Figure [7] Figure [32)is similar but one dimension higher,
displaying the tessaract.

There is also another reading of these elementary diagrams, when we
observe the change of the sequence of steps, or the words if you want.
This perpendicular reading is the starting point of a homological /homo-
topical view and development of rewriting, corresponding to 2-categories
where the objects are paths.

In logic, mathematics and computer science we are accustomed to
apply ’reflection’ or application of a notion on itself, and so we have
sets and sets of sets and sets of sets of sets, even ad infinitum. Likewise
we have functions describing change, but also describing the change of
change and so on, in the form of derivatives. And we have next to

5This puzzle is one of a class of sliding puzzles, played on arbitrary finite graphs.
The nontrivial analysis of that family has been considered by some leading experts in
graph theory and combinatorics. See [73], [75] for an analysis of positions for which
a solution exists, and on which graphs.

"The mechanism realizing this spherical sliding puzzle is surprisingly simple; it
consists of an elastic sponge inside that absorbs the marble that is pushed inwards,
and pushes it out to fit in the adjacent open hole.
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morphisms in category theory morphisms of morphisms and so on. So
it is not surprising that we have starting with term or string rewriting
also rewriting of rewriting and rewriting of rewriting and so on. In the
French school of homotopical rewriting these higher levels of rewriting
have been captured in a nice notation, using the single arrow (—) for
rewriting on the ground level, double arrow ( = ) for the first level,
triple arrow (=) for the second level, and even four-fold arrow which I
don’t know how to latex. It is displayed in Figure copied with kind
consent of its authors.

The permutohedron and related structures obtained by monoid pre-
sentations lend themselves for discussion of a relatively recent perspec-
tive in term rewriting, namely the perspective of homotopical or homo-
logical rewriting. In the world of typed lambda calculi and their impact
on proof verification there is the emergence of homotopical type theory,
boosted by the univalent axiomatics programme of the late Vladimir Vo-
evodsky. We cannot not dwell on that subject, if only out of ignorance,
but look at the restricted area of term rewriting, in particular string
rewriting.

The consideration of homotopy and homology pertaining to string
and term rewriting dates back some three decades, with the emergence
of higher dimensional rewriting, connected also with higher order cate-
gories. See Burroni [8]. A milestone here was the work of Craig Squier,
with his notion of Finite Derivation Type (FDT); see Squier [66]. The
last decade has seen some fascinating developments of several French
rewriters pursuing this direction. For the present author these subjects
are viewed from a distance with awe and admiration, like one can ad-
mire and be impressed by images of the Himalayas without having the
experience of actually having climbed them, nor the ability.

See footnote [ .

See endnote 2 .

81n the current literature this combination CR & SN is called complete or conver-
gent.
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Figure 30: The Zamolodchikov cycle on the permutohedron P4, presented in [39]
as the homotopical completion of B}, the monoid presentation underlying the per-
mutohedron P4. The oval cycle is from [39], the colors and underlining are ours to
match the figure with Figure[3I] The green fields contain respectively the begin term
with overlapping redexes, and the end term of the two diverging reductions. The
symbols 1, s,t are in Figure respectively, 3,2, 1. Note in steps 3 and 9 the simul-
taneous contraction of the two squares. Note also that we have here an instance of
Knuth-Bendix completion of the initial overlap. (In fact, just as in the YBE).

9 The permutoassociahedron

There is a large treasure chest of generalized polyhedra, cyclohedra and
related structures. The important reference is the Tamari volume [57].
Another jewel mentioned as a 'mystery’ source in that comprehensive
source book (p. 124, Ceballos-Ziegler [10] ) is the permutoassociahedron,
which can be viewed as a common extension of the two main jewels in
this note, as the name indicates. Just as in the associahedron we consider
in this structure parenthesized terms involving generators a, b, c, d, but
in addition one is allowed to commute consecutive pairs of the letters.
Thus we have as defining equations

(xylz =x(yz)
ab =ba
ac =ca
ad =da
bc =cb
bd =4db
cd =dc

Note that we do not have commutativity on all terms, only the pairs
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Figure 31: This Figure of the Zamolodchikov cycle on the permutohedron occurred
basically in [28], without colors and the homotopy triple arrow, here also with anno-
tated purple numbers 1,...,12 synchronizing it with those in Figure The terms
in the green field are the begin term with overlapping ’redexes’, and the end term
rsrtsr of the two divergent reductions.

of generators. The associativity rule does hold for all terms that match
the equation. If we orient these rules, say from left to right, we can
determine the reduction graph of all reducts starting from the initial
term a(b(c(de))), just as for the associahedron on 5 letters. This reduc-
tion graph is the permutoassociahedron, consisting of 120 points. On 3
letters a, b, c it is the dodekagon as in Figure

It was some 40 years ago analyzed by M. Kapranov [44]. Its im-
portance resides in the foundations of category theory, extending the
theorem of Mac Lane that we mentioned in Figure The permutoas-
sociahedron is also figuring in recent theories in theoretical physics as
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3

Figure 32: The 4D cube, the tessaract. The skeleton, with edges labeled 1,2,3,4
can be seen as an abstract reduction system, which is confluent (CR) and terminating
(SN). It also displays the conversion of the word 1234 into the word 4321 in successive
swaps. The swaps are elementary reduction diagrams, each of which is a transposition
of two symbols. The partial order of the process of filling up these ’cells’ yields
the permutohedron P4 of order 4. Displayed as colored cells are the transpositions
K12, ®23, X24, X43, X217, present around the 'North pole’ of Ps4. Picture by author; it
should be redone in tikz!
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Figure 33: A visual impression of the homotopy equivalence relation, purple, in the
grey-blue gridlike underlying space. How can the red and yellow path in this space
be transformed into one another by nudges via intermediate cells in this space? (This
Figure is from Xerzes Arsiwalla et al., [2] [3], with permission.)

in quantum gravity theory. For a link to that area of investigation see
the paper [64] of M. Sheppeard, a paper that contains the Figure
included here. The author Marni Sheppeard deceased only a few years
ago in tragic circumstances in the mountains of New Zealand. Her mem-
ory is honored by a website devoted to her life and work, maintained by
some of her former coworkers.

The permutohedron figures in the homotopical completion of the
cube. Is the associahedron also figuring in the homotopical completion
of some structure? A degenerate cube maybe? And the permutoassoci-
ahedron?

The permutoassociahedron is also interesting for term rewriters. Pre-
sumably the permutohedron is embeddable in this structure, by collaps-
ing the steps due to commutativity of the generators a,b,c,d. Then
the associahedron is embeddable in it too, by transitivity. Furthermore
it is likely that the elementary diagrams embodying this structure are
decreasing diagrams, thus ensuring that tiling with these e.d’s always
will converge in finite reduction diagrams. Presumably this structure is
also a Garside monoid?

We conjecture that the Cube Equation holds, so that the theory of
abstract residual systems applies, delivering a host of syntactical results
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Figure 34: The permutohedron P4 as seen from above, with the ten edges to be
collapsed for the embedding of As into P4. The red numbers 1,...14 indicate the
vertices of As that are mapped to that place in P4. Picture by J. Endrullis and author,
inspired by Figure 10, p.201 in Stefan Forcey [3])]; there with another ordering than
the weak order used here on permutations.

and lattice properties. Residual systems originated in the A-calculus,
in particular from Theorem [I.1] stated and proved on pages 120, 121 of
Curry-Feys Vol.I.

