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INTRODUCTION AND SUMMARY

Title of this thesis, In the present work we are exclusively concerned with
the study of syntactical properties of 1~calculﬁs (%, for short), Combina-
tory Leogic (CL}, Recursive Program Schemes, and in general, Term Rewriting
Systems with bound variables; especially those syntactical properties which
concern reductions., Hence the title of this thesis; Combinatory Reduction
Systems (CRS's) is the name by which we refer to Term Rewriting Systems
plus bound variables. The word 'combinatory’ seems justified to us since it
captures the essential feature of these reduction systems: subterms in a

CRS-term are manipulated in a 'c¢ombinatory way'.

Motivation, There iIs ample mabivation for the (in our case syntactical) in-
vestigation of CRS's. The importance of the paradigms of CRE's, X and CL,
is well-known in Mathematical Logic (see alsc our historical remarks below).
Moreover, i and CL play an important role in the semantics of programming
landgquages; we refer to the work of Scott. One can consider A-calculus as the
prototype of a programming language; see MOBRIS [68]. Furthermore, in theo-
retical Computer Science, certain simple CES's, Recursive Program Schemes,
and more general, CRS's without substitution known as Term Rewrliting Systems
are studied. Then there is the AUTOMATH-project of de Bruijn, at the border-
line of Computer Science and Foundations of Mathematics, which has as one
of its aims the computer verification of mathematical proofs. Here A-cal-
culus plays an important role, too; we refer to the recent work of
VAN DABLEN [801].

in Proof Theory cne is often interested in certain extensions of
{typed) A-calculus, such as 2" @ recursor R, iterator J, Pairing cperators,
etc. All these extensions are covered by the concept of a CRS. It is inter-
esting that one encounters in Proof Theory also CRS's which have a variable-
binding mechanism other than the usual one in A-calculus: namely, in the
normalization of Natural Deduction proofs. Finally, let us mention that
there are recent foundational studies by Feferman in which certain syntac—
tical properties of extensions of A-calculus are relevant.

We conclude that CRS's arise in a variety of fields and that the study

of their syntactical properties is worth-wile,



Restriction to syntax, Cur restriction to syntactieal investigations, as
opposed to semantical considerations, is born solely from iimitation and

is not by principle., Recently, D. Seott, G. Plotkin and others have origi-
nated a model theory for the Ai-calgulus and extensions therecof; by means of
this one can obtalin in a fast and elegant way some results which regquire
mauch labour in a syntactical treatment. E.g. the consistency of An & Sur-—
jective Pairing.

We de not feel however that the availability of the powerful modeltheo-
retic methods lessens the usefuliness of Church-Resser proofs and related
syntactical thecrems. The reason is the well-known fact that the (sometimes)
tedious work of syntactical investigations yields longer proofs, but also
more information. We mention a typical example above: model theory yields a
beautiful proof of the consistency of in @ 5.P., but the much lenger proof
which will appear in NE VRIJER [ 80] yields not only consistency, but also
conservativity of An @ S.P. over in. {(ARnother reason is that the models of
Plotkin and Scott, only bear cn extensions of A-calculus and not on several
other Combinatory Reduction Systems.)

although we have occasionally allowed ourselves a digression for com-—
pleteness sake, this thesis certainly does not aim to give a survey of the
syntax of A-caleculns and extensions. For such a survey we refer to
Rarendregt's forthecoming monograph 'The lambda calculus, its syntax and

semantics',

Some history, We will now give a short sketch of the history of the subject;
for a more extensive historical introduction we refer to the introduction
in BARENDREGT [80], to the short historical survey in SCOTT [79] and to the
many historical comments in CURRY-FEYS [58].

' Combinatory Logic starts in 1924 with SCHONFINKEL [24]: ‘uber die Bau-
steine der Mathematischen Logik'. Schonfinkel tries to reduce the num-

ber of primitive coﬁcepts in (higher order predicate) logic; in particular,
his aim is to eliminate bound wariables, His motivation: asgerting e.q.

that ¥p,q 9p v (pvg) for propositions, does not say anything about p,g but
only about ~ and V. To cobtain his aim he introdueces 'combinators' I,K,8,B,C,
'defined’ by Ix = x, Kxy = x, Sxyz = xz2(yz), Cxyz = xzy and Bxyz = x(yz).

(§ and K alone are sufficient, as Schiénfinkel remarks.) Schdénfinkel then
_proves in an informal way that every formiia A(xl,...,xn), with free vari-
ables & {xl,...,xn}, in higher order predicate legic (where quantification

over predicates and over predicates of predicates, and so on, ls allowed)



can be rewritten as a term Mxl...xn where M is built by application from

the combinators and an 'incompatibility predicate' U defined by

UPQ = ¥x(TIR(x) v "ID(x}).

Example: Let Plg,y,f) be the formula ¥x 1{fz A gxv). Then Plg,v,L} =

= UF(Cqy) = CO{Cqy)f = BLU(Cy)yf = B(B(CU))Cgyf. Hence every closed formula
L can be rewritten as a term M built from combinators and U; it can even be
written as a term NU where N contains only combinators (not U}. So, ocmitting
U, every sentence in Schdnfinkel's higher order predicate logic can be repre-
sented by a term built from the basic combinators alone. .

Around 1928 the combinators were rediscovered by H.B. Curry, who tried
by means of a 'Combinatory Logic' to investigate the foundations of mathe-
matics. The aim of Curry's program is to use CL to give an analysis of sub—
stitution and the use of variables; and to attack the paradoxes like the
one of Russell. CL in Curry’s program is alse referred to as Illative Com-
binatory Logic, where the word 'illative' denotes the prasence of inference
rules as in predicate logic. Curry's'program does meet certain obstacles;:
Schonfinkel's naive system was inconsistent {as demonstrated by "Curry's
paradox'), and some later proposed alternative systems also suffered from
inconsistency. The foundational claims of Curry's program are not undisputed,
ef, scorT [79],

With a different motivation, a variant of CL was developed at about
the time of Curry's rediscovery of CL, namely 'A-calculus', by Church,
Kleene, Rosser. Kleene was led by the study of A-terms to his First Recur-
sion Theorem and other fundamental recursion theoretic results; A-definabil-
ity of functions was studied and discovered to be equivalent to various
other definitione of 'effective computable' functions (e.g. the one via
Turing machines}. {See Kleene's eye-witness account of this period in
CROSLEY [75]1.) Rosser demonstrated the close connection between i-calculus
and CL, and established, together with Church, the consistency of A-calculus
and CL by a syntactical argument. (The Church-Rosser Thecorem for i-calculus
and CL,}

The Church-Resser theorem yields the existence of term models of i-cal-
culus and CL. Term models of several versions of A and €L were studied in
BARENDREGT [7t]. In the last ten years there has besp a break-through in
the 'madel theory' of A-calculus and CL, starting with the models D_ and Pu

of Scott and Plotkin. These mcdels are of great importance in the semantics
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of programming languages,

Maip results, As the main regsults of this thesis we consider

(I} the introduction of the concept CRS and the development of the basic
syntactical theorems for CRS's; notably the Church-Rosser theorem (CR),
the Lemma of Parallel Moves (PM) and the theorem of Finite Developments
(FD); and

{II) simultanecusly, the generalization of a method due to R. Nederpelt
which enables one to reduce Strong Normalization proofs for certain CRS's
£5 Weak Normalization proofs, This device is not only interesting in itself,
but enabled us also to obtain the theorems FD, CR, etc.;

{IXT) the negative result that CR fails for certain non-left-linear CRS's,
e.q.

