
A C!rse in

Infinitary Rew"ting

  ISR
2008

A Course in Infinitary Rewriting                      version  1.3                          page 1

Monday, July 14, 2008



Contents

Introduction.

Chapter 1.

First order infinitary rewriting 

1.1. Basic notions.

  1.1.1. Ordinals

  1.1.2.Convergence

  1.1.3.Compression

  1.1.4.Infinitary properties

  1.1.5.Example: Zero times infinity

1.2. Infinitary confluence

1.3.  Infinitary normalization

1.4.  Exercises and Notes

Chapter 2.

Infinitary lambda calculus

2.0. Why infinitary λ-calculus?

2.1. Infinitary convertibility and SIR

2.2. Infinitary fixed point combinators

2.3. Relative computability and oracles

2.4.  Non-left-linear infinitary reductions

2.5. Clocked Böhm Trees

2.6. The three main semantics

2.7.  Exercises and Notes

Chapter 3.

Productivity of stream definitions

3.0. Introduction

3.1. Beautiful streams: Thue-Morse and Töplitz

3.2. Problematic streams

3.3. The pure stream format

  3.3.1.Automatic streams

  3.3.2.Morphic streams

3.4. Decidability of productivity for the pure format

  3.4.1.Pebble flow nets

A Course in Infinitary Rewriting                      version  1.3                          page 2

Monday, July 14, 2008



  3.4.2.Running

  3.4.3.Shrinking

  3.4.4.Tools

3.5. Exercises and Notes

 

 

Chapter 4.

Tree ordinals

4.0. Introduction

4.1.

4.2.

4.3. Exercises and Notes

Chapter 5.

Comparing streams

5.0. Introduction

5.1. Thue-Morse meets von Koch

5.2. Toeplitz meets von Koch

5.2. The Sierpinsky sequence

5.4.  Comparing streams

5.3.  Exercises and Notes

Bibliography.

Solutions.

 

A Course in Infinitary Rewriting                      version  1.3                          page 3

Monday, July 14, 2008



Introduction.

This syllabus starts with an introduction in infinitary rewriting for the first order 

case, based on a prolonged cooperation with Richard Kennaway, Ronan Sleep and 

Ferjan de Vries, from 1986 to ca. 2000 which has been recorded in a chapter in Terese 

2003, and in a series of papers mentioned there.

 The second chapter is based on a paper in preparation together with Henk Bar-

endregt, and adopts a λ-calculus perspective.

 The third chapter tells about the first part of an investigation of the last two 

years of the ‘productivity’ (≈ infinitary normalisation in a constructor discipline) of 

definitions in a certain simple format of infinite streams of data. This work was car-

ried out in the framework of NWO project Infinity, a cooperation project of VU Uni-

versity Amsterdam, CWI Amsterdam, and Utrecht University, in a cooperation in-

volving in particular Dimitri Hendriks, Jörg Endrullis, Ariya Isihara, Clemens 

Grabmayer, Roel de Vrijer, Vincent van Oostrom and the present author.

 The fourth chapter relates about tree ordinals in infinitary first order term re-

writing. Whereas the second chapter dealt with streams of just data, here we con-

sider streams of streams of streams, ..., in a well-founded manner. This chapter is 

based on a study performed by Ariya Isihara, and Marek Kwiatkowski, who investi-

gated this subject up to ε0, in his master’s thesis. Ariya Isihara showed how to pro-

ceed to Γ0, among other contributions which are forthcoming in his PhD thesis.

 The final chapter contains some juicy facts about celebrated streams such as the 

Thue-Morse stream and the Toeplitz stream, as well as some questions about a com-

parison of streams.

 This syllabus is still under construction, and is intended to be in a process of 

continued evolution, to be found on the author’s homepage

http://web.mac.com/janwillemklop/Site/Home.html

 Let us now elaborate more about the conceptual contents of these notes. All of 

this is a study of infinite computation in the canonical regime of orthogonal rewrit-

ing, as it is known for the settings of first order rewriting, and higher order rewriting 

in the form of λ-calculus and Combinatory Reduction Systems (CRSs). The latter 

framework (CRSs) will not explicitly considered except for a few simple extensions 

of λ-calculus.

 The properties analyzed are unique normalisation, which can be seen as consis-

tency with respect to different computations. As a counterpart of succesful computa-

tions, we investigate at the same time the notion of undefined. How computation 

can fail, and the different forms of such undefined behaviour. This gives rise to  
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computational anomalies, objects (terms) which we like to think of as ‘black holes’, 

capable of activity but not yielding any information (in contrast with black holes in 

the cosmos). So this is a study of computation in its most fundamental aspects, in a 

strongly constrained regime, which we feel is canonical. Of course we also try to 

stretch the boundaries of the constraining regime, and look e.g. at weakly orthogonal 

rule sets. Eighty years ago we saw the first steps in this setting of canonical computa-

tion, with the discovery of λ-calculus and Combinatory Logic (CL). In more recent 

years two extensions have been added:

• The introduction of patterns, leading to term rewriting systems and extensions of 

λ-calculus, in general to higher-order rewriting in various forms (HRSs, CRSs and 

other formats).

• The introduction of infinite terms, and infinite computations.

We note that the latter extension is in mathematics entirely natural: there we have 

also infinite terms such as power series, infinite summations and so on. 

 As a statement of personal belief, we remark that in our opinion orthogonal 

term rewriting constitutes the most attractive paradigm of computation, and cap-

tures the most essential aspects of computation. Of course there are several other 

paradigms of computation, Turing Machines being the most prominent. But λ-

calculus, CL, OTRSs, HRSs, CRSs have an innate elegance and directness that TMs 

with their machine language are lacking. Moreover, the rewrite paradigm is very 

much intertwined with logic; there is an extensive model theory for λ-calculus and 

rewriting, and not for Turing Machines or other computational paradigms. To appre-

ciate the directness of rewriting, construct a Turing Machine definition of the infinite 

Thue-Morse sequence! Or compare the elegance of Church’s numerals and arithme-

tic on them in λ-calculus, with the ‘equivalent’ treatment in TMs! Cf. the chapter in 

Penrose’s book, who not for nothing includes a chapter devoted to λ-calculus.

 To continue this statement of belief, we describe an image, a ‘Gestalt’ that we 

find captivating. (The precise statement is intended in a next release to be included 

in  Chapter 1, as the Consistency Theorem.) Imagine a finite or infinite term, λ-term 

or TRS term U0. Conceive it as a mini-universe, that can develop non-

deterministically in various directions, along possibly infinite evolution paths α, β, γ. 

It may do so in a transfinite time-scale, though this is not essential.

 What can become of U0? Is there an end result? Are there more final results that 

U0 can evolve to? The rules of evolution are very minimalistic, which is a good deal 

of the charm (similarly present in S. Wolfram’s book NKS with its central notion of 

one-dimensional cellular automaton; simple rule sets may produce complex objects). 