Another interesting question is on a meta-level: the presentations
of permutohedron and associahedron are so to say abstractions of those
for the permutoassociahedron. Do we get a lattice homomorphism and
a lattice congruence as for the case of the embedding of associahedron
into permutohedron? What are the equations analogous as for permu-
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A (((ab)(cd)e) P
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Figure 35: The associahedron As with parenthesized terms and corresponding bi-
nary trees. The hexagon upper left with the blue numbers 1,2,3,4 interleaved with
the letters a, b, c, d, e is responsible for the numbering of nodes in the binary trees;
we call it the canonical node numbering. The double digits 32,21,43 stand for the
generators a3z, x21, @43 and indicate the tree rotation, i.e. the edge that is flipped,
between the vertices 1,...,14. Picture by author.
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Figure 36: As is well-known, the associahedron As can also be rendered as a trun-
cated cube, by removing the three prisms as indicated. The capital Roman numbers
I,...IX enumerate the nine faces of this enneahedron. Picture by J. Endrullis and
author.

tohedron and associahedron?
See Endnote 3

10 An equational realization of the
permutoassociahedron
The permutoassociahedron was discovered and realized thirty years ago,

by Kapranov answering a question of MacLane and Stasheff. This beau-
tiful jewel is also in recent years receiving much scrutiny. Its realization
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Figure 37: The associahedron As with the parenthesized terms over a, b, c, d, e and
the corresponding hexagon triangulations. Picture by J. Endrullis.

was achieved from various directions, according to Ceballos-Ziegler [10],
among them the realization as convex closure of a set of points in R™ and
as solution domain of a set of linear inequalities. Three other methods
are mentioned by Ceballos-Ziegler [10], p.120,121.

In this paper we have for the permutohedron and the associahedron
endeavoured to find a realization from another direction, namelijk a
purely equational one, where each face is an elementary diagram as in
[46], and Terese 2003, 7], aka cell in homotopy rewriting. Thus we have
discussed the YBE for the permutohedron, and a so-called degenerate
form of YBE, known as the pentagon equation PE. A useful intuition
here is to have a change of view (in Dutch blikwisseling) and view these
bodies described by these equations as processes, performing actions such
as transpositions or tree rotations. We can then abstract away some of
the generators into the silent move T of Milner’s CCS and ACP, and
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| afbefabcdbc =ecdbcfbafba I

Figure 38: An example of the homotopical equivalence relation in a simple setting.
All arrows are pointing downwards, and satisfy in the underlying chainmail-like space
the five equations in the cadre. (Chainmail in Dutch = maliénkolder.) The two
displayed paths are homotopy equivalent because they can be nudged towards each
other by flipping the five colored cells «, 3,v, d, e. This example only gives a taste of
the homotopical equivalence relation; in actual homotopy rewriting completion the
underlying Squier space, aka Serre space, is more complicated, having words as points
in the space and steps by a monoid presentation, viewed as rewrite relation. Picture
by author.

invoke notions of process simulation, whereas current lattice theory uses
the notion of embedding.

Another link with computer science, in particular with A-calculus and
the ensuing residual systems, originated by Curry, Lévy, Huet, Mellies,
van Qostrom, is that these equations lend themselves for a check whether
the cube equation CE holds; also here we have a direct connection with
Garside theory created by Dehornoy and coworkers. A crucial technical




J. W. KrLopr

(ch)a

TpeX12TqcX12Tqp 12 = Q12TabN12TacX12The

(a(be))d

a((be)d)

23 (ab)(cd)

a(b(de)) (ab)(dc) T (hq)(de)

23130012 = (r120¢23

Figure 39: The three types of cells (faces) of the permutoassociahedron KP4: do-
dekagons (12-gons), pentagons, squares. Note that the 12-gon yields a hexagon after
suppressing the blue steps of the associahedron, i.e. the associativity steps. This large
cell has a palindrome equation. Top and bottom are marked, also in the pentagon,
that is subject to the pentagon equation PE. There are squares in two flavours, the
ones with only red permutation steps, and the red-blue mixed ones. We expect that
the cells (e.d’s) are decreasing diagrams, as they are (semi)-palindromes, and there
seems not to be a cyclic dependence for all the «- and 7-generators, as can be seen by
a suitable ordering from top to bottom of the whole permutoassociahedron. Note that
the big cell, the dodekagon, is again arising by Knuth-Bendix completion. Picture by
author, after similar uncolored and unlabeled pictures of this 12-gon and the pentagon
fragment on the web.
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Figure 40: The commutativity equations imposed on the permutoassociahedron
pertain only to applications of the generators, and not on all terms. For the general
commutativity equation xy = yx the reduction graph, the skeleton of the permutoas-
sociahedron, becomes much more complicated; for the dodekagon cell we then have 6
more reduction steps, drawn in grey. This extension to general commutativity of the
application operator may be ’spurious complexity’, or it might be an interesting ex-
ercise in term rewriting to determine various properties. Actually, these more general
commutativity steps are used by Mac Lane [53], page 40, in showing the coherence
for the face diagrams of the permutoassociahedron; see his diagram in our Figure [43]
Picture by author.
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Figure 41: This picture shows the permutoassociahedron KP4, whose 120 vertices
are the parenthesations of the 24 permutations of 1,2, 3,4 subject to associativity as in
the associahedron and transpositions as in the permutohedron. This beautiful picture
is copied from Marni Sheppeard [64)], page 9. Due to her untimely death two years
ago, I could not ask for consent for including this picture. It was found by googling

’permutoassociahedron’, images.
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3421

Figure 42: Following the construction recipe in Kapranov 1993 [44], p.127, see End-
notes, we obtain the permutoassociahedron as in this still somewhat rough drawing.
At first sight, it seems that by some slight changes of the three types of cells one
could make these faces regular, just as is possible for the permutohedron. But this is
impossible, see Remark [[1.3] Also the associahedron does not have a regular tiling
of squares and pentagons; it is a so-called near-miss Johnson solid. Imperfect picture
by author.

tool there is the method of word reversing, using exactly the elementary
diagrams and reduction diagrams introduced in Klop 1980, see [46], and
Terese [7].