A(n) ® Surjective Pairing £ CR

AOL e D +M K cr

then X else ¥ + X| [ Cg,

then X else Y + ¥

then X else X + X

on the other hand, the positive result that e.g.

cr. @ Dm,m) > Mk CR

CL @ if-then-else- as above F CR.

{(In the positive result, CL can be replaced by an arbitrary non-ambiguous

and left-linear TRS; not so in the negative one.}

Summary. The first part of Chapter I (AB-calculus and definable extensions,
which inciude Recursive Program Schemes) is mainly deveoted to the basic
syntactical theorems of A-calculus: the Lemma of Parallel Moves, the Theorem
of Finite Developments and as a conseguence, the Church-Rosser Theorem, In
" the proofs of thege well-known theorems we make a systematic use of Iabels,
and of reduction diagrams, Since it is convenient for some applications
later on, as well as interesting for its own sake, we not only prove the
fore-mentioned theorems for Af-caleculus but for a wider class of fraduction
systemz', which we have called definable extensions of AB-calculus. The re-
sults alseo hold for substructures of such extensions; e.g. Combinatory Logic
ig a substructure of a definable extension of Af-calculus.

The method of proof of 'Finite Developments' was first used in
BARENDREGT, BERGSTRA, KLOP, VOLKEN [761; it lends itself easily to prowve FD
for other extensions of A-calculus {see also BARENDREGT [801). The use of
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reduction diagramg is new; it was independently proposed in HINDLEY [78"],
The treatment via reducticn diagrams is only a slight refinement of that in
LEVY [78]; it pays off espesially in Chapter IV, where Afn-calculus is con-
sidered.

Before proving the Church-Rosser theorem, we have collected in section
I.5 several facts, mostly well-known, which hold for 'Bbstract Reduction
Systems' and which we need later on. Typical examples are the Lemma of
Hindley-Rosen and {(as we call it) Newman's Lemma, Also a preparation is
made for a part of Chapter II, in the form of Nederpelt's Lemma and related
propositions.

In T.7 we proceed to prove another classical A-calculus thecorem, which
we have c¢alled 'Church's Theorem'. It plays a key rele in a new proof (in
I.8} of 8trong Normalization fFor typed A-calculus and some Eore general
labeled l-calculi, such as "'Léwvy's Ai-calculus'. Again the theorem is prowved
not only for AI-calculus, but for ‘definable extensions of Al'.

Sectiong I.9 - I.10 contain two new proofs of the well-known Standardi-
zation Theorem, Compared to the known proofs (see e.g. MITSCHKE [72]) these
new proofs yield a simpler algorithm to standardize a reduction. The first
proof is used in Chapter IV to obtain as a new result standardization for
Bn-reductions, and the second proof is used at the end of Chapter ITI to cbhb-
tain Standardization for some generalizations of the reduction systems In
Chapter I (e.g. for A & recursor R, if one uses the 'left-normal' version
of R)., Of all these results the strong versions are proved, in the sense of
{L&vy-) eguivalence = of reductions. (E.g. for every finite reduction R,
there is a unique standard reduction &st which is equivalent to #. This
strong versicn of the Standardization Theorem is due to J.J. Lévy.] Qur
second procf of the Standardization Theorem casts some light on the relation
betwaen standard reductions and equivalence of reducticons. As a digression,
using the concept 'meta-reduction' of reductions as in this second proof,
we prove in I.10 some facts about eguivalence classes of finite reductions.
(E.g. in AT the cardinality of the equivalence class [R'|ﬂ:ﬂﬂ‘} can be any
n = 1, but not be infinite.]

Chapter I is concluded by deriving 1In I.11 the well-known Normalization
Theorem for AR {and definable extensions thereof) and by considering in T.12
Tcofinal' reductions; the main theorem about such reductions was proved

independently by S, Micali and M, O'Donnell,.



Chapter II introduces a very general kind of reduction systems, ranging
from Term Rewriting Systems In Computer Science to Mormalization procedures
in Proof Theory. These reduction systems can be called *Term Rewriting
Systems with bound variables'; we refer to them as Combinatory Reduction
Systems. In Chapter IT we pose a severe restriction on such reduction sys-—
tems:  they have to satisfy the well-known conditions of being ‘non—ambiguous
and left-linear', a phrase which we will abbreviate by 'regular'. For such
CRS's we have proved in Chapter II the main syntactical theorems, such as
the ones mentioned above in the summary of Chapter I. (Normalization and
Standardization only for a restricted ¢lass of regular CRS's, though.}! Since
the behaviour w.r.t. substitution of CRS's can be arbitrarily complicated
{as contrasted to that of AR), it turned ocut to be non-trivial to prove the
theorem of Finite Developments, a Strong Normalization result. This ob-
stacle is overcome by a device of Nederpelt for the reduction of SN-proofs
for regular CRS's to WN-proofs. Not only for that reason, but also gince
this method seems to have independent merits, we have generalized
Nederpelt's method to the class of all regular CRS's, This is done by in-
troducing 'reductions with memory'; nothing is "thrown away' in such reduc-
tions; they are nom-erasing, like AI-calculus is. In IT.5> we generalize
Church's Theorem for AI to all regular non-erasing CRS's. Section II.&6 con-
tains a generalization of the Strong Normalization theorem for RL,lT,AHW in
Chapter I.B, to regular CRS's for which a 'decreasing labeling’ can be found
{like the types in a typed A-caloulus are decreasing labels). This generali-
zation enables us in turn to extend Lévy's method of labeling to all regular
CRS's, and to prove the corresponding SM-result (this is only executed for
TRS's, l.e. CRS's without substitution, though). As a corollary we obtain

Standardization and Normalization for some 'left-normal’ regular CRS's.

Whereas in Chapter I and II we considered only regular CRS's, we deal
in Chapter IIT with éame irregular ones, namely with some non-left-linear
CRS's; i.e, in a reductien rule scme metavariable in the LHS of a reduction
rule occurs twice, as in DX -+ X. {Except for the case gf 'Surjective Pair-
ing' we do not consider ambiguous rules; for results about ambiguous TRS'S
we refer to HUET [78] and HUET-OPPEN [801.)

Non-left-linearity (we will omit the word 'left” sometimes) of the re-
duction rules turns out to be an obstacle to the CR-property: in a non-
linear ORS which is 'strong enough', the CR-property fails. This is proved

for some non-linear extensions of A-calculus (or Combinatory Leogi¢), thus
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answering some guestions of €. Mann, R. Hindley and J, Staples negatively.
Although the intuition behind these CR-counterexamples is easily grasped,
the proof that they are indeed sco requires seve:al technicalities, In an
Intermezzo we expand this intuition using'the well~known 'BOhm-trees', a
kind of infinite normal forms for terms.

In ITT.3 we have ccnsidered for these non-linear systems for which CR
fails, other properties {which are otherwise corollaries of CR} such as
Unicity of Normal forms (UN), Consistency, stc. Even though CR fails, UN
does hold for the systems considered,

In ITT.4,5 we prove CR for some restricted classes of non-linear CRS's.
Most notable is a positive answer to a guestion éuggested in O'DONNELL [77] :
Does CR hold when the non-linear trio of rules ()

if true then X else Y =+ X

if false then X else Y > ¥

if X then ¥ else Y +~ Y
iz added to a regular TRS?
This 1s seemingly in contradiction with our earlier CR—counterexample for

CL ® B where B is a constant representing the branching operation ahove,

having the rules

Brxy = x, Bixy -+ ¥, Bxyy + v.