 The ‘evolution rules’ are very constrained: they are orthogonal to each other. 
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(In the case of λβ-calculus there is just one rule.) Now due to this orthogonality, a 

remarkable phenomenon emerges. There is already from the start, the moment zero 

of evolution, a predestined image as a blueprint of the completion of the evolution, 

and it is unique. On the way, a part of this faint image to be, has already evolved. In 

such an intermediate term, there is an initial part (prefix) that is fixed and immutable 

in whatever future development. However, the catch is that we cannot decide how 

far this stable part extends, what places are already stable and which are not.  All we 

know is that it exists. Now the miracle is that a different evolution path β may lead 

to quite another partially completed situation, whose fixed part however is consis-

tent with that of the other, obtained via the evolution path  α! And secondly, the sta-

ble, fixed part of a term grows with the progression along an evolution path. In the 

end all partially completed images come together in the same completed term. From 

U0 to UΩ. Thirdly, the evolution of U0 to UΩ need not go smoothly along an evolution 

path α. It can stagnate, and there may appear anomalies, spots in the picture that are 

like black holes. They do not yield information, they just are singularities, failures, 

undefined entities. The evolution α registers them, and that’s all. But they are there, 

and form an unavoidable companion to the regular, ‘productive’ normal parts. Also 

the position  and emergence of these black spots is predetermined from the start. All 

this has a strong metaphoric appeal. Summing up, our statement of belief is that or-

thogonal term rewriting as a model of computation is a thing of beauty.

A Thing of Beauty is a Joy for Ever
A A thing of beauty is a joy for ever:

Its loveliness increases; it will never

Pass into nothingness; but still will keep

A bow
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er quiet for us, and a sleep

FuChapter 1

First order infinitary rewriting

1.1.  Basic notions.
  1.1.1. Ordinals
  1.1.2.  Convergence
  1.1.3.  Compression
  1.1.4.  Infinitary properties
  1.1.5.  Example: 0 x ∞
1.2.  Infinitary confluence
1.3.  Infinitary normalization
1.4.  Exercises and Notes
 

1.1.1. Ordinals

Figure 1.1. The Growth, by Henk Barendregt. In: Hans Koetsier, Advertisements 1969-1981, Staatsuit-
geverij, page nr. 81, no structure left, published 25-1-1975 in dutch weekly journal Vrij Nederland.
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Figure 1.2. From: Benedikt Löwe, Visualisation of ordinals.

1.1.2. Convergence

In this chapter we will consider infinite terms over a first order signature. Our start-

ing point is an ordinary TRS (Σ, R). In fact, we will suppose throughout that our 

TRSs are orthogonal. Now it is obvious that the rules of the TRS (Σ, R) just as well ap-

ply to infinite terms as to the usual finite ones. First, let us explain the notion of infi-

nite term that we have in mind. As before, let Ter(Σ) be the set of finite Σ-terms. Then 

Ter(Σ) can be equipped with a distance function d such that for t, s ∈ Ter(Σ), we have 

d(t, s) = 2-n if the n-th level of the terms s, t (viewed as labeled trees) is the first level 

where a difference appears, in case s and t are not identical; furthermore, d(t, t) = 0. It 

is well-known that this construction yields (Ter(Σ), d) as a metric space. Now infinite 

terms are obtained by taking the completion of this metric space, and they are repre-

sented by infinite trees. We will refer to the complete metric space arising in this way 

as (Ter∞(Σ), d), where Ter∞(Σ) is the set of finite and infinite terms over Σ.

 A natural consequence of this construction is the emergence of the notion of 

Cauchy convergence: we say that t0 → t1 → t2 → ... is an infinite reduction sequence 

with limit t, if t is the limit of the sequence t0, t1, ... in the usual sense of Cauchy con-

vergence. See Figure 1.1 for an example, based on a rewrite rule F(x) → P(x, F(S(x)) in 

the presence of a constant 0.
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F(0) P
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S

0

.....

Limit: infinite sequence of natural numbers

Figure 1.1

In the sequel we will however adopt a stronger notion of converging reduction se-

quence which turns out to have better properties. First, let us argue that it makes 

sense to consider not only reduction sequences of length ω, but even reduction se-

quences of length α for arbitrary ordinals α. Given a notion of convergence, and lim-

its, we may iterate reduction sequences beyond length ω and consider e.g. 

  t0 → t1 → t2 → ... → tn → ... 

  s0 → s1 → s2 → s3 → ...  r 

where limn→∞ tn = s0 and limn→∞ sn = r. See Figure 1.2 for such a reduction se-

quence of length ω + ω, which may arise by evaluating first the left part of the term 

at hand, and next the right part. Of course, in this example a ‘fair’ evaluation is pos-

sible in only ω many reduction steps, but we do not want to impose fairness re-

quirements at the start—even though we may (and will) consider it to be a desirable 

feature that reductions of length α could be ‘compressed’ to reductions of length not 

exceeding ω steps, yielding the same ‘result’.

 We will give a formal definition now.

1.1. DEFINITION. Let (Σ, R) be a TRS. A (Cauchy-) convergent R-reduction sequence of 

length α (an ordinal) is a sequence 〈tβ | β ≤ α 〉 of terms in Ter∞(Σ), such that

(i) tβ →R tβ+1 for all β < α,

(ii) tλ = limβ<λ tβ for every limit ordinal λ ≤ α).

Here (ii) means: ∀n ∃µ < λ ∀ν (µ ≤ν≤λ  ⇒  d(tν, tλ) ≤ 2-n).

Notation: If 〈 tβ | β ≤ α 〉  is a Cauchy-convergent reduction sequence we write 
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t0 →α
c tα (‘c’ for ‘Cauchy’).

Figure 1.2

 The notion of normal form as a final result has to be considered next. We sim-

ply generalize the old finitary notion of normal form to the present infinitary setting 

thus: a (possibly infinite) term is a normal form when it contains no redexes. The only 

difference with the finitary case is that here a redex may be itself an infinite term. But 

note that a redex is still so by virtue of a finite prefix, that was called the redex pat-

tern—this is so because our rewrite rules are orthogonal and hence contain no re-

peated variables. 

C            A             A                           A            A

C             A                           A

A

A

ω
≡

C A

....

Limit: not an infinitary normal form

Figure 1.3

So, in Figure 1.3 we have, with as TRS {C → A(C), A(x) → x}, a (Cauchy-) converging 

reduction sequence with as limit the infinite term A(A(A(A..., abbreviated as Aω; this 

P
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P
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P
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S
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Pω ω

Transfinite reduction sequence of length ω + ω

A Course in Infinitary Rewriting                      version  1.3                          page 10

Monday, July 14, 2008



limit is not a normal form:  Aω reduces to itself: Aω → Aω, and only to itself. (Note 

that this step can be performed in infinitely many different ways, since every A in Aω 

is the root of a redex.) Normal forms are shown in Figures 1.1, 1.2 as the rightmost 

terms (if no other reduction rules are present than the one mentioned above). Hence-

forth we will often drop the reference ‘infinite’ or ‘infinitary’. Thus a term, or a nor-

mal form, may be finite or infinite. The notion of Cauchy converging reduction se-

quence that was considered so far, is not quite satisfactory. We would like to have the 

compression property:

   t0 →α
c tα   ⇒   t0 →≤ ω 

c tα .