In short, in our opinion there is a fourth way of realizing and scru-
tinizing polyhedra such as the three in this paper, namely via an equa-
tional approach. We then get the important notion from A-calculus and
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A(BC) —< A(CB) - (40)B =1 (cA)B
' 1}

(AI;)C SRR W SR T C(AB)
c-1 l-¢
(BA)C ..................... C(BA)

B(AC) —° B(CA) - (BC)A =L (CB)A

Figure 43: This diagram in Mac Lane [53] page 40 is according to Kapranov [44] the
first occurrence of the dodekagon (12-gon) as a commuting/coherent diagram giving
Mac Lane’s coherence theorem for monoidal categories with commuting letters. Note
the two dotted lines for general commuting steps, the same as the grey extra arrows in
our Figure See also Huet’s approach to that coherence theorem as an application
of Knuth-Bendix completion, page 7 of his 1987 lecture in this book.

orthogonal rewriting of Lévy-equivalence, which is akin to the homo-
topical perspective that nowadays is blooming. In Terese [7] it is clearly
demonstrated by Van Oostrom, on the basis of Mellies axiomatic residual
theory, how after establishing the CE, this key unlocks a host of syntac-
tical information concerning Lévy equivalence, projection-equivalence,
lattice properties. Another influx in this area is the notion of decreasing
diagrams, which are e.d’s or cells equipped with a well-founded label-
ing satisfying a beautiful invariant originally discovered by De Bruijn
and fine-tuned by Van Oostrom. This technique and its relevance for
homotopical rewriting is used and explained by Yudin [76].

The method of renaming certain labels, action labels or generators
into T, seems to have potential for the permutoassociahedron. We con-
jecture that given the homotopical completion of the permutohedron, in
the form of the Zamolodchikov-cycle, we can collapse the ten steps as
identified in the permutohedron collapse to the associahedron, and thus
get the Zamolodchikov-cycle, being the homotopical completion of the
associahedron. And similar for the permutoassociahedron, once we have
distilled its equational realization as outlined above.

Remark 10.1. 1. Continuing the caption of Figure [46] another obser-
vation of Hans Zantema, March 2021 in personal communication,
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Figure 44: An illustration of two homotopically equivalent paths, in white,
31 232 1 232 respectively 131 212 31 23. The underlying space is very interesting,
it is governed by the three equations 121 = 212;323 = 232;131 = 313 of the Artin-Tits
monoid. Curiously, this monoid is not tiling confluent as shown in the Escher-Klee
ﬁgure@ Picture by author.

is very worthwhile. Namely: consider the Tietze equivalent pre-
sentation

{a,b,c,d | c = dbc,bd = db, a = dbba)

The e.d’s (elementary diagrams) or cells of this Tietze variant
are decreasing diagrams, in contrast to the ones of the original
Zantema monoid. Establishing that is a trivial exercise. This has
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343 = 434
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13 =31

141 = 414
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24 =42
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Figure 45: Upper figure: The diverging reduction diagram arising for the Artin-
Tits monoid (1,2,3 | 121 = 212,131 = 313,232 = 323). It determines the three
elementary diagrams or cells in blue, red, yellow. These tiles (cells), do not lead
to ’tiling confluence’, but generate a never-ending reduction diagram that we like
to call the Escher-Mondriaan reduction diagram. In the context of word reversing
for Garside monoids, where similar elementary diagrams are composed to reduction
diagrams in order to find least common multiples of words, the divergence for this
monoid presentation was also observed in Dehornoy et al. [20], page 73, Example
4.28, second part about the Artin-Tits monoid. Lower figure: Diverging reduction
diagram for a generalized braid monoid, aka Artin-Tits monoid, subject to ’braid-
like’ equations as in the underlying connectivity graph in the grey square. Again
the diverging reduction diagram is cyclic, which raises the question whether that is
the case for every diverging reduction diagram for monoid equations. Zantema gave
a remarkable example in Figure [46] to the contrary, there are non-cyclical diverging
diagrams. Picture by author.
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©-0:0:0-0-

[1] ec=bdc
| bd = db
m = dbba

deciding equality:

a word consists of an a,c word with to the left
of each 'c’ a cloud of b,d's with equal number
of b, d, and to the left of each 'a' a cloud of b,d's
with twice as many b's as d's

Figure 46: A very remarkable non-homogeneous monoid (a,b,c,d | ¢ = bdc,bd =
db, a = dbba) found by Hans Zantema, personal communication March 2021, answer-
ing the question of the author whether all infinite reduction diagrams are periodical,
such as the one of the Artin-Tits monoid in Figure [45] or the well-known Escher
diagram of the Baumslag-Solitar monoid, which is the standard counterexample in
abstract reduction systems. This one is aperiodic, as ever longer towers of blue
squares arise. The monoid computes as it were the natural numbers. This example is
even more remarkable, as a Tietze equivalent variation does have always converging
reduction diagrams, see Remarkl@ Picture by author.
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two important consequences: Call a property of monoids absolute,
if it is invariant under Tietze moves. So decidability of the equality,
the word problem, is absolute. Famously, the Squier property FDT
finite derivation type, is absolute. So the property of decreasing
diagrams is not absolute. Nor is the property of confluence by
tiling, stating that all reduction diagrams must converge to a finite
completed one, called CR™ in Klop [80], see [46].

2. A more interesting but easy exercise is that Zantema’s monoid is
decidable as to its equality, conversion relation. Figure [46] gives
the reason.

3. Some history: Reduction diagrams built from elementary diagrams
(e.ds), often called ’cells’; in the framework of homotopical/ho-
mological rewriting, were arising from the early A-calculus liter-
ature, and made explicit in Klop [46], Klop, Oostrom, de Vrijer
[48], Terese [2003]. Such diagrams figured also prominently in the
introduction of decreasing diagrams, by De Bruijn and Van Oost-
rom, the 'master theorem’ about confluence in abstract rewriting,
having numerous corollaries there, such as Huet’s strong conflu-
ence lemma and Newman’s lemma and Staples’ request lemma’s.
Independently, the useful method of reduction diagrams and e.d’’s
was also discovered in the development of Garside theory, with
the paradigm notion of the Braids monoid. There the method is
called word reversal or word reversing. There is one difference, in
the treatment of empty steps, leading to improper e.d.s or cells,
even one with all 4 edges empty. In the literature of Garside the-
ory these empty steps are suppressed by a nice abbreviation mark
in the diagrams, namely a round little arc connecting two identi-
cal diverging steps. Also, in the framework of Garside theory the
method of word reversing has been fruitfully extended to deal with
left and right word reversing. But the historical point is that this
method found its origin in the A-calculus. And on a meta-level,
witnesses a nice confluence of ideas or methods.

4. Continuing with historical origins: also the Cube Equation arises
directly from A-calculus. And just as the method of word reversing,
the notion of the CE is a key notion in Garside theory, and often
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Figure 47: The permutohedron P3 versus the associahedron A4. The permutation
vertex 312 above is peculiar, it is not 312 avoiding, and therefore part of the collapse
(red edge) from the hexagon to the pentagon. This 312-avoidance phenomenon man-
ifests itself also in the collapse of P4 to As in Figure [[9] It holds in general for the
collapse of Pr, to Any1, according to Reading [60]. Picture by author.

used there. See for several pointers to occurrences of such usage
Endrullis-Klop [28].
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Figure 48: The hexagonal space arising from the Artin-Tits monoid contains a
homeomorphic copy of the diverging Escher-Mondriaan diagram in Figure @5 It is
the diagonal strip of e.d’s numbered 1,2,3,... that is periodic wih period 6. The
direction at infinity corresponds with the accumulation point (condensation point) in
the Escher-Mondriaan diagram. Picture by author.
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Figure 49: Permutohedron P as the finite state transducer (FST) translating Artin’s
notation of braids with 3 strands into braid codes using the «y5. A braid word
in Artin’s notation is entered at the top 123 and translated following the arrows,
registering at each step the translation instruction alb. Also the reverse translation,
after flipping each a|b into bla. P4 is a similar FST, for the case of 4 strands. Note that
this translation FST bridges a state-independent presentation with a state-dependent
presentation. Picture by J. Endrullis, in Endrullis-Klop [28].