The explanation is that cL @ B # CR, but CL & B{-,-,-) F CR, where the

notation B(-,-,-) means that B has to have three arguments (i.e. B cannot
occur alome). In the formulation of (%) a&s above this is similar, and so

O'Donnell's question can be answersd positively.

Chapter IV, finally, is not related to Chapters II, ITI, but considers
ABn-calculus. Via a new concept of 'residuaml' for 8n-reductions (for which
the lemma of Parallel Moves holds, in contrast to the case of the ordinary
residuals) we prove the Standardization and Normalization theorem for ABn,
thus sclving some questions of Hindley. Here we profit from the concept of
'reduction diagram' and from our first proof of the Standardization Theorem
for AB in I.9. Also an extension of the result in I.12 about cofinal reduc—

tions is given,
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INTERDEPENDENCE OF THE SECTIONS

The interdependence of the sections is as suggested by the following tree,

V.6
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IV.5
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T.1131.10
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Y
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Iv.1 _
o
1.7
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CHAPTER 1

AR-CALCULUS AND DEFINABLE EXTEMSIONS

1. LAMBDA TEBMS

1.1. The alphabet of the l-calculue consists of symbols Voo for all 1 ¢ B,
brackets { } and . From this'alphabet the set Ter{l) of A-terms is in-

ductively defined as Ffollows:

{1} vi e Ter{A) for all i ¢ W {the variables)
{(ii] A,B € Ter{iA) = (AB) ¢ Ter{}} {application)

{1ii1) A & Ter{i) = (kviA) £ Ter{i} for all i € W . (i-abstraction)

If in (iii) the restriction is added: "if v, occurs as a free variable in
A" (see 1.3 below) we get the set Ter (AI) of AI-terms.
Sometimes we will consider A-terms plus a set of constants C =

{o,A,B,C,...}. In that case we change Ter(})} intoc Ter (AC) in the above

clauses and add
(0} X ¢ Ter{x for all X € .

1.2. Some notational conventions will be employed:

(1) the outermost brackets of a term will be omitted;

(2} we will use a,b,c,...,%,¥,2 as metavariables for vo,vl,..- '

(3) instead of e.g. Ax(xx) we will alsc use the dot notation Ax.xx, and
instead of Axx or ixy we write Ax.x resp. Ax.y;

(4) & number of brackets will be omitted under the convention of associztion
to the Ileft; that is if 4,4 ,...,An € Ter (k) then & 2

i’ 172
((---(((913.2)1;3)1\4]...]3\1_1);

...An abbreviates

(5) for a multiple A-abstraction kxi(kxzt...(lxn.a)...)) we will write

kxlxz...xn-ﬁ. {The Xi(i =1l;,...,n) will be in practice pairwise dis-

tinct, although e.g. Axx.xx is a well-formed term. See 1.6.)



1.3. Let % be some variable and M € Ter{i}. Define ¢x(M) by induction on

the structure of M as follows:

)y o (x) ==z and ¢ () =y for % 7 y.
(i1} ¢X(AB) = {¢XA)[¢KB)
{1ii} ¢X(AR.A) = Ax.A and ¢x(ly.A) = hy.éxh for x E v.

EXAMPLE. ¢X(ly.xx{(hx.xx}(yx))} = Ay.xx({Ax.xx) (yx}}. So ¢x underlines some
®'s In M; namely the free occurrences of x in M. Let @X(M) be the set of
those occurrences, and define the set of oocurrances of free variables of

Mz
FviM) = U & (M),
XeVAR
-where VAR is the set of variables. an occurrence of x in M is called bound

when it is 4 FY(M}. M is a ciosed term if FVI(M)} = §.

1.4. For every variable ¥ and N ¢ Ter(A) we have a substitution cperator

g = [ := W], a mapping from Ter(i) to Ter(A), defined inductively as fol-

lows:
{i} Gxtx) =N and cx(y) =y for x Fvy
(ii? o {(aB) = (o A) (o B)
x x X
(iii) Ux(lx.A) = Ax.A and Ux(ly.n} = ly.UXA for x Z v.

So the mapping O = [x:=N] substitutes N for all the free occurrences of x
in M, as is seen by looking at the parallel definition in 1.3.
Note that our substitution operator also yields 'dishonest' substitu-

tiong like
[x:e=yyl(hv.yx) = hy.v{vy)

but that is intentional; see 1.5 below.

1.5. Contexts., Consider an extra constant O and the =et Ter(i{n}} as defined
in 1.1, The constant O is intended to be a 'hole’; so a term ¢ Ter{i{o}] is a
A-term containing some holes. We will only need i-terms containing precisely

one hole; they will be called contexts, We can alse define them inductively

as follows:



(i) 0 is a context (the trivial one)

{ii) if & £ TPer(A) and B is a context, then (AR) and (BA) are contexts

(iii} if A is a context, then Ax.A is a context.

We use the notation €f ] for a context. If M ¢ Ter()), then ¢[M] = [D:=M]
¢l 1, where it is obvious how to @efine [0:=M], Here variables, free in M,
may become bound in ¢[M], M is called a subterm of N = €[M]}; notation M £ N.
We will also write 's ¢ N' for symbols s (i.e, variables or A or brackets)

occurring in N, Note that v ¢ Ax.y and y g-lx.y, but v £ Ay.x and v £ Ay.x.

1.6. o-reduction. Expressions which result from each other by renaming bound
variables should cbviously be ldentified, for instance in calculus

1 2 1 3
f xdx = IO y dy, or in predicate Iogic Jx.A(x) = Jy.aly). Therefore:

o
let A%.A ¢ Ter{i) and v ¢ Ax.A. Then we define a~reduction E+ as follows:

clix.al = cliy.Ex:=v]al for every context €[ 1.

Let Eu denote the equivalence relation ('o-conversion') generated by a+.

1.7. While o-reduction iz a mere technicality, B-reduction (7?) which we
are going to define now, is the basic concept of A-calculus.

Terms of the form {(Ix.R}B will be calied f-redexes and in view of the
intended interpretation of l-terms we should like to replace such a B-redex
by [x:=B]A. However, consider the following seguences of such reductions

{i.e. replacements):

{(Ax.xx) (Aab.ab)
AAS AN

!

{Aab.ab) {(Aab.ab}
AR NuEA

!
lb.(lab-ab)b Ea Ab. {lac,ac)b
1?? Ny AA l LA

A = AR.(AB.BB) B = Xb.{rc.bg)
N N

Now, if our formalism used arrows, as in the example, to denote 'bindingf
of variables x by abstractors Ax, then the terms A,B (plus arrows) are
syntactically esqual and no harm is done in the step 32*1 but it is implicit
in the definition of "free and bound’ that a variable x is bound by the

nearmost AX. Hence Ab.(Ab.bb) Is to be interpreted as Ah.{3b.bb) - and



s0 the step Ezﬁ'was SYYONEOUs.,

This leads us ko postulating a condition on f-redexes, for the wmoment
anly:

{Ax,A)B iz unsafe if some variable y(Zx) is free in B and A has a sub-

term Ay.C containing x as free variable.

