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Abstract

On a party attended by 6 people, there is always a trio of mutual
friends, or a trio of mutual strangers, possibly both. This popular
math example is the starting point of a beautiful theory called Ramsey
theory, invented by Frank Ramsey when he was in his early twenties.

There is a finite version, encountered in this chapter, and also an
infinite version of Ramsey’s main theorem, encountered later on. Both
are powerful tools, the finite version in mathematical graph theory
and combinatorics, the infinite version in logic and informatics. Most
Ramsey numbers are still too difficult to be computed with the present
state of the art in informatics. Possibly future quantum computers
would come a bit farther, but even they would soon have to give up.

Some sixty years ago a Hungarian sociologist, studying patterns of friend-
ship in groups of children, noticed that in a group of about twenty children,
a certain regularity always seemed to manifest itself. Either the group in-
cluded a quartet of mutual friends, or a quartet of children that were mutual
strangers, i.e. not friends. Consulting about his observation some leading
mathematicians in his country, he learned that there was a mathematical
explanation for his sharp observation.
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In fact, this story has its origin some ninety years ago, when the British
mathematician and logician Frank Ramsey in the course of his logical re-
search proved a combinatorial theorem that he needed to establish the de-
cidability of a certain fragment of FOL, first-order predicate logic. 2

1This story including names can be found in the Chapter by Alon and Krivelevich (p.562)
in [2], the Princeton Companion to Mathematics (eds. T. Gowers et al., 2008).

2This concerns EPL, Effectively Propositional Logic, consisting of first-order sentences
of the form ∃

∗

∀
∗φ where φ is quantifierfree and has no function symbols. Satisfiability for

this class of so-called Bernays-Schönfinkel-Ramsey formulas is decidable.
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Figure 1: Frank Ramsey (1903-1930)

0.1 Who was Frank Ramsey?

Frank Plumpton Ramsey (1903-1930) was a mathematician, logician and
philosopher who put his mark on seveal areas, in spite of his short life; at
the age of 26 he did not survive complications after surgery due to liver
problems. By then he had founded a branch of combinatorics, which is
now known as Ramsey theory. His main theorem in that area originated as
a by-product of his logical investigations. See Figure 2.

Ramsey was the promotor of Ludwig Wittgenstein.
Ramsey’s theorem comes in two versions, the finite version and the in-

finite. We will encounter the latter in another chapter. In fact, the infinite
version implies the finite one. The infinite version is a powerful tool in
logic. The entrance to the finite theorem of Ramsey is a simple version of
the observation of the Hungarian sociologist. It states that in any group of
six people there exists either a trio of mutual friends, or a trio of mutual
strangers (i.e. not friends).

In the examples and figures of graphs that follow, a red connection will
denote friendship, a blue one will denote that this pair consists of strangers
to each other. Ramsey’s main theorem is as follows.

Theorem 0.1. For all positive natural numbers n,m there is a ’Ramsey number’
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Figure 2: Ramsey’s paper [3] from 1928, containing the infinitary version of his
theorem.
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Figure 3: A party of 6 always contains a trio of mutual friends, or a trio of mutual
strangers. Red edges indicate pairs of friends, blue lines connect strangers. The
three green nodes indicate the (only) trio of mutual friends.

R(n,m) such that

1. In a finite gathering of R(n,m) people there is a group of n mutual friends,
or a group of m mutual strangers (not friends).

Or, in the terminology of graphs: for every bicolored finite graph, where
every pair of nodes is connected by a red edge or a blue edge, there is a red
’clique’ of size n, or a blue clique of size m. (A clique in a graph is a subset
of which all nodes are connected with each other.)

2. R(n,m) is the least number with this property.

Remarkably, we can prove that such numbers R(n,m) exist for all n,m,
while on the other hand the actual numbers R(n,m) are unknown very
soon when n,m are increased.

We will aim to prove in this chapter that R(4, 4) = 18, thus confirming
the sociological observation above. 3 We will climb up to this theorem in
two steps:

R(3, 3) = 6 =⇒ R(3, 4) = R(4, 3) = 9 =⇒ R(4, 4) = 18

R(3, 3  6
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Figure 4: A party of 9 people will always contain a trio 4 of mutual friends

(red), or a quartet⇥ of mutual strangers (blue).
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(a)

(b)

(c)

Figure 5: Proof of R(3, 3)  6
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The first step: R(3, 3) = 6. See Figure 3.
Consider a graph G with 6 nodes, with its edges colored blue or red in

some arbitrary way. We might choose the color by throwing a coin. (It does
not need to be a fair coin.) We will consider the colors as being exclusive:
an edge has one color, not both. (Can this restriction be omitted?)