That is, given a reduction  t0 →α
c tα , of length α, the result tα can already be found in 

at most  ω many steps. (‘At most’, since it may happen that a transfinite reduction 

sequence can be compressed to finite length, but not to length ω.) Unfortunately,  →α
c 

lacks this property:

1.2. COUNTEREXAMPLE. Consider the orthogonal TRS with rules {A(x) → A(B(x)), 

B(x) → E(x)}. Then A(x) →ω A(Bω) →  A(E(Bω)), so  A(x) →ω+1 A(E(Bω)). However, we 

do not have A(x) →≤ ω A(E(Bω)), as can easily be verified.

Figure 1.4

R

R 'projection

Parallel Moves Lemma

Rinfinite reduction 

R 'projection

(a)

(b)

t
0

s

t'

tn

s'

s"

s"'

t*
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Figure 1.5. 

 Another obstacle for →α
c is that the well-known Parallel Moves Lemma resists a 

generalization to the present transfinite case. We recall the PML in Figure 1.4(a): set-

ting out a finite reduction R: t0 →→ tn against a one step reduction t0 →s t' (where s is 

the contracted redex), one can complete the reduction diagram in a canonical way, 

thereby obtaining as the righthand side of the diagram a reduction tn →→  t* which 

consists entirely out of contractions of all the descendants of s along R. Furthermore, 

the reduction R': t' →→ t* arising as the lower side of this reduction diagram, is called 

the projection of R over the reduction step t0 →s t'. Notation: R' = R/ (t0 →s t').

 We would like to have a generalization of PML where R is allowed to be infi-

nite, and converging to a limit. In this way we would have a good stepping stone 

towards establishing infinitary confluence properties. However, it is not clear at all 

how such a generalization can be established. The problem is shown in Figure 1.5. 

First note that we can without problem generalize the notion of ‘projection’ to infi-

nite reductions, as in Figure 1.4(b): there R' is the projection of the infinite R over the 

displayed reduction step. This merely requires an iteration of the finitary PML, no 

infinitary version is needed. Now consider the two rule TRS {A(x, y) → A(y, x), C → 

D}. Let R be the infinite reduction A(C, C) → A(C, C) → A(C, C) → ... , in fact a reduc-

tion cycle of length 1. Note that R is converging, with limit A(C, C). The projection R' 

of R over the step A(C, C) → A(D, C), however, is no longer converging. For, this is 

A(D, C) → A(C, D) → A(D, C) → ..., a ‘two cycle’. So, the class of infinite converging 

reduction sequences is not closed under projection. This means that in order to get 

some decent properties of infinitary reduction in this sense, one has to impose fur-

ther restrictions.

ρ t0 t1 tω tω+1

ρ

tω+ω

t’ t’ t’ t’ω t’ω+1 t’ω+ω

p0 p1 p2

|| || || || || || ||

s0 s1 sω

pω pω+ω
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Figure 1.6

 As the last example shows, there is a difficulty in that we loose the notion of 

descendants which is so clear and useful in finite reductions. Indeed, after the infi-

nite reduction A(C, C) → A(C, C) → A(C, C) → ... , with Cauchy limit A(C, C), what is 

the descendant of the original underlined redex C in the limit A(C, C)? There is no 

likely candidate.

We will now describe the stronger notion of converging reduction sequence that 

does preserve the notion of descendants in limits. If we have a converging reduction 

sequence t0 →s0 t1 →s1 ... t, where si is the redex contracted in the step ti → ti+1 and t 

is the limit, we now moreover require that

  limi→∞ depth(si) = ∞. (*)

Here depth(si), the depth of redex si, is the distance of the root of ti to the root of the 

subterm si. If the converging reduction sequence satisfies this additional requirement 

(*), it is called strongly convergent. The difference between the previous notion of 

(Cauchy) converging reduction sequence and the present one, is suggested by Figure 

8.6. The circles in that figure indicate the root nodes of the contracted redexes; the 

shaded part is that prefix part of the term that does not change anymore in the se-

quel of the reduction. The point of the additional requirement (*) is that this growing 

non-changing prefix is required really to be non-changing, in the sense that no activ-

ity (redex contractions) in it may occur at all, even when this activity would by acci-

dent yield the same prefix.

C

A(D, C) A(C, D)

A(C, C) A(C, C) A(C, C)

A(D, C)

Cauchy converging reduction

Projection: not Cauchy converging

C C
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Figure 1.7

Note that there is now an obvious definition of descendants in the limit terms; the 

precise formulation is not hard to make explicit.

 In fact, we define strongly converging reductions of length α for every ordinal 

α, by imposing the additional condition (*) whenever a limit ordinal λ ≤ α is en-

countered. (It will turn out however that only countable ordinals may occur.) More 

formally:

1.3. DEFINITION. Let (Σ, R) be a TRS. A strongly convergent R-reduction sequence of 

length α is a sequence 〈 tβ | β ≤ α 〉  of terms in Ter∞(Σ), such that

(i) tβ →R tβ+1 for all β < α,

(ii) for every limit ordinal λ ≤ α: 

 ∀n ∃µ < λ ∀ν (µ≤ν≤ λ  ⇒  d(tν, tλ) ≤ 2-n & depth(sν) ≥ n). 

Here sν is the redex contracted in the step tν → tν+1. (See Fig. 1.7.)

Notation: If 〈 tβ | β ≤ α 〉  is a strongly convergent reduction sequence we write 

t0 →α tα .

Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations
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Figure 1.8

 Henceforth strong convergence will be the default notion. Now we can state the 

benefits of this notion.

1.1.3. Compression

1.4. COMPRESSION LEMMA. In every orthogonal TRS:

  t →α t'   ⇒   t →≤ ω  t'.

(Note that the counterexample 1.2 to compression for Cauchy converging reductions 

was not strongly converging.)

1.1.4. Infinitary properties

Ordinary rewriting (finitary) Infinitary or transfinite rewriting

  1 finite reduction strongly convergent reduction

  2 infinite reduction divergent reduction (‘stagnating’)

  3 normal form possibly infinite normal form

  4 CR: two coinitial finite reductions can 

be prolonged to a common term

CR∞: two coinitial strongly convergent 

reductions can be prolonged by strongly 

convergent reductions to a common term

0 ω ω·2 ω·3 ω2

depth of contracted redex tends to infinity 
at each limit ordinal
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Ordinary rewriting (finitary) Infinitary or transfinite rewriting

  5 UN: two coinitial reductions ending in 

normals forms, end in the same normal 

form

UN∞: two coinitial strongly convergent 

reductions ending in (possibly infinite) 

normal forms, end in the same normal 

form

  6 SN: all reductions lead eventually to a 

normal form

SN∞: all reductions lead eventually to a 

possibly infinite normal form, equiva-

lently: there is no divergent reduction

  7 WN: there is a finite reduction to a 

normal form

WN∞: there is a strongly convergent  re-

duction to a possibly infinite normal form

Table 1.1.