Now we define one-step B-reduction by the clauses:

{i}y if (Ax.A)B is a safe f{i.e. not unsafe) B-redex and €[ ] a context, then
cl (xx.B8)EB] —B—> €[[x:=BJa]

(ii) if M Eu M —E+ N Ea N for some M', W', then M —§+ N.

There are several other ways to get around the a-conversion problem; in
BARENDREGT [717 an almost similar method is used; another way is to define
[x:=M] such that a-reduction is built in to prevent confusion of variables
{but note that in [D:=N] we intended that variables could be 'capturesd'!};:
a third method is to work, in one way or another, with arrows like above
(see also DE BRUIJN [72]).

Henceforth we will forget everything about ¢-reduction. Instead of Eu
we write just = for syntactical equality.

Let R = (Ax.A)B and R" = [x:=BJa. Then the step €[R] —§+ C[R'] is
called a contraction of R, and R" iz the contractum egquality.

We will often omit the subscript B and write just M -+ N, When we want
to display the contracted redex R we will write M —§+ M.

The transitive reflexive closure of ~— is denoted by —» . The eguality
{egquivalence relatien) generated by > is called convertibility and written
as =g or=.

Note that from the definition of — it Tollows that for all terms

B

a = B = ¢lal] —= glg]
B =8 = cfal = ¢lrl.

B sequence of reduction steps is mostly denoted by f {plus subscripts

etc.} a.qg.

=M M > ...FM.
0



although it is a slight abuse of notatien we sometimes write also

1.7.1.

& =M. —> M .
MO i Mn

REMARK, We will refer to the 'reduction system' AB-calculus, con-

sisting of the pair <Ter(A}, -+, also as A-calculus or even A without

more.

4

Likewise the reduction system AI-calculus <Ter{iI), —> will be re-

I

ferred to as AI.

- In section 5 we will consider 'abstract reduction systems' <A,*> where

& is some set and —+ a binary operation on A; in Chapter IT we introduce

'combinatory reduction systems', generalizing h-calculus.

1.8. ADDITIONAL NOTATIONS

{1}

(ii)

(iidl}

{(iv}

Instead Df+}31...xn. A we use sometimes the vector notation RZ.A:
Likewise MN for MNI"'ND'

In R = (Ax.A)B we call ix.A the function part of R and B the argument
of R.

Simultaneous substitution. Let ; be Xl,...,xn and let na xi be free

>
in B = Bl""'Bn' Then the result of the n reduction steps
-+ -
(Ax.A})B —» Lz :=B 1...[x,:=B 1 a =cC

can be seen as (and is in fact defined as) the simultaneous substitu—

tion of Bl,...,Bn for xl,.-.,xn in A. We will write

._.,Bn]n.

Hote the difference with the seguential substitutign;

lyn.(—---(lyz.(kyl.ﬁlsl}ﬁz—--}ﬁn 2

[yn:=Bn]...[y2:=B2][y1:=B1]A,

where yi+1,...,yn may be free in Bi (i =1,...,n1-1},
We often employ the usual convention of writing A(Bl,...,Bn) instead
of [xl,...,xn 1= Bl,...,Bn}A, after a preceding declaration of the

variables for which one has to substitute:



"ILet A = A(xl,...,xn)", or implicitly as in:
{Axy.nix,vVIBC —» A{B,C).

Mote that such a declaration does not say anything about FV{A}, unless ex-

plicitly stated otherwise (as in 1.10).
1.9. NORMAT, FORMS

1.2.1. DEFINITION. A A-term M not containing redexes is called a normal
form. (Or: M is in normal form.)
Notation: M e NF.

Chvicusly, the goal of reducing a term is to reach a normal form, as a
.'final answer' of the computation. However, not every term can be reduced

to a normal form. The simplest example is the term §@ = ww where w = Ax. X¥;

then

-0 =0 ...
and this is the only possible reduction. For other terms it depends on the
chosen reduction whether or not the term ‘normalizes'; e.g. abbreviating

K £ dlxy.x and I T kx.x we have the infinite reduction
EIfl -~ KIR - ...

but also
K1t - » I, a normal form.

1.9,2, RPEFINITION,

(i} ™ hags a normal form < IN ¢ ¥NF M —=> N,

Instead of 'M has a n.f."'" we will alao s=ay:

M is weakly pormalizing. Notation: M ¢ WH.

{(iii) M is strongly normalizing +« every reduction of M must terminate even-
tuaily (in a normal form).

E.g. KIR £ WN - SN.

Here the question arises whether a term ¢an have two distinct normal

forms. Fortunately this is not the case: 1If a term has a nf., then that



nf. is pnigue, as we will prove later.

1.10. COMBINATORIAL COMPLETENESS. Let A{Xi""'xn) g Ter{i) be a term with
frae variables xl,...,xn. Then it isg not hard to find an F ¢ Ter{i) such

that

FXp e % = ALK, o0auX ). (1)

One gimply takes F = lxl-..xn. A(xl,...,xn); then (I} holdg {even with =
replaced by —=}.
We say that A-calceulus satisfies the principle of 'combinatorizl complete-

ness', (In the system CL of the next section this pringiple is less tvivial.)

1.11. FIXED POINTS. Surprisingly, every a-term {when it is considered as a

function Ter(A)/_ — Ter(A)/ _) has a fixed point:
¥E dX FX = X.

It is even possible to find such an X in a uwniform way; that is, there is

an ¥ ¢ Ter(A) such that

YF  F{¥F)
f{¥f)

il

¥F, or equivalently,
Y for a variable f.

]

We will describe how to construct such an Y. Let us try to find a term QF,

containing F as subterm, such that BF — FQF. Suppose that RF mFmF,
where the first W, is meant to 'act' and the second W serves for the re-

construction of the original W+ Sor W, — F(meF), which leads fo re-
-
quiring wy x > Flxx}. R G

e — 7

Therefore, take: wF T hx_F{xx). Hence we can take

Y = lf.mfmf = AfL{Ax.f () (Ax.E(xx)).

The term Y is Curry’s fixed peoint combinator. Using a slightly different
construction we find Turing's fixed point combinator YT which hasg the tech-

nical advantage {(not shared by Y) that

YE F(YTFJ w Y F



For, suppose as above ¥, = 88. So 8OF — ¥F(00F); hence we try to find 6
S 7

such that ~___:¢f”

gxF »» F(xxF). Thus take 6 = Axf.f(xxf) and

YT = (Axf.E(xxE)) (AxE.E(xxf)}.

In a similar way everybody can construct his own fixed point combinator T:
by requiring I = yy...y (n 2 times) and proceeding as above, it is not
hard to see that every cholce

ha a f.E(wf)

2" ""n-1

-
]

-
il

where w is an arbitrary word over the alphabet {al""'an~1} of length n,
vields a fixed point combinator T.
Sometimes it is convenient to have a fixed point combinator with

-
parameter{s) P = P -.-,Pm: for example

1!
N

B > > > > >
YT = (Axpf.f{xxpf) ) (Axpf _flxxpf)P.

an amusing way of deriving new f.p. combinators from old ones is men-
tioned in BOHM [66] (or see CURRY-HINDLEY-SELDIN [72], p.156): to find a
solution ¥ for Yf = £{¥£f), or squivalently for ¥ = LAyf.£{yf)]Y, amounts
to the same thing as finding a fixed point of Ayf.f(yf).
Hence: if ¥' is a f.p. combipator, then ¥" = Y'hyf.f{yf) is a f.p. combina-
tor. In this way one gets starting with (say} Curry's ¥, an infinite se-
quence of f.p. combinators. Notlce that YT is the second one in the seguence.

fOne can prove that they are pairwise inconvertible.}

The main application of fixed point combinators is that we can "define"
a texrm X in an impredicative way, i.e. in terms of ¥ itself; that is, every

equation in ¥ of the form X = A(X), has a solution, namely X = ¥ix.A{x).