Remark 10.2. Note that the permutohedron is also a finite state trans-
ducer (FST), translating words in Artin braid notation in colored braid
notation and vice versa.

A metaphor for the levels of homotopical/homological rewriting is
presenting itself as follows. The whole structure of these levels can be
likened to an infinite skyscraper building, arising from ground level 0 to
infinity oo, via intermediate levels numbered by n € N. On level 0 we
have ordinary rewriting of objects or words, or terms. On the first floor
we rewrite sequences of reductions (—) encountered at the ground floor,
the rewrite arrow is now = . On the second floor we are rewriting
rewritings as on the first floor, using triple arrows =. On the third floor
we have quadruple arrows as in Figure [55| of Malbos and Guiraud.

Conjecture 10.1. Both the permutohedron and the associahedron can be 'cubified’,
as shown in Figures [52] and [55} and presumably also the permutoassociahedron, al-
though in that case we shy away from that complicated pictorial attempt. Anyway,
we conjecture the following.
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confluence

conversion

Figure 50: A dual view of an elementary reduction diagram (e.d.) or cell as it is
called by Paul-André Melliés in [56]. The green arrow is the classical concern with
confluence; the red arrow is the new point of view of homotopic rewriting. The dual
view was exploited in Klop [46] for a new proof of the standardisation theorem in
A-calculus, and vastly extended in scope by Melliés in his paper as cited and other
papers of his series of fundamental papers establishing axiomatic residual theory,
further elaborated by Van Oostrom in Terese [7], section 8.7.1, page 430ff. Picture by
J.Endrullis.

If we have a finite abstract reduction system with labeled arrows a,b,c,..., con-
vergent, complete (i.e. SN & CR) in de notation of Terese [, and this ARS fits on
the sphere as a triangulation, then the associated monoid presentation obtained by
reading the ’cells’, or e.d,’s in our lingo, as equations, then this monoid presentation
satisfies the Cube Equation CE, which is called in Dehornoy [177] p.59, Figure 2.1 the
‘coherence property’, and in Dehornoy [20] p.67 Definition 4.14 the (sharp) 0-cube
condition. All such monoid presentations are then residual systems in the sense of
Van Qostrom [1], Chapter 8.7.1, p.430ff. The cells must be atomic, i.e. not composed
from other cells; they have to be ’prime’.

10.1 Palindrome and semi-palindrome equations

In the following simple observation we assume familiarity with the notion of decreas-
ing diagrams; for the precise definition see e.g. Van Oostrom [71], [58], Terese [7],
Endrullis-Klop [28],[31], [27], Yudin [76], Klop, Oostrom and De Vrijer, Endrullis,
Klop, Endrullis, Klop, Overbeek [30], Endrullis, Klop [29].

Definition 10.1. 1. A palindrome equation in a monoid presentation is one of
the form
ajazdaz...dn—10n = aAnQpn—-1...03020q
for letters (generators) ar,az,as,...,an—1,an from the monoid alphabet. We

require that the ’outer’ symbols a1, a, are different from the ’inner’ symbols
a2, A3y...yAn—1

2. A semi-palindrome equation is a palindrome equation where some of the sym-
bols of the inner symbols in the rhs, i.e. with indices between 1 and n, may
be crossed out, deleted.
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Figure 51: The ’cubification’ of the permutohedron, obtained by repeated projection
of the three initial steps in red leaving the ’state’ 1234 over each other until the
process closes. In the end we have thereby also established the Cube Equation CE
for this presentation. The CE says that the two ways of computing by projection the
the upper right edge of the big cube, yield the same; that is, the same modulo the
equations of the presentation. A similar much easier cubification can be made for
the associahedron which has only ¢ faces; then the cube closed exactly, with literal
equality, not modulo the equations. See Figure For the permutoassociahedron we
do not have a clue, if only because that seems to start with 4 initial steps? Picture
by J.Endrullis, in [28].
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Figure 52: Another cubification of the permutohdron P4, this time an ’exact’
covering of the cube C3, without the contorted square of the cubification in Figure
B2 Actually, the basis of this figure without the edge and node labels and the colors
is precisely given in Figure 2(a) in [63]. Picture by author.

3. a palindrome presentation consists of disjoint (qua alphabet) palindrome equa-
tions and semi-palindrome equations, filled up to a full set of e.d.’s for the pairs
(a,b) without corresponding e.d. the commutation equation ab = ba, also a
palindrome.

Theorem 10.2. A palindrome presentation consists of decreasing diagrams, and
hence is confluent by tiling, convergent in the terminology of Dehornoy [17] p.53,54.

Ezample 10.3. 1. The braid monoids B;{ have in the aij-notation a palindrome
presentation, with the YBE.
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Figure 53: Balancing wineglasses! The pentagon relation also emerges in advanced
developments in homotopical rewriting: An example of a quadruple rewriting from
Guiraud-Malbos [38], p. 38, manifesting itself in their homotopical analysis of the
monoid (a | aa = a) related to the famous Thompson groups T and F, of which F is
discussed extensively in its relation with the associahedron in Dehornoy [18]. See also
[I4] about Thompson group F, Ch. 16. See also [37] about diagram groups, p.108.
Note that this picture is a pentagon of triple steps, with an obvious resemblance to
the pentagon of binary tree rotations in Figure There is an impressive homo-
topical /homological machinery behind this quadruple pentagonal rewrite step! In
our metaphor this object lives on the third floor of the infinite homotopy skyscraper
building; our pictures in this paper inhabit only lower floors, 0,1,2. Picture from
Guiraud and Malbos in [38], p. 38, with consent of the authors.

2. The associahedron has a semi-palindrome presentation, namely with the pen-
tagon equation PE.

3. Conjecture: The permutoassociahedron KP,, has a semi-palindrome equation
presentation, probably a sort of interweaving conjunction of YBE for the per-
mutohedron part and PE for the tree rotation (associahedron) part.