1.1.5. Zero times infinity

Let us discuss all the concepts introduced so far by means of the example given in 

Figure 1.9, where the reduction rules for Addition and Multiplication due to Dede-

kind are stated, in combination with a reduction rule defining the constant ∞ for ‘in-

finity’. The constant 0 and the binary S for successor generate the finite natural num-

bers.  These rules compute some familar identities for ∞, such as 

 A(Sn(0), ∞) = A(∞, Sn(0)) = A(∞ , ∞) = ∞, 

in the sense that these terms reduce to the same infinite normal form, namely Sω = 

S(S(S(....  . There are also some plausible identities involving multiplication and ∞, to 

wit 

 M(Sn+1(0), ∞) = M(∞, Sn+1(0)) = M(∞ , ∞) = ∞

How about zero times infinity? The equation M(∞, 0) = ∞ is immediate, but the term M(0, ∞) 

is interesting, since it it turns out to be undefined, in a formal sense. The whole reduction 

graph including all finite and infinite reducts of M(0, ∞) is displayed in Figure xx. It turns out 

to be full of cycles, the shortest one displayed in red. All terms in the graph are hypercollaps-

ing; the term below right, a regular tree that we render in abbreviation as µx. A(x, 0) is re-

ducible only to itself, even in infinitely many different one step reductions. None of the terms 

in the graph has a normal form, i.e. they are not WN∞. There is no longest strongly conver-

gent reduction, in fact there are strongly convergent reduction of any countable ordinal 

length. The same holds for divergent reductions. The diagonal steps are all collapsing steps; 

they seem to emanate from the term µx. A(x, 0); but note that this term is not a starting point 

of any of these collapsing steps. 
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Figure 1.9: Zero times infinity

1.5. INFINITARY PARALLEL MOVES LEMMA (PML∞). In every orthogonal TRS:

That is, whenever t0 →α tα and t0 →s t', where 

s is the contracted redex (occurrence), there 

are infinitary reductions t' →β t* and tα →γ t*. 

The latter reduction consists of contractions 

of all descendants of s along the reduction t0 

→α tα .

Actually, by the Compression Lemma we can find β, γ ≤ ω.

 As a side-remark, let us mention that in every TRS (even with uncountably 

many symbols and rules), all transfinite reductions have countable length. All count-

able ordinals can indeed occur as length of a strongly convergent reduction. (For or-

dinary Cauchy convergent reductions this is not so: the rewrite rule C → C yields ar-

t
0 α

s

t'
β

t*

γ

t α

sdescendants of

A Course in Infinitary Rewriting                      version  1.3                          page 17

Monday, July 14, 2008



bitrarily long convergent reductions C →α
c C. However, these are not strongly con-

vergent.)

 The infinitary PML∞ is “half of the infinitary confluence property”. The ques-

tion arises whether full infinitary confluence (CR∞) holds. That is, given t0 →α t1, 

t0 →β t2, is there a t3 such that t1 →γ t3, t2 →δ t3 for some γ, δ? Using the Compression 

Lemma and the finitary PML all that remains to prove is: given t0 →ω t1, t0 →ω t2, is 

there a t3 such that t1 →≤  ω t3, t2 →≤ ω t3? Surprisingly, the answer is negative:  infinitary 

confluence for orthogonal rewriting does not hold. The counterexample is in Figure 1.8, 

consisting of an orthogonal TRS with three rules, two of which are ‘collapsing rules’. 

(A rule t → s is collapsing if s is a variable.) Indeed, in Figure 1.8(a) we have C →ω Aω, 

C →ω Bω but Aω, Bω have no common reduct as they only reduce to themselves. Note 

that these reductions are indeed strongly convergent. (Figure 1.8(b) contains a rear-

rangement of these reductions that we need later on.)

 However, the good news is that in spite of the failure of CR∞ we do have unic-

ity of (possibly infinite) normal forms (UN∞).

1.6. THEOREM. For all orthogonal TRSs: Let t →α t', t →β t" where t', t" are (possibly infinite) 

normal forms. Then t' ≡ t".

Here  ≡ denotes syntactical equality. Note that in the ABC counterexample in Figure 

1.8 the terms Aω and Bω are not normal forms.

 This Unique Normal Form property, by the way, also holds for Cauchy con-

verging reductions, that is, with →α replaced by →α
c and likewise for β. The reason is 

that we have:

  t →α
c t' & t' is a normal form   ⇒   t →≤ ω t'.

(For α = ω this is easy to prove; in fact a converging reduction of length ω to a nor-

mal form is already strongly convergent. For general α, the proof of the statement 

requires some work.)
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Figure 1.9

 The ABC example (Figure 1.9) is not merely a pathological example; the same 

phenomenon (and therefore failure of infinitary confluence) occurs in Combinatory 

Logic, as in Figure 1.10, where an infinite tower built from the two different collaps-

ing contexts K  K and K  S is able to collapse in two different ways. (Note that 

analogous to the situation in Figure 1.9, the middle term, built alternatingly from K 
 K and K  S, can be obtained after ω steps from a finite term which can easily be 

found by a fixed point construction.) Also for λ-calculus one can now easily con-

struct a counterexample to infinitary confluence.

A(x)          x
B(x)          x
C              A(B(C))→

→
→

C

A(B(C))

A(C)                      B(C)

A(A(B(C)))           B(A(B(C)))

A(A(C))                 B(B(C))

A(A(A(B(C))))      B(B(A(B(C))))

A(A(A(C)))           B(B(B(C)))

A                            B

↓

↓ ↓

↓ ↓

↓ ↓

↓↓

↓↓

......

......
ω ω

C

ABC

ABABC

ABABABC

ABABABABAB...

A                           Bω ω

↓

↓

↓

↓

...

ωω

(a) (b)

Failure of infinitary confluence
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Figure 1.10

Sxyz         xz(yz)
Kxy          x

→

→

→
→

@(@(@(S, x), y), z)      @(@(x, z), @(y, z))
@(@(K, x), y)                x

@

@          K

K

@

@          S

K

@

@          K

K @

@          S

K @

@          K

K @

@          S

K @

@

@          S

K @

@          S

K @

@          S

K @

@          S

K @

@

@          K

K @

@          K

K @

@          K

K @

@          K

K @

ω ω

collapsing contexts

Failure of infinitary confluence for Combinatory Logic
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 We will now investigate the extent to which infinitary orthogonal rewriting 

lacks full confluence. It will turn out that non-confluence is only marginal, and that 

terms which display the bad behaviour are included in a very restricted class. The 

following definition is inspired by a classical notion in λ-calculus; see Barendregt 

[84].