And if YT is used one has even: X w2 B(H).
an example of a simple application: let P and H be such that

P o——— Aix.P(xF) and H — Ay.H. Then PH —» P(HF}

= PH —% ...
(P produces food F for the hungry H.)
Finally, let us mention that it is straightforward fo generalize this

to the case of n 'eguations' in X _,...,¥ as follows:
n

1



XI —e Alt}(i,...,xn}

o ‘ xn — Rn(xl Fewa 'Xn} .
(Multiple Fixed point theorem)

PROQF. For n = 2: define <M>» := Az.zM and the pairing <M,N> := iz.zMN, where

£ is not free in M,N. Then <K> and <KI», where K = Axy.y and I = ixz.x, are

the corresponding unpairing coperators (write <K>A =: AO and <KI»A =: Alk:
<M,N>D — <M,N>K =~—* KMN -—3> M
<M,N)1 — <M,N>(KI) —> KIMN —*> N.

Now to solve

X — A(X,Y)

¥ — B{X,Y)

it suffices to find a2 2 such that 2 — <A{ZO,Z1}, B(ZO,le}, which can

easily be done: take 2 = YTAZ.<A(ZO,21}, B{zo,zijb. Finally, take X = 7

and Y = zl‘ £l

s,

REMARE. For another proof, working also for AI-calculus (in contracst to this

proof), see BARENDREGT [76].

REMARK. The multiple fixed point theorem alsoc holds for an infinite system
% of reduction 'equations' if ¥ is recursively given. This requires the
deeper result of the representability of recursive fupctions in the A-cal-

culus. See BARENDREGT [71].
1.12. DEFIMABLE EXTENSIONS

1.12.1. DEFINITIONM. (i) Let the alphabet of A-calculus be extended by a set
P = {Pi | 1 € I} Of new constants and let Ter (AP) be the set of 'AP-terms’
as defined in Definition 1.1,

Furthermore, let J £ I and let for all i ¢ J a reduction rule be given

of the following form:
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P.X . —+Qi(x1,...,xn R

i i I Jmy

For all Xl,.-.,xn ¢ Taer (AP). Here n, = 0, and the Q, are AP-terms contain-
; i i
i

ing some of the meta-variables xl,...,xn {possibly nonel, but noe cother

meta-variables. The Xl,...,Xn. must be p;irwise distinct,

Then the reduction system consisting of Ter (AP} and as reduction
rules;: B-reduction and the Pi—rules {(i2J), is called a definable extension
of h-calculug., We will refer to it as "ApP-calcwlus'.

{ii) Terms of the form Pixi"'xni fied) are called Pi—redexes: n, is the
arity of the Pi—redex. Constants Pi where i ¢ J are called inert constants

{they do not exhibit any activity since there is no reduction rule for them).

1.12.2, REMARK. (i} In Chapter III we will consider reduction rules without

the restriction that the meta-variables X ,Xn he pairwise distinct.

AT ;
{il} The reason for this terminology is that (if I is finite) by virtue of
the combinatorial completeness and the (multiple] fixed point theorem, we
can "solve" the set of "reduction-eguations with unknowns Pi"; that iz we

can find A-terms Pi and B-reductions

i =P x, ...x
i i n

. 5 =4 Qi(xl,...,x P T I

i nyoY J

If I is infinite, we will in general not he able to find defining re-
ductions ﬂi, but by a slight abuse of termincology we will also call such

extensions definable (anyway, each finite part is definable).
EXAMPLES. 1. A-calculus + {P,F} and tv — DM for all M e Ter(MD,FH. D
is an inert constant.

2. A~calculus + {P} and PaBc -+ P{aC)B for all a,B,C. P can be defined by
e.g. P = YThpabc.p(ac}b.

These two examples will play a role in the seguel.

3. Bn arbitrarily chosen example: A-calculus + {P,3,R} and the rules

Papc — AP(ac®)
Oa —+  Ax.xaPR
RaBcp — AC(Pix.x{)aR
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1.13. REMARK. The definable extensions of A-calculus are closely related to
Recursive Program Schemes {RPS); sce LEVY-BERRY [79], mawwa [741. In the
theory of RPS's we have disjoint sets F = {fl,...,fm}, the basic Function
symhcls, standing for 'known' functions, and © = {¢1,-..,¢N}, the unknown
function symbolg. Each fi and ¢i has an arity p(fi}, resp. p(¢i} = 0.

Now a recursive program scheme T is a system of eguations

¢i(X1,---,xD(¢i)) Ty (i =1,...,N},

where the Ti are terms built up in the usual way frem symbels in F, @ and

variables x, ,..-,X

1 0(¢i}

EXAMPLE.

¢1(x} = fl(x,¢1(x).¢2(fo3)

[
14

¢2(x;y} = f2(¢2(x,x},¢1(f3}).

The connection with definable extensions AP of d-galculus is evident. (Re-
plagce in & '=' by '—'.}) The basic function symbols fi are what we called
in 1.11 'inert' constants Pi' the unknown function symbols are the remaining
Pj in P. The definable extensions are slightly more general, syntactically
speaking, than the RPS's since in AP also A-terms occur and since in an

RPS an n-ary symbol ¢ has to have n arguments: ¢(t1,.-.,tn}, whereas in

AP for an n-ary P also PMI' PMle,.. are well-formed terms (see the examples
above) .,

1.14. REMARK. Since almost everything in this Chapter will prove to hold

for definable extensions, it will hold also for RPS's (anyway in this simple
version, where the only operation is substitution of unknown function sym-
bols). Almost all of these results for RPS's were obtained already in LEVY-
BERRY [79]; but in the sequel one finds some alternative proofs for some

of these facts (FD, standavdizaticn}.

2, COMBINATORS

2.1. We will now introduce a system called Combinatory Logic, ox CL, which
is closely related to A-valeulus. The main difference is that CL is vari-

able free. The CL-terms or combinators are puilt up from the alphabet
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{¢,y,I,K,81 as follows:

tiy I1,K,8 € TericL)
{(ii) A,B ¢ Texr(CL) = (AB) ¢ Ter(CL}.

Just as before we will admit meta-variables A,B,C,..., ranging over (L-
terme, in a meta-CL-term. &gain, we use the convention of aggociation to

the left.

2.2, Reduction in CL is generated by the rules

[i} In—n
(iiy Kap — 2

(iii} SABC —— aC(BC)

for all CL-terms A,B,C. Here 'Qenerated' MEANS ;
A— B = ¢lal — ¢lB]

for every context € 1. Contexts €[ I are defined as in *—calculus, see
section 1; and the same for =z, —» , =,

Terms of the form Ia, KAB, SABC are called (I-,K-,5-) redexes. Again
a term is a normal form (nf} iff it contains no redexes and has a nf if it

reduces to one,

2.3. REMARK. One may also take §,K alone as basic combinators for CL, since

I can then ke defined: I = SKK. For, then [a = SKKa — Ka(Ka}

* A, For

several other bases for L, see CURRY, FEYS [58].