4. The permutohedron equation, (conjectured) aka Zamolodchikov equation in
Figure is a (near) palindrome presentation.

10.2 Tietze triangulation and orefication

Remark 10.4. Explanation of Figure To prove confluence by tiling, aka CR* in
Klop [80] or convergence in Dehornoy’s book [I7], there are several methods that
one can try. An important method is that of decreasing diagrams, created by de
Bruijn and Van Oostrom [58], [27], [48]. An interesting method that occurs in Van
Oostrom [72] p. 7 — 11, and also is mentioned in Dehornoy’s book at several places,
is the method of projection closure: if one can find a finite set of words containing
the constants (generators), and closed under projection, then we have convergence,
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Figure 54: Walking around the associahedron As. The 3 blue squares and 6 yellow
(oriented) trapezia indicate how faces are flipped; they stand for up f} and down |}
double arrows in the notation of homotopical rewriting. They also indicate with their
upper and lower side the 'redex’ and the 'contractum’, in A-calculus vernacular. The
whole sequence is a cycle, that as we expect can be obtained from the Zamolodchikov
cycle for the permutohedron P4, by abstraction, that is, replacing the ten collapsing
edges identified in Figure [I9] by the silent move 1. The red capital Roman numbers
I,...,IX indicate the 9 faces of As, in the same notation as in the other figures of As.
Picture by author.
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Figure 55: Cubification of the associahedron As, showing that the presentation
satisfies the Cube Equation CE, and thus is an abstract residual system in the sense
of Van Oostrom, see Terese [7], section. 8.7.1, pages 430—474. All arrows are directed
away from vertex 2 to vertex 7. The three squares of As are in blue. The other 6 faces
are the pentagons. The red capital Roman numbers I,...,IX indicate the 9 faces of
As, in the same notation as in the other figures of As. Picture by author.

all reduction diagrams will be succesfully completed, without diverging. We can also
call this method confluence by completion. There is an equivalent method as follows.
Call an equation in a monoid presentation short if it is of the form ax = by or cx = d.
This condition is called in ring theory the Ore-condition. For such short equations
confluence by tiling is trivial, because the e.d.s or cells are non-splitting. So we can
attempt a completion process that we can call orefication, that is, by means of Tietze
moves strive towards a presentation of only short equations:

To do that we introduce new constants abbreviating two-or-more-letter words,
putting the new letter steps against each other, see whether the projection generates
new more-letter words, and abbreviating these again, until hopefully, closure of the
process happens. That is indeed the case for all the braids monoids, but notoriously
not for the Artin-Tits monoid, or the Baumslag-Solitar monoid or many generalized
braid monoids, as defined in Maccammond [54], also defined in Dehornoy’s books at
several places. Now performing such an orefication completion process, is in some
cases facilitated by what we might call a Tietze triangulation, of which Figure [6]]
gives an example. There the orefication is succesful, and the result can be recorded in
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Figure 56: Composing triangulations amounts to substitution: the edge d in the
upper figure is refined (red arrow) to pqrstuv in the lower figure, triangulated as
in the figure and thus bracketed as (p((q(((rs)t)u))v)). Substituting this bracketed
word for d in the upper figure for ((a(b(c(de))))f)g yields the resulting bracketing
((a(b(c(((a(b(c(de))))f)ge))))f)g. So, composing triangulations along an edge is tan-
tamount to a (-reduction step! Hence the A-term, a (-redex, in the ’result edge’ on
top of the composed triangulation to the right. Picture by author.
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Figure 57: A grand perspective, in part conjectured. The situation at the fore-
ground is clear for n = 2,3,4; for n = 4 we have seen that the tessaract Ca4 gives
rise by a homotopical ’lifting’ to the next floor in which the single rewrite arrow —
becomes double arrow =—> , designated by the upward A; the permutohedron P4
embeds the associahedron As, which itself is embeddable via P4 into the permutoas-
sociahedron KPs. Each of the four structures is embeddable in the next one of his own
sort by incrementing the n, for instance the cube is embedded in the tessaract, and
the hexagon in the permutohedron, etc. These chains converge no doubt to infinite
limit versions as in the background, but the relations between these limits should be
considered more carefully than we could. The limit Ao is considered by Dehornoy
[18], p. 213, there called 7, obtained as a direct limit; it is related to Thompson’s
group F. See also Sunic [69]. The infinite associahedron is also analyzed in [35];
in that paper the binary trees figuring as elements of the infinite associahedron are
represented by constellations of arcs connecting points on a circle, somewhat reminis-
cent to the arcs displayed in our Figure [I§| as being tantamount to the diagonals in a
polygon triangulation. The perspective extends even beyond these structures; asso-
ciahedron and permutoassociahedron are crucial in establishing coherence theorems
in category theory, a theme adressed in Gérard Huet’s contribution in this book. For
an explanation of coherence in that context, which nowadays goes all the way to the
fascinating mountains of co-categories, see the marvellous recent books by Eugenia
Cheng [13] and Emily Riehl [62]. Picture by author.
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H193H145525516 H246H356534 = S34H356H246S525516 H145H123

Figure 58: This interesting picture occurs without colors, edge directions (in gen-
eral direction from top T to bottom 1) and in other notation for S, Square and H,
Hexagon, in the book by Carter and Saito [9], full of marvellous visualisations of
so-called movies and stills; see p.210, Figure 5 there for the present figure. Typical
for the homotopical outlook it displays a graphic equation, between words where the
letters are cells. The cited reference gives the linear equation too, and calls it the
permutohedron equation, remarking that it has aspects of both the YBE and of the
Zamolodchikov equation. The order of the letters in the words is the order of construc-
tion of the cells. The circumference in both sides has numbers 123456, respectively
654321(note their direction) and are intended to be used to glue the two figures to-
gether at the same numbered side. Then we have the actual spherical permutohedron.
So the two pictures are front and back side of Ps. What is remarkable is that this
permutohedron equation, which seemingly coincides with the Zamolodchikov cycle in
Figures [30] and [31] is just as the YBE a palindrome. Well, almost: it is so if the order
of S25516 is reversed in one of the two sides of the equation.That has the important
consequence of facilitating the method of decreasing diagrams, as we will make explicit
in Theorem [I0:2] So after suitably orienting this permutohedron equation, we have
a confluent reduction (if other equations are also suitable). Note that the equations
of the cells themselves are also palindromes, e.g. 123 = 321,25 = 52,.... So we have
here a palindrome equation of palindrome equations! Picture by author.
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Figure 59: Two disjoint palindrome equations with their elementary diagrams
(cells), which are decreasing diagrams under the red inequality conditions. The blue
edges are ’for free’. To make a full set of e.d’s commuting equations bq = qb,br =
Tb,... have been added. the result is a full set of decreasing diagrams that hence
yields confluence by tiling; every reduction diagram (called ’grid’ in Dehornoy [19],
p. 71 section 3.2.1, Reversing grids), is converging, i.e. will terminate in a closed
diagram, thereby delivering least common multiples (lem’s) for the initial horizontal
and vertical words along the divergent sides. Picture by author.

a list of equations, the short presentation, but also neatly in a sort of multiplication
tabel, or better, projection table.

For P3, i.e. B}, this projection table or closely similar ones, is also included in
Dehornoy’s Garside Theory book [20]. We would like to determine the analogous
table also for n = 4. In fact that can be read off from providing the permutohedron
with the blue and red extra arrows as in Figure [61} in all hexagon and square cells of
the permutohedron. Here it is convenient to use the back and front plane rendering
as in Figure |58| by Carter and Saito [9].
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Figure 60: A completed reduction diagram, nicely called ’grid’ in Dehornoy [19],
of the Chinese Monoid. The equations can be read off from the cells; remarkably,
they are decreasing diagrams, so we know in advance that the diagram will close.
(See [29]). The proper cells or e.d’s are blue, the improper ones are grey. Note the
absorption cells v, where identical steps cancel out each other. There are even totally
empty cells. In Dehornoy [I7] and [20] another, more ’economic’, way of dealing with
absorption steps is adopted, but in the more recent very appetizing book Dehornoy
[I9] (see in particular the reward for a marvellous open problem in group theory)
the full set of improper e.d’s is adopted, as introduced in Klop 80 for A-calculus
and Combinatory Logic. The reason for our preference of absorption steps as in this
Figure is that it is convenient to have the information which steps in the process
of constructing a reduction diagram, cancel out each other. Picture by J.Endrullis
and author in [29].