1.7. DEFINITION. (i) The term t is in head normal form (hnf) if t ≡ C[t1,...,tn] where 

C[t1,...,tn] is a non-empty context (prefix) such that no reduction of t can affect the 

prefix C[ ,..., ]. More precisely, if t →→  s then s ≡ C[s1,...,sn] for some si (i =1,...,n), and 

every redex of s is included in one of the si (i =1,...,n).

(ii) t has a hnf if t →→ s and s is in hnf.

 Actually, this definition is equivalent to one of DKP[89]; there a term t is called 

‘top-terminating’ if there is no infinite reduction t → t' → t" → ... in which infinitely 

many times a redex contraction at the root takes place. So: 

t is top-terminating ⇔  t has a hnf. We need one more definition before formulating 

the next theorem.

1.8. DEFINITION. If t is a term of the TRS R, then the family of t is the set of subterms 

of reducts of t, i.e. {s | t →→R C[s] for some context C[ ]}.

1.9. THEOREM. For all orthogonal TRSs: Let t have no term without hnf in its family. Then t 

is infinitary confluent.

 Here we want to reconsider the last theorem. Actually, it can be much im-

proved. Consider again the ABC example in Figure 1.9. Rearranging the reductions 

C →ω Aω, C →ω Bω as in Figure 1.9(b) into reductions C →ω (AB)ω →ω Aω and C →ω 

(AB)ω →ω Bω makes it more perspicuous what is going on: (AB)ω is an infinite ‘tower’ 

built from two different collapsing contexts A( ), B( ), and this infinite tower can be 

collapsed in different ways. Remarkably, it turns out that the collapsing phenome-

non is the only cause of failure of infinitary confluence. (The full proof is in 

KKVS[95a].) Thus we have:
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THEOREM. (i) Let the orthogonal TRS R have no collapsing rewrite rules t(x1,...,xn) → xi. 

Then R is infinitary confluent.

(ii) If R is an orthogonal TRS with as only collapsing rule: I(x) → x, then R is infinitary 

confluent.

 Call an infinite term C1[C2[...Cn[...]...]], built from infinitely many non-empty 

collapsing contexts Ci[ ], a hyper collapsing (hc) term. (A context C[ ] is collapsing if 

C[ ] contains one hole  and C[ ] →→  .) Also a term reducing to a hc term is called a 

hc term. E.g. C from the ABC example in Figure 1.9  is a hc term. Clearly, hc terms do 

not have a hnf.

THEOREM. Let t be a term in an orthogonal TRS, which has not a hc term in its family. Then 

t is infinitary confluent.

This theorem can be sharpened somewhat, as follows. Consider the rewrite rule: 

  t →Ω  Ω if t is a hc term.

Of course this rule is not ‘constructive’, i.e. the reduction relation →Ω may be unde-

cidable (as it is in CL, Combinatory Logic). However, we now have that orthogonal 

reduction extended with →Ω is infinitary confluent.
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C ABC AC AABC AAC

ABC

BC

BABC

BBC

BBABC

Aω

Bω

ABC AC AABC AAC

BωBωBω BωBω

Aω

Aω

Aω

Aω

Aω

BC C ABC

ABC

AC AABC

BC

BABC

BABC

BBC

BBABC

C

C

C

C

convergent

divergent

Figure 1.11. Reduction diagram of ABC counterexample

Steps in light-colored strips are trivial (empty) steps, in dark strips are proper steps. 

Note that the projection of the upper horizontal strongly convergent reduction over 

the left vertical strongly convergent reduction, yields the divergent reduction

 Bω ≡ Bω → Bω ≡ Bω → Bω ≡ Bω → Bω ≡ Bω → ...
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where in each proper step the the top B-redex is contracted. 

C ABC AC AABC AAC

ABC

BC

BABC

BBC

BBABC

Aω

Bω

ABC AC AABC AAC

BωBωBω BωBω

Aω

Aω

Aω

Aω

Aω

BC C ABC

ABC

AC AABC

BC

BABC

BABC

BBC

BBABC

C

C

C

C

convergent

divergent

AεC AεABC AεAεC (Aε)ω

(Aε)ω

εω

ABCC

ABC
ABC AεC AεABC AεAεC

εBC

εBABC

εBεBC

εBεBABC

(εB)ω (εB)ω εε(εB)ω εε(εB)ω εεε(εB)ω

εBC εεC εεABC εεAC

εBABC εεABC

εBεBC εεεBC εεεBC

εBεBABC εεεBABC

εεεεC

εεεεεεC

Bω ⊥

εε(Aε)ω

εε(Aε)ω

εεεε(Aε)ω

εεεε(Aε)ω

Figure 1.12. ε-lifting of ABC diagram

All terms in the lifted diagram are SN∞ (Exercise), and all infinite reductions are 

strongly convergent. The lifted terms and lifted reductions all project back (by delet-

ing ε‘s) to the original terms and reductions–except for the lower-right corner point, 
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the infinite normal form εω. This term is replaced by bottom. We now look at the 

lifted reductions that yield εω, and read off that the original terms Bω  and Aω  are hy-

percollapsing. These are both reduced to botom and confluence is restored.
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1.3. Infinitary normalisation

Figure 1.13

R is SN∞ = WN∞ = 

WHN = SHN 
R is AC R  is CR∞

R  is UN∞

global properties

t is SN∞

t is SHN

t is WHN

local properties

t is WN∞
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PML CR UN PML∞ CR∞ UN∞

OTRS yes yes yes yes no yes

WOTRS yes yes yes yes no yes

λβ yes yes yes no no yes

OCRS yes yes yes no no yes

Table 1.2

REMARK. The notions of finitary SN and infinitary SN∞ are independent, somewhat

surprisingly.

(1) SN does not imply SN∞. Consider the rules for addition. This TRS is SN. But 

SN∞ does not hold, see the infinite term µx. A(x, 0). Another counterexample is given 

by the term I ω and the TRS with rule I(x) → x.

(2) SN∞ does not imply SN.Take the fragment of Combinatory Logic (CL) consist-

ing of the finite S-terms, with the S reduction rule. According to Waldmann [2000] 

this TRS is top-terminating. But the term AAA with A ≡ SSS has an infinite reduction:

  SSSAA 
  SA(SA)A 
  AA(SAA) 

  SSSA(SAA) 
  SA(SA)(SAA) 

  A(SAA)(SA(SAA)) 
  SSS(SAA)(SA(SAA)) 

  S(SAA)(S(SAA))(SA(SAA)) 
  SAA(SA(SAA))(S(SAA)(SA(SAA))) 

  A(SA(SAA))(A(SA(SAA)))(S(SAA)(SA(SAA))) 
  SSS(SA(SAA))(A(SA(SAA)))(S(SAA)(SA(SAA))) 

  S(SA(SAA))(S(SA(SAA)))(A(SA(SAA)))(S(SAA)(SA(SAA))) 
  SA(SAA)(A(SA(SAA)))(S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA))) 

  A(A(SA(SAA)))(SAA(A(SA(SAA))))(S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA))) 
  SSS(A(SA(SAA)))(SAA(A(SA(SAA))))(S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA))) 

  S(A(SA(SAA)))(S(A(SA(SAA))))(SAA(A(SA(SAA))))(S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA))) 
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1.4. Exercises and notes

EXERCISE 1.4.1. (i) Prove that an infinite reduction diagram must possess an infinite proper reduc-
tion (i.e. one without empty ‘steps’. (Solution included.)
(ii) Obtain Newman’s Lemma as a corollary of (i).