2.4, REMARK. Call a combinator 'flat' 1if it has no visible brackets (under
the usual convention). E.g. STSSSIT.

One can prove that all flat combinators built up from S8 and K, have a
normal form (moreovef they are strongly normalizing). If the combinator T

is included as well, this does not hold:

SISSSIT —
18(88)8T] —
S8 811 —
$318NT —
SESHISINT —
SENENHT —
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STT(SIT) ——»
STTy (T (SIT)Y —
STIC(I(STTy)

2.5. INTERMEZZO. The connection between reduction in h-calculus and CL.

This subsection, in which =ome terminalogy from the seguel is used,
is only needed in Chapter ITI.

Usually cne includesz variables in the term-formation of CL-terms. This
may seem a bit odd after claiming that €L is the variable free version of
A-calculus. The reason however is that the variables are needed to demon-
strate the connection between A-calculus and €L, namely to define abstrac-
tion [x] as an analagon of ix.

We will give a slightly different treatment, in order to show haw far
the correspondence between reduction in CL and reduction in A-calculus

reaches.

2.5.1, DEFINITION. A8 + CL is the definatle extension of A-calculus obtain-
ed by adding §,K,T plus their reduction rules (as above). By &7 we denote
the contraction of an 8-, K-, T-redex. Moreover we add a reduction rule,

called 'translation', written e defined by:

(i} Ax.xm ﬂ?_-"-—:r 1
(11) 2x.B ~> K 1 x € FV(B)

(1ii}) Ax.BB “¥+ S{ix.n) (Ax_B) if the previous rules are not applicable.

EXAMPLE. (Ax.xx) (Ax.xx) e SO (Ax.x) (Ax.xx) puagiaes SIT{hx.xx)<":*
SIT(SI1y.

It is routine to prove that S is strongly ncrmalizing and has the
Church-Rosser property. Hence every texm M in Af + CL has a unique T-normal

form, called T{M).
A more economic varlant of v, called 1', is obtained by changing T

inte 1' above and inserting between (1i) and {iii) the rule
{(ii)!' Ax.Bx “?&'A 1f x ¢ FV(A).

24 comparison: tT'{Axyz.xe{yz)) 2 S while T{Axyz.x=(yz}} =

S(SKS) (S(KK) (S{KS) (S(SKS) (SKK)TY ) (KT) 33 1 (S{SIKS) (S(KKY T3y (KDY



Unfortunately it is not sc' that M —§E>N = T{M) HEEE‘T{N).

EXAMPLE.

M o= Tx.(ly.y)(xx) e SKIY(STIT) = T
v
N = Ax.®x ey SIT = t(m).

The problem is that the reductions =  and — or ——— 'interfere' {are

Teiiid B CL

ambiguous) in the sense of Chapter II; for consider

Ax.{lv.A(y))B et S(Axy.aly)} (Ax.B)
|
g [

i
Ax.A{B} - - - -7

Another source of trouhle is demonstrated in the following example:

Ax.c[KaB(x) ID R S{ax.clraB(x} 1) {ix.D)

lCL
CL

Sthx.efad) (3x.D)
?[K@[ZA}) (KD}
ax.el{alp M;na- K{clalpy--i7

where the context €[ ] and the terms A,B,D are arhitrary but such that x

occurs only free in B.

Lat us remove the cause of this trouble by defining:

a (- or CL-)redex R occcurring in M ¢ AB + CL is safe iff R does not

coour inside a subterm Ax.2A of M.

{ii) A {B- or CL~)reduction in A8 + CL is safe 1ff only safe redexes are

contracted in it.

MNow we can state the following fact:

£
2.5.2. PROPOSITION. Let A,B,C ¢ AB + CL be such that & %c%ﬂ C and
, £ '
T“~~» B. Then there is a D such that E-——-§§E§-4& b and € ““Qf“ﬂb Ir.
r

Likewise for T1',
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In a diagram:

.; safe
8,CcL
C

where the dashed or dotted arrows have the usual existential meaning.

safe
R,CL

T
Yo al

¥
g e

PROQF. Tt is sufficient to prove the proposition for the case that A ~re B

is in fact one step. Since the proof is tedious but routine, we will sketch
it only.

In case the step A ~¥~? B is by clanse (i}, (ii} {or {ii}"' for t'} of

the definiticn of t{v'), (1) follows easily since then (say for clause (i}):
A . e B and now (1) is a direct con-
£ i fe
Z?Ci (1) =2 E?Cz sequence of the fact that the
+

right side of this "elementary

¥
\.1(
=]

r(i} diagram" does not split into

more steps.

In case A ey B is by clause (iii), we claim: YABC3ID

l

T,. . from which {1) also follows.
(iii}
safe

B,CL

zafe
g ,CL

O ——

o

i)
If &2 ~C is a CL-step, the ¢laim iz easy to prove.

If A+~ Cis a B-step, say that R is the contracted redex. Underline the

head-A of R with - , and underline the head-i's of the “T(iii)—redexes"
AX PG with ~

Case (a). The symbols and  are disjoint. No problem.

Case (b). Else, perform in the reduction A ~+ B first the T{iii)-

contraction of the Ax.FG T =radex.

(Lii}
Then we have the following situeation:
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A S —— {A.FGIH—— ~wrwr - 83 F} (AX.G)H-— rrwewds §
= T, ..
(iii) {iii)
E,safe CL,zafe CL,safe
+ Bf=——(Ax . F)H({ [’x .S} H} —~rr—e3-R"
jE T(J'_ii?lB.safe
ya
C = -—FHI{(GEH))-— = --F{HE)(G(H))=- ;HAW»D
dii}

The completion of the diagram as shown, gives no problems, since the two
new f-steps are in the easy case {a) w.r.t, the -~ —reduction from B' to

- Taii)

The safety conditien is easily checked. [

an example of safe reduction is head-reduction, i.e. the redex to be
contracted occurs at the head of the term. (Leftmost reduction, i.e. con-
tracting the redex whose head-symbol is lefimost of all the redexes, is not

always safe however.} So e.g. the reduction YTM — M(YTM} 'translates well',

8

since it is a head-reduction, into T'{Y M) —— T‘(M(YTM])- Herea T'(YT) =

T CL
[SK(STY Y (SITYILS(K(STH (ST T.
Prom the previous propesition we conclude at once the

2.5.3. THEOREM (Combinatory completeness of CLJ.

Given a ‘'‘meta-CL-term' M(Al,...,hn) in which meta-variables Al,.--,An SCour,

one can find a Cl—term N such that

NA, A oL M(Al, ,An}

PROOF. Let W' € AB + CL be Rxl...xn.M(xl,...,xn}. Then obviously N‘Al...A

— M(Al....,An] by a head-reducticn for all &

g L

Hence by the proposition (since head-reduction is safe}:

..-sB € CL,
n

' Ee—— [ = Fewn .
T (N Al An) oL T{M(_Al, An}} M(Al ,An}
The last identity is due to the fact that M is a (meta) CL-term, so {con-
taining no A's) a T-normal form.