11 Reassociations and Retransitivizations

In some papers about diagonal flips of n — gon diagonalisations the moves that we
are considering, tree rotations or diagonal flips, are called reassociations. See [51],
and also [23], [45], for a fascinating link between associahedra and tree rotations and
the four color theorem 4CT. Well, associativity is such a basic notion that it occurs
in every field of logic and mathematics.

There is a related notion, equally fundamental, that arises more in the mind of
term rewriters, including A-calculus aficionados, and that thus far in this story was
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Figure 61: Tietze triangulation of the three cells of the permutohedron yielding for
the triangulated left cell aba = bab which is P3; a 6x6 projection table. Exercise:
it is an abstract residual system a la Van Oostrom; the Cube Equation holds. Note
the column with all ¢’s, corresponding to the fundamental or Garside word. For the
whole P4 we obtain a 24x24 projection table, expectedly, not included, but certainly
forthcoming. Picture by author.
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x z/y (z/y)/z

/v z/(@/y)

TE=2x
cex=2a
xje=x
eflx=c¢
xfx=c¢

z/yz = (z/y)/z
(y2)/z = (y/x).(2/(x/y)))

Figure 62: These equations are originally due to Jean-Jacques Lévy, first appearing
in his Ph.D-thesis of 1978, and frequently used in residual theory, by Paul-André
Mellies, Vincent van Qostrom, also in a fundamental paper by Eugene Stark on the
interface of term rewriting and process algebra, see [68], analyzing ’true’ concurrency
versus interleaving concurrency. The Cube Equation CE occurs in that analysis too.
The Lévy-equations are also used often in the books of Dehornoy and Garside theory.
With a look at the yellow-blue diagram, the equations are almost self-explaining.
Orienting the equations left to right as rewrite rules, we meet an interesting critical
pair, which is convergent; the reduction is also SN and hence by a well-known theorem
of Huet the TRS is complete, i.e. confluent and terminating. Thus it presents an
algebraic method for computing reduction diagrams. It is nice to do that for the
Artin-Tits monoid, then divergence, a loop, arises. Picture by author.

not yet mentioned once. That is the property of transitivity of a binary relation. On
purpose, we have drawn our hexagons and other n-gons as directed arrows, as we do
in term rewriting; also the diagonals are directed. Now constructing a diagonalisation,
we were actually making the initial given graph, which was not transitive, more and
more transitive. The final diagonalisation is a transitive relation.

From this idea that we are actualy dealing with transitivisations, and the corre-
sponding re-transitivisations, to use a for the moment an ugly word, we arrive easily
at the idea of starting with the infinite line of natural numbers, as directed arrows,
not yet transitive, and making this ARS (abstract reduction system) more and more
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transitive. We then get an infinite tree-like figure, well-founded, but for some exam-
ples without root, that may vanish in upward infinity, into the sky, as in Figure [63]
But the nodes are canonically numbered as in the example of Figure [I8] And so the
swaps, or tree rotations oij, make sense, just as before, and we get, as we conjecture
with some confidence, a neat presentation of the infinite monoid A. Indeed, exactly
by the Pentagon Equation PE as we discussed at length. Related to the presentation
of Dehornoy in the Tamari-volume, but without his quasi-commutation equations.

OK, if we can do this with the ARS consisting of the infinite line of steps, labeled
with generators a; and interlaced with natural numbers as in the figure, why not
start with a general ARS, initially possibly non-transitive, and considering its final
transitivisations and in particular the moves between such, the re-transitivisations
0(‘1)‘?

This is a fun question for rainy Sunday afternoons and sleepless nights instead of
counting sheeps. Now we are in fact considering again the infinite line of steps, but
with identifications of some of its points i,j. That gives identifications between the
moves «ij. And so we guess that we get associahedra, finite or infinite, that are also
subject to identifications of some edges, in other words, subject to collapses just as
we saw for the embedding of As into P4 by contracting ten edges.

I wonder whether for such collapsed associahedra the famous Cube Equation
still holds! And as said before that would be a key unlocking a wealth of syntactic
information in terms of Lévy-equivalence, congruence properties etc. Maybe this is a
nice question for a Master Thesis (In Holland 4 ECT study points, a month work)! Or
a full Ph.D-thesis if you extend such questions with homotopical completion questions!
But such a mountain expedition is alas beyond me, I would stay in base camp. But I
would love to see the photos taken of such an expedition. Photos? Yes: the etymology
of the word ’theorem’ is ’that what one sees’, related to 'theos’ and 'theater’. Photos
also have to do with seeing. The Flemish priest and poet Guido Gezelle (1830-1899,
Brugge, Belgium) called a photo, in Flemish or Dutch, a lichtdrukmaal, light-print-

matter or light-print-item. Great obsolete Dutch word.

Remark 11.1. (Infinitary rewriting.) For term rewriters and lambda cal-
culus researchers, mainly. We started this story with a central theorem
about finite A-calculus, that has repercussions beyond A-calculus, the
Cube Equation. Nowadays there is also a satisfactory theory about in-
finitary A-calculus and infinitary term rewriting. Even transfinite rewrit-
ing, for all countable ordinals.

Why infinitary A-calculus? Because it is just as natural as being
able to compute 7t in infinitely many decimals. And because it yields
more directly computations that used to require the powerful Scott’s
Induction Rule. The present point in this story with consideration of
infinitary versions of all three jewels encountered above, permutohedron,
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Figure 63: Infinite binary tree, green, with one upward branch with nodes the
stream 0,1,2,.... Every infinite permutation of the stream of natural numbers gives
rise to such a green tree. Every green tree amounts to a bracketing of the infinite word
aoaidz.... In the figure the bracketing with prefix (((((aoai)az)asz)as)as). Picture
by author.

associahedron and permutoassociahedron, invites a look at some issues
here from this infinitary/transfinite term rewriting point of view.

For the infinite permutohedron P, we consider infinite streams of
natural numbers, subject to transpositions of adjacent entries, where we
can impose the direction to swap two entries to say decreasing order,
like in P4 above. Now the nontrivial question is whether we have the
property of infinitary confluence CR*. Because of the critical pairs this
is a challenge.

The same problem emerges for the associahedron with the associativ-
ity rule. Insight here of CR* could be interesting in studying A,,. And
finally, the same questions pertain for the infinitary version of the per-
mutoassociahedronhedron KP.,, with associativity and transpositions
combined. What makes these questions exciting is that in the back-
ground we have a perfectly nice infinitary confluence of first order or-
thogonal rewriting; but a less nice situation for infinitary A-calculus,
there CR* fails but UN®® (the property of unique normal forms with
respect to infinitary reductions) holds; and for infinitary ABn-calculus
CR®° breaks down dramatically, even UN®° then fails. So infinitary con-
fluence CR™ for streams with transpositions and/or associativity is a
matter to approach with some care. In general, infinitary rewriting in
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the presense of critical pairs is a challenge, up to now not addressed,
except in Endrullis-Klop [24].