SOLUTION.  Consider a construction of the infinite diagram in stages, by repeatedly adjoining an e.d. 
After each finite stage the diagram contains finitely many proper reductions starting from the initial 
term of the two diverging reductions that constitute stage 0 of the construction. Also, after each finite 
stage there must be eventually an adjunction of an e.d. with splitting converging sides; otherwise the 
construction would terminate. But such an adjunction will prolong, with at least one proper step, at 
least one of the finite proper reductions from the initial term that are present in the diagram at that 
stage. Now apply König’s Lemma: in the limit an infinite proper reduction must arise.

EXERCISE 1.4.2. (A. Visser).  As the dot diagrams of ordinals in Figure 1.2 suggest, ordinals can be 
mapped (embedded) into the segment of real numbers [0,1] in an order-preserving way. Prove that 
precisely the countable ordinals can be embedded in this way.

EXERCISE 1.4.3. (From Terese 2003, p.675.)
(i)  Show that all finite reductions are strongly converging.
(ii)  Show that all reductions in the ‘binary tree’ TRS given by the rule {C → B(C,C)} are strongly 
convergent and that they can be of any countable length.
(iii) Describe the normal form by strongly convergent transfinite reduction of F(A,B), given by the 
rule F(x,y) → G(x,F(y,H(x,y))).

(iv) Consider the TRS {J(x) → J(x)}. Let R be the strongly convergent reduction Jω →ω Jω  in which 

the redex contracted at the n-th step is at depth n. Why is the ω2 long sequence Rω = R;R;R;... ,  where 

‘:’ is concatenation of reduction sequences, not strongly converging?

EXERCISE 1.4.4. (Failure of infinitary Newman’s Lemma.)

This Exercise establishes that we do not have the implication WCR & SN∞ ⇒ CR∞. In other words, the 

infinitary version of Newman’s Lemma WCR & SN ⇒ CR for abstract reduction systems (ARSs) fails 

for infinitary term rewriting. Consider the TRS with the three rules {C → A(C), A(C) → B(C), 

A(B(x)) → B(A(x))}. Note that we do not have A(x) → B(x)! 

(i) Check that WCR holds,  by looking at the critical pairs and applying Huet’s Lemma stating that 
if all critical pairs are convergent, we have WCR.

(ii)  We also have SN∞; proving that is a nice exercise. 

(iii) Observe that CR∞ fails, as C reduces in ω steps to Aω and Bω, both infinite normal forms.

(iv) Some other counterexamples to the infinitary NL are as follows.

EXERCISE 1.4.5. Consider the collapsing rule I(x) → x as in CL, and consider the hypercollapsing 
term Iω. 

(i) Prove that has Iω continuum many strongly convergent reductions.
(ii Prove that Iω also has continuum many divergent reductions.
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EXERCISE 1.4.6. Note that the proof of UN∞ relied heavily on the properties of orthogonal rewriting. 

The question arises whether orthogonality is necessary for UN∞ ; would mere confluence (finitary CR) 

not be enough? In fact we can answer this question CR ⇒ UN∞ negatively, with the following coun-

terexample.
Consider the TRS R with the three rules:

  C → A(C)
  C → B
  A(B) → B.

So R is not orthogonal. We have the following reductions:

                       

C A(C) A2(C) A3(C) Aω normal form

B A(B) A2(B) A3(B)

.......

.......

ω

Figure 1.14. Counterexample to CR ⇒ UN∞ 

These are all the reducts of C. There are two normal forms, Aω and B.  Hence UN∞ does not hold. All 

terms of Ter(R) are displayed; clearly, R is CR. R is not CR∞, though.

EXERCISE 1.4,7. The property SN∞ is called top termination in Waldmann [00]. It holds for the frag-

ment of CL consisting of terms built from S’s only, the S-terms. Note that the top or root redex in a CL 
term is not the same as the head redex. Indeed there are S-terms having an infinite head reduction. 
Give an example of such an S-term.

Solution.(H.P. Barendregt, private communication, January 2004.)
Define A = SSS and B = SAA.
Define P > Q ⇔ P →→h QR1...Rn, for some R1,...,Rn.

Note that > is reflexive and transitive.

Define PnQ as follows: P0Q     = Q; Pn+1Q = P(PnQ).

Lemma 1. Anxy > xy, for n > 0.
Proof. Induction on n.
Case n = 0: trivial.

Case n+1: An+1xy = A(Anx) = SSS(Anx)y > S(Anx)(S(Anx))y > Anxy > xy, by the IH. 

Lemma 2. AnB(AnB) > An+1B.
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Proof. By induction on n. 
Case n = 0:

BB = SAAB > AB(AB)
Case n+1:

An+1BAn+1B = A(AnB)(An+1B = SSS(AnB)(An+1B) > S(AnB)(S(AnB))(An+1B) > AnB(An+1B) > 

B(An+1B) (by Lemma 1), = SAA(An+1B) > An+2B(An+2B). 

Conclusion: BB has no weak-head nf.

Proof. BB > AB(AB) > A2B(A2B) > ... . This is a proper infinite head reduction. (To be checked!)

EXERCISE 1.4.8.

The CL-term SII(SII) has the infinite reduction graph 
displayed to the left.  Abbreviating ω ≡ SII, the terms at 
the nodes of this graph are Inω(Imω) for n,m ≥0.

(i) Show that all these terms are root active, but not hy-
percollapsing. 

(ii) Prove that all continuum many infinite reductions 
contained in this reduction graph, are divergent; in 
particular, they are root active.

Figure 1.15

SII(SII) 
  I(SII)(I(SII)) 

  SII(I(SII)) 
  I(I(SII))(I(I(SII))) 

  I(SII)(I(I(SII))) 
  SII(I(I(SII))) 

  I(I(I(SII)))(I(I(I(SII)))) 
  I(I(SII))(I(I(I(SII)))) 

  I(SII)(I(I(I(SII)))) 
  SII(I(I(I(SII)))) 

  I(I(I(I(SII))))(I(I(I(I(SII))))) 
  I(I(I(SII)))(I(I(I(I(SII))))) 

  I(I(SII))(I(I(I(I(SII))))) 
  I(SII)(I(I(I(I(SII))))) 

  SII(I(I(I(I(SII))))) 
  I(I(I(I(I(SII)))))(I(I(I(I(I(SII)))))) 

  I(I(I(I(SII))))(I(I(I(I(I(SII)))))) 
  I(I(I(SII)))(I(I(I(I(I(SII)))))) 

  I(I(SII))(I(I(I(I(I(SII)))))) 
  I(SII)(I(I(I(I(I(SII)))))) 

  SII(I(I(I(I(I(SII)))))) 

SII(SII)
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  I(I(I(I(I(I(SII))))))(I(I(I(I(I(I(SII))))))) 
  I(I(I(I(I(SII)))))(I(I(I(I(I(I(SII))))))) 

  I(I(I(I(SII))))(I(I(I(I(I(I(SII))))))) 
  I(I(I(SII)))(I(I(I(I(I(I(SII))))))) 

  I(I(SII))(I(I(I(I(I(I(SII))))))) 
  I(SII)(I(I(I(I(I(I(SII))))))) 

  SII(I(I(I(I(I(I(SII))))))) 
  I(I(I(I(I(I(I(SII)))))))(I(I(I(I(I(I(I(SII)))))))) 

Figure 1.16

EXERCISE 1.4.9. (An alternative definition of strong convergence.)
Definition.