Claim.The graph G contains a red triangle, that is, three nodes mutually

connected by red edges4, or a blue triangle4.
How can we prove the claim? Trying out all possibilities for G? This is

somewhat cumbersome: there are 6 nodes, of which every pair is connected
by an edge; so there are 5+ 4+ 3+ 2+ 1 = 15 edges. These can be colored
red or blue in 215 = 32768 ways. If we would be fast and check one case a
minute, it would cost three weeks of exhausting labour.

Luckily there is a far better approach, using the power of logic. Each
point p in G is connected to 5 companion nodes, by a ’fan’ of red or blue
edges as in Figure 5(b).

This means that there at at least 3 blue edges, or at least 3 red edges. For,
the negation of this statement is that there are at most two blue, and at most
two red in these 5. This cannot be the case: 2+ 2 = 4 < 5.

R(3, 3) 6= 5
In the first case p has 3 outgoing red edges. Now the end points of these

three edges must form a blue triangle, otherwise there was a red triangle.
The other case is similar, and also leads to the presence of a red or blue
triangle. We are not yet done in establishing that R(3, 3) = 6; we have to
prove the minimality requirement. That is, we have to prove that a bicol-
ored graph on 5 nodes does not necessarily have the property of containing
a red triangle or a blue triangle. Such a counterexample indeed exists, see
Figure 6. This is by the way the only counterexample for 5 points, but for
swapping the colors. We now have proved that R(3, 3) = 6.

R(3, 4)  10
The next step to prove that R(4, 4) = 18, is to prove the intermediate

result that R(3, 4) = R(4, 3) = 9. First we will prove that R(3, 4)  10, and
then improve this to R(3, 4) = 9. So consider a graph on 10 points. We aim
to prove that it contains a blue triangle or a red quartet, the blue quartet
also such that all 4 points are connected by a blue edge. Again we consider
a point p fanning out to its 9 companion nodes. Of these 9 edges there
must be at least 6 red, case 2, or at least 4 blue, case 1.This is so because
3+ 5 = 8 < 9. See Figure 8.

Case 1. At least 4 blue. Figure 8(a). Then either there is a blue triangle,
if we connect two end points of this fan with a blue line as in Figure 8(c); or

3In this chapter we have profited from the excellent classroom exposition by Imre Leader
on Youtube, ’Order in Disorder’, 2014. https://www.youtube.com/watch?v=AZnvP86N20I
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Figure 6: No4 and no4

a qed quartet arises as in Figure 8(c).
Case 2. At least 6 red edges in the fan out of p as in Figure 8(b). Now

consider the green oval, containing 6 points. This makes it possible to apply
the earlier result that R(3, 3) = 6.

R(3, 4) 6= 8
The counterexample showing that R(3, 4) 6= 8 is shown in Figure 7,

where the red edges are in the upper figure and the blue ones are below.
Now it is clear that there is no red triangle. But also no blue quartet. This
is easily seen by looking at one of the eight blue triangles in the lower fig-
ure, e.g. the one with heavy lines. Any additional point on the ’circle’
extending those three would have distance (the number of chords on the
circle separating them) 1 or 4 to one of the nodes of the heavy triangle. But
that conflicts with the red coloring above, where the connection distances
are just that, 1 or 4. So we have proved R(3, 4) = 9. And of course, also
R(4, 3) = 9, by changing the colors.

Surprisingly, we can sharpen our result that R(3, 4)  10 to R(3, 4)  9.
Consider a bicolored graph G with 9 points. Now if there is at least one
point whose fan-out to the other 8 points splits into � 4 blue or � 6 red
edges, we can apply the same reasoning as above. But what if all points of
G split into < 4 blue and < 6 edges? Let us call such a point a ’bad’ point.

Fortunately, a simple but amusing counting argument shows that this
unfortunate situation cannot happen:

Claim. In a bicolored graph on 9 points it is not possible that all points
are bad.