A conjecture whether CR* holds for these stream rewriting questions
would therefore be premature for the present writer (rewriter). Hic sunt
leones! But we like leones, not?

For infinitary lambda calculus and its properties, and in general
transfinite rewriting, see [5], [7], [26], [32], [65].
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[33] Todo: for the embedding of ass into perm
See endnote

Question 11.2. We have without good reason the fractal cube drawn in
such a way that the infinite limit border stream of the upper plan fractal
coincides with the border stream of the right fractal plane, as can be
seem by the coloring. Here is something to check in due time. We can
observe that the halves of the cube, the upper half, the right half, the
lower half are fully defined. They have not yet reached the *white hole
of undefinedness’ that centers the cube’s corner point G. It could be
that for these half cubes an infinitary cube equation holds, if we admit
as projections infinite words. In general it is a nice research question
to study the infinite words, aka streams, that arise in infinite diagrams.
Are they w-regular languages?

Endnote °

Remark 11.3. 1. Concerning the rendering of the permutoassociahe-
dron according to the recipe of Kapranov, it is seductive (at least
it was for the present author) to try to manipulate this tessellation
into a regular one, by nudging the faces to become regular squares,
pentagons and dodekagons. However this is impossible: there is a
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Figure 64: For the Artin-Tits monoid the Cube Equation fails, both sides of the
CE are undefined. (We do not use Kleene-equality, see endnote.) If we persist in the
computation, i.e. keep going on adding ’cells’ as given by the presentation, we get a
nice fractal. The figure gives a sketch (to be improved in due time by due author) of
the fractal planes covering the cube in the three faces converging at point G, right,
upper, behind. We can view the two-dimensional and three dimensional graphs as
abstract reduction systems; they are non-terminating and also non-confluent. Picture
by author.
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list of 92 polyhedra called Johnson solids, a generalization of Pla-
tonic solids and of Archimedean solids, that are defined as sphere
tessellations using only regular polygons. For Archimedean poly-
hedra there is an extra requirement about the way vertices are
similar to each other. For Platonic solids the tesselating regular
polygons must be the same polygon. The Johnson solids can only
consist of regular n-gons where n = 3,4,5,6,10. There is no such
polyhedron containing a dodekagon.

2. A pitfall (for the present author) is that there is a well-known
rendering of the associahedron with 6 pentagons and 3 squares
that prima facie looks very much to be a Johnson solid. But
in fact it is a so-called near-miss Johnson solid! The faces are
almost but not quite regular and cannot be made so. For plenty of
studies and information for this class of polyhedra see Wikipedia. I
wonder how close to a Johnson solid the permutoassociahedron can
be made; there are measures for such closeness, see Amir-Sequin

.

Remark 11.4. (Confluence versus coherence.) It’s important to note
that coherence is a much stronger property than confluence. This was
already remarked in Huet’s lecture in Boulder Colorado, 1987, included
in this book. See also Melli¢s [55] for a clear explanation of the extras in
coherence, formulated in terms of homotopy equivalence and push-outs
in the categories that are involved. For the classical notion of resid-
uals in A-calculus and orthogonal term rewriting systems the theory
was established by Huet and Lévy. That theory pertained primarily to
the 'conflict-free’ case where there are no critical pairs, aka orthogonal
rewriting. After that foundation of residual theory, attention was di-
rected to the non-orthogonal case where critical pairs are present in the
presentations, such as braids and Garside monoids and the associativ-
ity rule in connection with monoidal categories, leading to Mac Lane’s
coherence theorems and Garside theory. Mellies [55] endeavoured to ex-
tend the classical orthogonal residual theory to cover these cases too, by
extending the notion of residual to treks.



A TALE oF TwO JEWELS

12 Endnotes

Notes

'The text of this endnote is from Dennis Sullivan, in his math forum explanation:
A chemist showed this way to factor a permutation into transpositions. Draw n dots
on each of two parallel lines in the plane. Connect the dots on one line with those on
the other line by straight segments according to the given permutation. There will
be one transposition for each intersection point of two segments. To see this slide one
line over to the other allowing the dots to follow along their segments. The order of
the dots is changed by a transposition when an intersection point is crossed. This
provides a fast mechanical way to compute the sign of a permutation, which was the
motivation from theoretical chemistry.

2The underlying chainmail-like space in Figure drawn faintly grey, was ob-
tained as turtle graphics by viewing the Fibonnacci stream as a program with graph-
ical instructions corresponding to the 0’s and 1’s of the infinite stream. The program
converting a stream in a fractal or infinite plane covering, was devised by Jorg En-
drullis around 2010, in joint work with the present author on finite state transducer
degrees of infinite streams, see [25]. The Fibonacci stream reads as follows:

0100101001001....

This is a morphic stream, generated from start word O by repeated simultaneous
substitutions 0 — 01,1 — 0.

3Citation from Kapranov 1993 [44], p.127: The ’polytope’ KP4, contains 120 ver-
tices and is difficult to draw in detail. Here are simple directions how to do this.
Start from the permutohedron Ps4. Its faces are squares and hexagons. Inside each
square mark one point near each of the four vertices. Inside each hexagon mark two
points near each vertex. Each vertex of P4 is contained in three faces: one square and
two hexagons. Thus there will be five marked points near each vertex. Join them by
edges to form a pentagon and then join these pentagons to each other as shown in
Fig. 5. In this way each hexagon will be replaced by a dodecagon, each square by
a smaller square, each vertex will be blown up to a pentagon and each edge will be
doubled to give a rectangle.

“Here is a slight pitfall: We mentioned that the Artin-Tits monoid does not satisfy
the Cube Equation CE. Figure @Witnesses that, the computation is divergent. Yet,
in Dehornoy et al. [20] p.114 it is stated that ’one easily checks that the Cube
condition is satisfied for {01, 02, 03}. These are the three generators, we named them
{1,2,3} in our Figure The explanation is that in the Definition (4.15) on p.67 of
the cited book one uses so-called Kleene-equality, which has the curious effect that
the equation is also satisfied if both lhs and rhs are undefined, which is indeed the
case here; the computation along the other path in the cube also diverges. We have
implicitly adopted the to our taste more sensible reading that the equation holds if
both sides are defined and equal. As to the intended equality, that can be literal
equality or convertibility; this distinction is called in the cited book, the sharp 0-
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cube condition respectively the 0-cube condition. The permutohedron satisfies the
ordinary cube condition, the associahedron the stronger sharp one.