(i)  CC, Cauchy convergence, defined as before.
(ii)  SC, strong convergence, defined as before.
(iii) CCC, Cauchy convergence with colors.  Given is the first order signature Σ. We extend the signa-

ture by adding a colored activity marker α, a unary symbol with the reduction tule α(x) → x.The old 
reduction rules are changed in such a way that the rhs is prefixed with α.  For CL this gives the rule for 
S:
Sxyz → α(xz(yx)).

Given an old reduction sequence, we can lift it to the colored version by applying the rules as modi-
fied, introducing the markers α. These are removed the next step using the α-rule.
So the infinite reduction SII(SII) →I(SII)(I(SII) → SII(I(SII)) → SII(SII → ...   which is CC but not SC, is 
lifted to SII(SII) → α(I(SII)(I(SII)) → (I(SII)(I(SII) → α(SII)(I(SII)) → SII(I(SII)) → SII(α(SII)) → SII(SII) → 
...  which is not CC. 

Proposition.  SC ⇔ CCC.

So we can remove the depth requirement in favour of a signature extension and the old concept CC.  We could 

view CCC as ‘the’ definition for SC, and then derive the depth requirement.

EXERCISE 1.4.10. In this Exercise we prove the Head Normalization Theorem. In fact, the theorem is proved 

in various places, among them Terese [03]. The relevant theorem there is xx, stating that outermost fair reduc-

tions are (head)-normalizing. That theorem as obtained in Terese [03] is concerned with a more general situation 

than the first-order framework that we adopt in this Exercise, and therefore uses some more advanced notions 

such as external redex, outermost fair reductions, and the SR-measure.

 Here we will give a proof just for first-order TRSs, employing only the basic notion of elementary diagram 

for orthogonal TRSs, diagram construction by tiling with these elementary diagrams, and the notion of projec-

tion of a reduction over a step. 

A1. DEFINITION. (i) A head step is a reduction step that takes place at the head or the root. This means that the 

redex contracted coincides with the whole term t. Notation: t →h t’.

(ii)  A step which is not a head step is called an internal step; notation t →i t’.

A2. PROPOSITION. Head steps and internal steps propagate through each other as in the diagrams in Figure 

A1. The proofs are elementary and omitted.

A3. THEOREM. (Head Normalization Theorem)
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Let R be an orthogonal TRS and let t be a term in R with a reduction t → t’→ t”→ ... containing infinitely many 

root steps. 

(i)  Then t has no head normal form.

(ii)  A fortiori, t has no normal form.

spot the error!

DEFINITION. (DEF. 2.3.10 in Kenn90a,b). A TRS is called unifiable if it contains a unifiable rule, that is a rule 

l → r such that for some substitution σ with finite and infinite terms for variables lσ ≡ rσ. Note that unifiability in 

the space of finite and infinite terms means unifiablity “without the occurs check”: the terms I(x) and x are unifi-

able in this setting, and their most general unifier is the infinite term Iω. Collapsing rules, i.e. rules which right 

hand side is a variable are unifiable.

LEMMA. (2.3.11 in Ken 90a,b) The following are equivalent for an orthogonal TRS:

(i) The TRS is non-unifiable,

(ii) all Cauchy-convergent reductions of the TRS are strongly convergent,

(iii) all Cauchy-convergent reductions are top-terminating.

THEOREM (2.3.12 in Ken90a,b). Any non-unifiable orthogonal TRS has the infinite Church-Rosser Property 

for Cauchy convergent and for strongly convergent reductions.
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1.4.11. EXERCISE. (W. van der Poel) Write A ≡ (SS). Prove that the CL-term SASAS has a normal form, 
of length ≈ 106. 

1.4.12. EXERCISE. Give an example of a transfinite reduction of length > ω  that cannot be com-

pressed to length ω, but only to finite reductions.

1.4.13. EXERCISE.(i) Note that CLI, the non-erasing variant of CL based on the combinators I and J, 

has the property CR∞. The combinator J has the reduction rule
Jabcd → ab(adc).

(ii) Another basis for CLI  is given by the combinators B, S, C, I, with Bxyz → x(yz) and Cxyz  → xzy.

Does this TRS have the property CR∞ ?
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EXERCISE (For Chapter 2) (i) Note that other than for CL, for lambda calculus both the ordinary ver-

sion and the non-erasing version fail to have the property CR∞ .
(ii) One can define collapsing steps for lambda calculus as being of the form (λy.y)x → x or (λy. x)M 

→ x.
Strict hypercollapsing terms are those built from an infinite tower of such collapsing contexts, or re-
ducing to that, or having an infinite reduction with infinitely many of those steps. Note that it is not 

sufficient to restore CR∞ to work modulo these strict hc terms.

(iii) There are two definitions for hc terms.  Built from an infinite tower of collapsing contexts, reduc-
ing to that, or having an infinite reduction with infinitely many collapsing root  steps. Prove that these 
two definitions are equivalent.

NOTE. (J. Waldmann) SN for S-terms is decidable.

1.4.14. EXERCISE. (H. Zantema) Show that infinite S-terms do not have the property CR∞. 

NOTE. Actually, the UN∞ theorem  can be stengthened as follows. See also Chapter 2, Lemma 2.15.

Figure 1.17

NOTE. We need a more precise definition of finitary TRS, iTRS, and connection between those,

in order to make the comparison between SN and SN∞ more precise. 

(1)  Let  Σ be a signature, possibly infinite, and R be a set of reduction rules, possibly infinite.

A = (Σ, R) is then a finitary TRS, with the usual definition of reduction rules and reduction relation. 

When the set of terms comprises all Σ-terms,  we call A a full TRS.

(2) A sub-TRS arises when we restrict the set of terms to a subset T of Ter(Σ), closed under the re-
duction relation.  We define also sub-TRSs to be finitary TRSs.  Typical examples are λI-calculus, or the 

fragment of CL consisting of finite S-terms, CL(S).
(3) Infinitary TRSs, or iTRSs, also can be full or sub-iTRSs. Full means that they contain all of 

M1

M2

N normal form

∃
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Ter∞(Σ), the set of finite and infinite terms over Σ . A sub-iTRS contains a subset T of Ter∞(Σ) which 
now is closed under →→→, the infinitary reduction relation.