Proof of the Claim. Suppose all points in G are bad, i.e. they fan out to
 3 blue and  5 red edges. Then they fan out to 3 blue and 5 red edges,
because the sum must be 8. Neither of these conjuncts can be true. For, if
from each of the 9 points there emanate 5 red edges, then there are 45 red
’half edges’, or ’edge endings’. Each edge has two ends, so these 45 red
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edge endings arise from 45/2 = 22.5 red edges. But half edges do not exist,
so we have proved the claim by contradiction.

R(3, 4)  9

R(4, 4)  18

We will now embark on the proof that R(4, 4) = 18. First we will show
that R(4, 4)  18. So let G be a graph with 18 points. Let p be one of its
points. Then p fans out to its 17 companion points. Of these 17 edges there
are 9 red, or 9 blue. Less in both cases is not possible, as 8 + 8 = 16 < 17.
Say that p fans out to 9 points via red edges, as in Figure 9.

Then, by the earlier result that R(3, 4) = 9, we find either a blue quartet,
or a red triangle spanned by the endpoints of the 9 edges. In the first case
we are done, see Figure 9(a), in the other case also, see Figure 9(b), then we
have together with point p a red quartet. So we have proved R(4, 4)  18.

Finally we have to prove that R(4, 4) = 18. Analogous to the situa-
tion above in three instances, we search for a counterexample graph on 17

points containing no red quartet and no blue quartet. While for the case
of R(3, 3) = 6 the search space was a mere 32.000 something, the search
space is now much more prohibitive: a graph on 17 points has 136 edges,
so that the number of possible red-blue colorings is 2136. Yet, several of such
counterexamples have been found. An example occurs as Exercise 12.3 (5),
p.520 of [1]; it is included in Figure 10. Figure 11 explains why there is no
monochrome quartet in this bicolored graph: a quartet contains two trian-
gles sharing one side; it is easy to see that no combination of two triangles,
that have the shape of the two heavy lined triangles, yield a clique of 4

points, neither for red and for blue.
Note that the red edges connect nodes at chord distance 1, 2, 5, 8, while

the blue edges connect points at chord distance 3, 4, 6, 7. 4

R(4, 4) 6= 17Theorem 0.2. 1. R(n,m)  R(n− 1,m) + R(n,m− 1)

2. R(n,m)  R(n− 1,m)+R(n,m− 1)− 1 if R(n− 1,m) and R(n,m− 1)

are even.

3. R(2,m) = m; R(n, 2) = n

4. R(n,m 
�

n+m−2
n−1

�

5. R(n,n) < 4n

So far, we could reason without writing down any formula. But to give
the formal proof that the Ramsey numbers R(n,m) always exist, we obtain

4A similar but slightly different counterxample can be found at https://www.cut-the-
knot.org/arithmetic/combinatorics/Ramsey44.shtml, there with chord distances 1, 2, 4, 8

(red) and 3, 4, 7, 11 (blue).
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Figure 7: Bi-colored graph on 8 points without red triangle 4 of nodes and

without blue quartet⇥ of nodes.
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Figure 8: Reasoning to prove that R(3, 4)  10
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(a)

(b)

p

p

Figure 9: Proving R(4, 4)  18. The end points of a fan-out to 9 points span up a
blue quartet or a red triangle.
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Figure 10: No red quartet⇥ of friends, no blue quartet⇥ of strangers.
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Figure 11: No red quartet⇥ of friends, no blue quartet⇥ of strangers; sketch
of proof.
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42 ≤ R(5,5) ≤ 55

R(4,5) = 25

R(3,5) = 14

R(5,4) = 25

R(5,3) = 14

R(3,4) = 9 R(5,2) = 5R(2,5) = 5

R(1,5) = 1 R(2,4) = 4 R(3,3) = 6 R(4,2) = 4 R(5,1) = 1

R(4,3) = 9

R(4,4) = 18

Figure 12: Some initial Ramsey numbers. The precise value of R(5.5), known
to be between 43 and 48 is an open question. Determination of R(6, 6), which is
between 102 and 165, is considered to be totally impossible, like distant stars that
never can be reached.
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by the same reasoning as used above for some actual n,m, and employing
induction, the following facts, of which item 3 is trivial.

So what makes the actual determination of R(n,m) so difficult, even
though this theorem yields relatively small intervals for the R(n,m) to be
found? The problem lies in finding the various counterexamples as we did
above in Figures 6, 7, 10.

E.g. checking all bicolored graphs on 50 points, we would have to deal
with roughly 10400 cases, which dwarfs even the number of atoms in the
universe, which is in the order of 1080.
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