5We have encountered in this story several times the Cube Equation, a property
called in the beautiful books by Dehornoy and coworkers the coherence property, or
the cube condition. Another property that we encountered a number of times is the
property of confluence by tiling, or CR* in Klop 80, in the books of Dehornoy called
convergent. We have seen that convergence alone is not an absolute property, i.e.
not invariant under Tietze moves. That was demonstrated by Zantema’s monoid, see
Figure [46] Now a remarkable theorem of Dehornoy and Paris mentioned in page 95
of Dehornoy [17] states:

Theorem 12.1. (Dehornoy-Paris 1999, [21)])
The property coherent € convergent is absolute.
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13 Appendix: Confluence by Completion

There is a method of obtaining confluence that at first sight is quite
miraculous. It is a completion procedure, somewhat in the spirit of the
well-known critical pair completion procedure of Knuth & Bendix. The
miracle in our case of braid words is the termination of the completion
algorithm. But later on, with the acquaintance of the Permutohedron,
the termination can be fully understood.

13.1 Braids with 3 strands

Consider the monoid for positive 3-strand braids M = (a,b | aba =
bab). The confluence problem for this monoid means that we have to
show termination of tiling with (copies of) the elementary diagram (e.d.)
with divergent steps a,b and converging sides ab and ba, as we have
seen. Todo: we have not seen that yet, remedy the orderWe solved this problem
with a non-trivial termination argument of certain string rewrite rules.

Now we will consider a simpler solution, that uses an interesting
‘completion” method described in the notes Van Oostrom [?], based on
an idea of Hans Zantema (personal communication). We will give a
somewhat different (but equivalent) procedure. We will call this method
confluence by completion.

The problem with proving confluence, or equivalently, termination of
diagram tiling, is the splitting in the two converging sides; they comprise
each two steps. If these were just single steps, confluence and diagram
termination was trivial. Thus we attempt to make the converging two
step sides into single steps, simply by adopting new constants c,d and
abbreviations ¢ = ba and d = ab. Doing so is nothing else than applying
a Tietze move om the monoid presentation; we will come back to Tietze
moves later. What we have obtained now is the e.d. squ(b,a,c,d) which
is described in the two ’projection’ equations [a/b = d,b/a = c].

However, we now have to consider also the case in a diagram tiling
construction divergent pairs of steps (a,c) and (a,d) These are treated
by the mini-diagram tiling doublesqu(c, squ(b,a,d,e), squ(b,a,c)), yield-
ing squ(d,a,b,e). If one prefers , we can avoid these mini-diagrams in
favour of equations; we strive for equations of the form ac = bd, because
they they are tantamount to squ(b,a,c,d). So we proceed by equational
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computation:
1. Case (a,c):ac =bd;d = ab;ac = bab = cb.
2. Case (a,d) : d = ab;de = ab.
3. Case (c,d) : d = ab;ac = cb;c = ba;da = aba = ac = ¢b;da =
cb.
4. Case (b,c):c =ba;ce =ba.
5. Case (b,d) : d = ab;bd = ac;c = ba;bd = aba = da.
6. Cases (z,a),(z,b),(z,c),(z,d) : z=da =bd = ac = cb.

We have now achieved a transformation of the original presentation
into one with constants a, b, c,d and equations

ac =bd
c=ba
d=ab
ac =cb
d=cb
bd = da

This set of equations is full: every pair of constants appears as the
head symbols in tthe lhs and rhs of an equation. ﬂ (Note that for
equations like ¢ = ba we use to this end the equivalent equation ce =
ba.) Therefore, we also have a full set of e.d’’s; for every divergent pair
of steps in a tiling diagram construction there is an e.d. that matches
the divergence.

And this is sufficient to have terminating diagrams, and thereby
confluence. Also, the completed diagrams solve the word problem as we
have seen, and finally, convertibility is equivalent to diagram equivalence,
meaning that two braids absorb each other.

9Such equations of the form ac = bd are known in ring theory as Ore conditions.
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13.2 Braids with 4 strands

For the case of 4 strands, we will now attempt the same confluence
completion procedure. Note that it is not at all clear yet that this
completion procecure will indeed terminate with success. Indeed, for
some monoid presentations it fails.

Ezxample 13.1. Consider the monoid
(a,b| aab = bab)

Abbreviate ¢ = ab, obtaining ac = bc. Now the divergent pair of
steps (a,c) leads to a failure by cyclicity, as the figure shows. For this
monoid it is not possible to transform to a full set of equations, or e.d.s.
The method of confluence completion fails here. Not surprisingly, since
diagram tiling with the original e.d. as in Figure xx also fails in a cyclic
construction.

A confluence completion as for 3 strands is again possible, but la-
borious. Instead, we will reproduce a computation in Van Oostrom xx,
where one works with longer words. This done in several rounds. We
consider the presentation

(1,2,3 1121 = 212,232 = 323,13 = 31)

1. In Round 1 we have the three letters 1,2, 3. For the projections of
these three words over each other we obtain composite converging
sides

21,12,32,23

These are our new ’letters’, but other than above, we will now work
with these words themselves, without introducing abbreviations
by introducing new symbols. This is anyway equivalent to the
procedure with abbreviations. The four words just obtained, we
project again over each other, thereby obtaining words

2132,123,321,132

2. In the next iteration we obtain

13,12321,2321,1213
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3. The fourth iteration leads to
213,1321,1232,121,232

4. The fifth iteration gives
12132,21321

and hereafter we have reached succesful completion; now all projec-
tions yield words already found. At this point is rather mysterious
why the completion procedure did terminate, and what is special
about the words obtained. The key to understanding resides in the
permutohedron of order 4. That contains 24 nodes, and what we
have found are exactly the 23 non-bottom points, or better, words
leading to these points, as can be seen in Figure xx. Thus all the
words found are in fact simple positive braids, actually, represen-
tants from their convertibility equivalence classes. It is best to add
also the bottom point, the node 4321, this is also a simple braid.
These 24 simple 4-strand braids are closed under projection. In
other words, the permutohedron is an abstract residual system in
the sense of van Oostrom.

Exercise 13.2. Prove that the 24 simple positive 4-strand braids are
closed under projection.

Proof sketch: Consider the simple braids in their absolute notation
with the o-crossings oyj. A simple braid has no repetitions of s, by
definition. Now project one simple braid x over another y. Use here
the fact that the diagram construction of D(x,y) terminates, as proved
earlier by other means. Now observe (see Figure [?]), that the o-s prop-
agate through the diagram unchanged. This means that the converging
sides of the diagram D(x,y), the projections x/y and y/x , are also
repetitionfree, i.e. simple.

Todo: correction: not a repetition, but occurrence of two ’opposite’ alphas &i; and
Xji
13.3 Braids with 5 or more strands

Also for general n permutohedra exist, with similar properties as for the
case n = 4. We conclude that the confluence by completion procedure
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works for general n.

Todo: This Appendix is an old version, to be edited. The reference for this
confluence-by-completion by repeated projection of the words, starting with the genera-
tors, as in the syllabus on Braids of Vincent, is not clear: Vincent when asked referred
to Hans, but Hans does not recall when I asked him in 2022, that it originated from
him. Fact is, that the method is mentioned a couple of times in the three books of
Dehornoy c.s.; precise references to pages and remarks there are to be included. The

precise originator thus remains unclear.

FExercise 13.3. Consider the monoid

(a,b| aab = bab)

with generators a,b and the relation aab = bab. Show that the
confluence by completion procedure fails.
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