Now take N

TN', then T(N'Al...An) = NAi...An and the result follows. [
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2.5.4. REMARK. (i)} In the other direction, the translation is easy: let for
a CL-term M, MA be the result of replacing I by Ax.x, K by ixy.x and S by
ixyz.Xxz{ye). Then obviously

M_MTET_» M' = I%f_??_» !
{(ii) If M is a CL-term having a normal form, or even in nf, it does not fol-
low that the A-term M;,l has a nf too.
Counterexample: M = S{Kw} (Kw)} where w = SII.

This is not due to the erasing-nature of K; in the non-erasing variant
CLI of CI, (which is to CL what AI-caleculus is to A-calenlus) based on the
primitive combinators {I,5,8,(} where Bxyz — %(¥zZ) and (X¥%Z — XZY, one

has similar counterexamples, e.g. B{{lTw} (Cw)} ana S({T¢CIw)) (Cu).

One gets a better correspondence between A-calculus and CL by consider-
ing convertibility '=' instead of reducticn and by adding extensionality
('n-reduction'). Further, a still better correspondence is obtained by de-
fining the so ecalled 'strong reduction' in CL. See CURRY-FEYS [58], CURRY,
HINDLEY, SELDIN [721, HINDLEY, LERCHER, SELDIN [72], STENLUND [72] and
BARENDREGT [80].

3. LABELS ANLD DESCENDANTS

3.0. INTRODUCTION

There is a clear intuition of symbols being moved (multiplied, erased)
during a reduction; so we can trace them. This gives rise to the concept
of 'descendants' which we intvoduce by means of a A-calculus in which sym-
bols can be marked (by scme color, say) in order to be abhle to keep track
of them. Thisg is done in 3.1 - 3.3, and for definable extensions AP in 3.4.
Then we introduce 'underlining® in 3.5. Up to there, the markers (or labels)
do not affect the admissible reductions since they are merely a book-keeping
device.

This is different however in the remainder of this section: there the
labels do affect the allowed reductions. In 3.6 we introduce 'developments',
in 3.7 the AHW—calculus of Hyland and Wadsworth, in 3.9 the XL-calculus of
Lévy. At the end of this section all these systems with some of their re-

lations are brought together in a figure.
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3.1. DEFINITION. Let M ¢ Ter(A) and let A be some set of symbols, called

labels or indexes. Then Ter(lA} iz defined inductively as follows:

(i) %2 e Ter(AA} for all variables x and all a'¢ A
(i) A8 e Ter(h) = e 2 e Ay for all a ¢ A

(1i1) & € Ter(i,) = (x.a) 7 e Ter(i;) for all x and all a ¢ A,

A term A € Ter(lA) will sometimes by written as MI whare M is the A-term
obtained from A by erasing the labels and I: Sub{M) + A iz the indexing map
(or Iabeling) corresponding to A. Here Sub (M) is the szet of occcourrences of

subterms of M,
EXAMPLE (in case A = IN):

7 8 2 2 37
| P U R R R

I
Instead of leocking at M as a A-term whose subterms are labeled, one
can also consider I as an indexing of the symbols of M:

I

M- = Ax

t { {(zxx}) Jty=z))
374 4 207 820421 0 237
such that matching brackets get the same label and an abstractor Aix gets
the same label! as the 'corresponding' hrackets. The (psychological) adwvan-
tage iz that Sub(M) is partially ordered (by =) while Symb{M), the set of
symbol-occurrences, is linearly ordered.
If A= M, we can identify 'label 0' with 'no label'; thus we ocbtain

also partial indexings.

Scmetimes we will write the A-labels as superscripts, sometimes as sub-

scripts.

3.2. LABELED R-REDUCTIQON, Our first use of labels will be: tracing subterms

{or symbols) during a reduction. Consider the B-redex MI above which serwved
as example, and view the labels as if they were firmly attached to the sym-
bols. (8o we can conveniently visualize the labels as c¢elors.) Then it is

almost obvious what the labeled contractum of MI should he:

{ {(yz2){yz))
2021022102 20
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The 'almost' i1s because it reguires a moment of thought to see that the
outermost brackets must have label 20 and not 37 or 4.
It is now obvious how to define labeled B-reduction, notation ——

B4

b
((Ax.8)7B)° — [x:=Bla
for all Ter(lA}—terms A,B. Here substitution v = [x:=B] is defined by

U{xa) = B, o(ya} = ya for v ? x
o(aB)® = ({oa) (oB))"

G {Ax.A)% = (Ax.ca)>.

This 'reduction system', conzisting of the set of terms Ter(lA) and reduc-

tion rule BA, will be called AA-calculus.

' R
2.3. DESCENDANTS. Consider M ¢ A and a B-reduction step # = M — N. Let
I: Sub{M} —* A be a labeling of M. Then, obviously, ® and I determine in

T R
— NJ for some labeling J of N

a unigue way the BA—reduction step & = M
(simply by contracting the 'same' redex R, but now alsc taking cars of the
lahels).

Now let I be an initial labeling, that is: labels of distinct subterm
occurrences are distinct. (8o let A be infinite.) Define for all symbol oc-—
currences s,t £ M and for all subterm occurrences 5,T € M the following re-

latjon:

s—.~.*t 1ff J{(s)} J{t)

Se.—.T iff J(S)

J(T).

In case R consists of several steps, § = M — N, we write 5-.-.-» t resp.
S-.~.% T. We say that s descends to t, or that t iz a descendant of s, or

that 5 is an ancestor of t; likewise for S and T.

3.3.1. REMARKS.

(i) Let M ~B+ N. Then the redex B = (Ax.AYB has no descendants in N. The
same holds for (Ax.A) and the x's free in A.

(ii) Descendants of a redex are often called residuals. Note that resi-

duals are again redexes.
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{iii}) Notice that 1f M -~ N (M,N=}) and A = M, then the descendants Ti N
of A are mutually disjoint., However in the case of a many step reduc-
tion M —= N this need not be the case: see Remark 4.4.2 below.

{iv) MNote also that if & = M +...+- M' and &' ¢ M' (resp. S' ¢ M") then
5' {(recp.8') has a unique ancestor s £ M {(resp. ScM}, which will in

‘general depend on the actual reduction 8l from M to M'.
3.4. DESCENDANTS FOR CL AND DEFINABLE EXTENSIONS AP

L=t AP be a definable extension of A. Again we will derive the concept
of descendants for AP from a labeled wversion KRP)A. The definition of (RP)A—
terms is obtained from Def. 3.1 by adding to {i}: P® is a (XP)A—term for all
PepP, 2acA,

Now to each P-rule of AP,

Pnl...nh -—ﬂ-Q(Bl,...,An}

there correspond in (RP]A the rules

a =8 a a

(...((Pop.l) a) fm) t—s oA

177
for all Byrevesd € A. Note that in the RHS of those labeled P-rules no A-
labels occur (i.e, only the zero label f which is not writken); except of
courge the labels which occury in the (AP)A—terms substituted for the meta-

variables Al,...,An.

EXAMPIE. If PABC — B(PAAC) is a rule in XP, then for all a,b,c,d ¢ A the
- b .
rutes (((P'3)%8)°0)° — B(PaaC) are in (P),.

3.4.1. DESCENDANTS. Extend Def. 3.3 {(of descendants} to definable extensioﬁs

AP, using the above definition of (AP]A.