(4) Now we define canonical transformations from finitary TRSs to iTRSs and vice versa.

If A = (T, R) is a finitary TRS, then A∞ is the iTRS (T∞, R) where T∞ is the closure of T under →→→

in Ter∞(Σ).

Vice versa, we obtain from iTRS A = (T∞, R) a finitary TRS A-∞,  by omitting the infinite terms from 

T∞.

(5) Is it correct that (A∞) -∞ = A and (A -∞) ∞ = A?
(6)  We can now state: 

• CL(S) is not SN (Barendregt et al.), and 

• CL(S)∞ is SN∞ (Waldmann), but 

• the iTRS with all possibly infinite S-terms as domain and the S-reduction rule, is not SN∞ (Zan-
tema).
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Appendix A1. Reduction diagrams

An important ingredient in finding a common reduct of the end points of two diverging reduction 
sequences consists of the elementary diagrams, see the examples in Figure 1.1. They are the ‘atomic’ or 
basic building blocks for constructing reduction diagrams. An non-trivial elementary diagram con-
sists of two diverging steps (arrows), joined by two sequences of steps of arbitrary length. Note that in 
the e.d.’s we may use empty sides (the dashed sides, in some figures shaded), to keep matters or-
thogonal. This gives rise to some trivial e.d.’s as in the lower part of Figure 1.1.  The e.d.’s are used as 
‘tiles’ with the intention to obtain a completed reduction diagram as in Figure 1.2. Usually we will 
forget the direction of the arrows (second picture in Figure 1.2): they always are from left to right, or 
downwards (except the empty ‘steps’ that have no direction).

Figure A1.1

elementary diagrams
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Figure A1.2
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Figure A1.3
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Figure A1.4
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Appendix A2. The property UN∞ for orthogonal TRSs.

Consider two infinite reductions

  R: M0 → M1 → ... →ω  Mω,

  R’: M0 → M’1 → ... →ω  M’ω,

of a term M0 to two infinite normal forms  Mω and M’ω.  We wish to prove that Mω ≡ 

M’ω, by showing that their finite approximations (prefixes) coincide:

∀n Mω/n ≡ M’ω/n.

So consider Mω/n and M’ω/n. By definition of the limit notion in infinitary rewriting, 

we know that in reduction R the ‘action’ is after some stage N deeper than n, i.e. 

∀k>N dk>n, where dk is the depth of the redex rk contracted in the step Mk → Mk+1. 

Likewise in reduction R’: after some N’ all action is deeper than n. So we know that 

in the reduction MN → ... →ω  Mω the prefix Mω/n  is ‘untouched’, and likewise 

M’ω/n is  untouched in the reduction M’N’ → ... →ω  M’ω . Now consider the initial 

parts of R and R’, up to N and N’ respectively:

  M0 → M1 → ... →  MN,

  M0 → M1 → ... →  M’N’,

and construct the reduction diagram determined by these two finite reductions, see 

Figure xx. Let M* be the common reduct of MN  and M’N’ thus found. If we could 

now assume that the prefix Mω/n also remained untouched in the reduction

  MN →  ... →  M*,

and likewise for M’ω/n in 

  MN →  ... →  M*,

we would have Mω/n ≡ M’ω/n as desired. But unfortunately we cannot assume that. 

A priori, the action may go ‘upwards’, during the reduction MN →  ... →  M* in MN. 

In fact it will not, by the assumption of orthogonality, as we will prove.
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Figure. 1 Normal form evaluations.

DEFINITION 1. Prefix Π  is stable with respect to reduction R if not only no reduction 

takes place in Π, but there is not even a redex in Π activated (‘triggered’) during R.

PROPOSITION 2. Let M0 ∈ Ter∞(R) have prefix Π, and let Π be stable with respect to the 

infinite normalizing reduction R: M0 → M1 → ... →ω  Mω, a normal form. Then Π is stable 

with respect to any reduction.

Proof. If the statement does not hold, there must be a symbol F in the prefix Π, such 

that the subterm headed by F is stable with respect to the normalizing reduction R, 

but such that F is triggered as the head of a redex in another reduction R’. So, with-

out loss of generality, we can assume that M0 ≡ F(t1,...,tn):   



M0 M1

M'1

→ → → → →M2 MN Mω→

M'2

→
→

→
→

M'ω

R

...

...

...

M'N'

...

R'

→
...

...

M*→ →

→

... ...→

...
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R

   t0 ≡ F(t1,...,tp) →     ...     → ω t, normal form

   ↓

  R’      ↓

   ....

   ↓

  tn ≡ F(t’1,...,t’p)

Figure 2. Proof of Proposition 2.
.

where in R, the F (or rather the context F(Ω,..., Ω) ) is stable, but in R’ the F has be-

come the head of a redex F(t’1,...,t’p). Now we invoke the Parallel Moves Lemma for 

infinitary orthogonal rewriting, PML∞, and construct the projection of R0 along the 

first step of R’: result R1.

Figure 3. Using PML∞.

The right-hand side of the strip determined by t0 → t1 and R0, is ∅, the empty re-

duction, by PML∞ (since there are no residuals of the redex contracted in  t0 → t1 

present in t, a normal form). Now in R0 there was no step at the root, by assumption. 

It follows that the same is true in R1, by elementary reasoning with residuals in or-

thogonal reduction diagrams. Let us look at this fact somewhat closer:

t0  ≡ F(t1,...,tp) t
normal form

R0

R'

R1

∅
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Figure 4. A closer look.

Paint the head F in the initial term F(t1,...,tp) blue, all other symbol occurrences (in-

cluding other F-occurrences)  a different color. Call a redex blue, red, ... if that is the 

color of its head. So in R0 no blue redex is contracted. Now in orthogonal rewriting, a 

step α contracts a redex with the same color as the redex in step β. So, R1 cannot 

contract a blue redex; i.e. the F heading F(t’1,...,t’p) is not triggered in R1.

   We now iterate this argument, projecting R1 over the second step of R’, etc. Thus 

we arrive at Rn:

Figure 5. Iterating PML∞ .

Now Rn starts with the term tn ≡ F(t’1,...,t’p), by assumption a redex, and proceeds to 

the normal form t, without ever contracting a root redex—i.e. the redex headed by F. 

But then, that root redex is still present in the normal form t, a contradiction.

This proves the Proposition and thereby also the theorem UN∞ for orthogonal TRSs.

t0  ≡ F(t1,...,tp) R0

R1

t1  ≡ F(t'1,...,t'p)

α

β

....

....

normal form

∅

t0  ≡ F(t1,...,tp) tR0

R'

R1

Rn

tn  ≡ F(t"1,...,t"p)

∅

t normal form
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Appendix A3. Collapsing reductions (from Kennaway et al.)
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