3.4.2. REMARK. From this extended definition we have at once the following

facts:

ti) like B-redexes, also P-redexes leave no residuals after their contrac-
tion.
tii)} In contrast with B-reductiom, when P-reducticons are present not every

subterm N' ¢ M' in a reduction step M — M' has an ancestor W £ M.
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E.g. in Pabc — b{Paac) where a,b,c are variables all the subterms
P, Pa, FPaa, Paac, b{Paac) of b{Paac) have no ancestors in Pabc. But if

N* has an ancestor, it is unique.

& motivation for this definition of descendants will follow now; first we

need a definition.

3.4.3. DEFINITION.
(i} Let PRI...AH — Q(A1,~..,An) be a rule in AP. This P-rule is called
“proper if P "acts effectively”™ on all the Al,...,An: i.e. for no
1
o (Al,...,An_l
E.g. PABC — B(FAA)C is not a proper rule, but

) (not containing the metavariable nn) we have Q = Q'An.

Parc —> B{Panc),
Parc — B({Paa}

Parc — BC(Pna)C are proper rules.

(ii) AP is called proper if al its P-rules are proper.

3.4.4, REMARK. Every definable extension AP can be 'embedded' in a proper
definable extension {AP)', as follows. If AP contains e.q. the improper rule
FaBC — B(PBA)C then one replaces this rule simply by the proper rule

PAB + B(PAn). Thus we obtain a proper versicn (AP)' of AP, in which we have
the same reductions as in AF plus some more (such as Pab + b{(Paa), a con-

traction not allowed in AP).

3.4.5, PROPOSITION. For a proper definable extension hP of h-calculus there
is a natural {or 'canonical') concept of descendants: namely, every defini-
tion of AP into } (by means of defining reductions Bi for the Pi € P as in

Remark 1.11.2}) induces the same descendant concept in JP.

Moreover, this canonical concept of descendants coincides with the
one in Pef. 3.4.1.
PROOF. Consider a rule PAI...AR —> Q and a defining reduction R = PAI...An
— Q! for gsome A-term P. Then it is simple to prove (using the properness
condition} that & must be in fact

= —
PAl..Hn e (hxi.MllAl...An —® {Ax -

2.M2]A2...A —

e —— ] L}
.. e (lxn.Mn)An = QY.
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{So all Ai fi =1t,...,n) are 'eaten’,)

Hence (by Remark 3.3.1.(1)) none of the terms P,PAi,Pnlﬁz,...,Pal...An
has a descendant in 0'. Sinee this holds for all the Pi—reduction rules
(Pi e P} and all defining reductions ﬁi for them, ths indured concept of

descendant is therefore the same as the one in Def. 2.4.1. [J

3.4.6. REMARK. 'The properness conditien is necessary; for consider the im-
proper rule PABC — PB(PAR)C and now define the A-term P such that

¥Yap —= PR(PAXA) for all A,8B, then in the reduction PABC —= PB(PRA}C we
have FABC -.-.-3» PB(PBA}JC. So the induced descendant concept does not satis-
fy the property that a P-redex after its contraction leaves no residuals

{and we will need that property later on, to prove the theorem 'Finite

Developments® for AP).

3.4.7. EXAMPLE. Consider in CL the rule {({SA}BIC) — ((&C){(BC)). Accord-
ing to cur definitien 3.4.1, the subterms (AC), (BC} and ((AC)(BC)) in the
RHS have no ancestors in the LHEHE, or equivalently, the displayed brackets
in the RHE have no ancestors in the LHS.

The following defining reduction in A for the S-rule ghows why this is

so: the brackets in the RHS descend really from bracgkets "hidden™ in the §:

{{(s8a2)B)C}) =
o1 2 2 1 0
{{{{2a{ib (A ( (ac) (be)y ) ) ) })AYB)C) —>
0123 5 3 78 49 97653 2 1 0
{ ( (2 (Ae ( (ac ) (Be) } ) ) B)YC) —>
01 5 & 78 89 9765 1 0
4 { 2¢ { ( Aac ) (FBc) } ) c) —
0 78 849 976 0
( (A ) (BT )
78 89 97
Bence the subterms 7, 8, 9 have no ancestors.
3.5 . UNDERLINIMNG
{iy Cconsider AA-calculus as in Definition 3.1 and iet A = {0,1}. & no-

taticonal variant of this reduction system

A{O,l} = <Ter(k{oll}], > is obtained by vnderlining the

g
subterms having label 1 (aﬁg’égly those) .

So instead of ((lx(xlxo)l)iiyozlJo)l we write



(ii}

{iii)

(iv)
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((Ax(xx)} vz},

and this redex has a contractum:
{{yz) (yz)).

Let A" = <Ter(1*}, —E;—+-} be this reduction system. Note that there
are infinite reductions, e.g. (XX.EE)(RX.§§} B*—reduces'to itself.
Now we restrict Ter(}*} to the subset of terms where only B-redexes
may be underlined. Let the resulting reduction system be

2 = {Ter(k**), T e
where B** is the restriction of B* to Ter(h**) = Ter(l*).
Moreover we add a notational simplification to l**, namely ‘reduced
underiining'. Since a B-redex is determined by its head-A, it suf-
fices to underline only that A instead of the whole redex,

The resulting system will be called A = <Ter (i), -§4 >, in
words: underlined A-calculus, underlined B-reduction,
Instead of 'A(-calculus)' we will also say: 'lE(—calculus)‘.
We will not need the auxiliary systems h*, l** anymore.

An example of a reduction in A:

(ha.aa)[ (Ab.b) (kc.cc} ]

T (ib.b} {(Ac.ce) [ (Ab.b) (Ac.ce) ]

-—§-+-—?r+ {Ac.ce) (Ae.ce), a B-normal form.
hnalogous to &'we define AP, the underlined version of a definable
extension AP of A. The definition is straightforward and will be laft
tc the reader. Here also we may employ reduced underlining: instead

of PaBC, say, write only PrBC.

3.6. DEVELOPMENTS

Reductions in A or AP give rise to reductions in X or AP, by erasing

the underlinings. Reductions in & or AP which can be obtained in this way,

will be called developments.

In the next section (4) we will prove that }  8N; or in other words,
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all developments are finite.
3.7. HYLAND-WADSWORTH LABELS

3.7.0. Again we consider Ter(lnq). But now we define a reduction totally
diffe?ent from HE;;—+-as introduced in 3.2; let us call it —EEE—+ . It is
introduced by HYLAND [76) and WADSWORTH [76] and can be considered as a
ayntactic counterpart of projection in Scott's models D . Puw of the i-cal-
culus; but we will not go into that (for references, see e.g. BARENDREGT
(770,

Whereas in 3.2 the labels served merely for tracing the descendants in
a reduction, now they play a role of their own. BHw—reduction can be con-
veniently defined (as in BARENDREGT [77], but without £) by admitting sub-

. k
terms which have multiple labels, e.q. ((Ma}o)c; possibly no label at all.

3.7.1. Ter(kHw), the set of lehterms, ig defined by

(i) X,V iZBpaaa € Ter(le)
{ii) &B,BR e Ter(AHWJ = {BB) € Ter(lﬁw)
(111} & ¢ Ter(A™) = (Ax.3) e Ter O™

{iv) & « Ter(kHW) = nn € Ter(hHW) for all n « I,
The multiple labeling is oniy an auxiliary device; when possible the fol-
lowing simplifying rule will be applied:

(Mn)m s M(n,m)

for all M ¢ Ter{lHW) and n,m ¢ W . Here (n,m} = minimum {n,n}.

Bﬁwﬂre&uction is now defined by

(Ax.2)"B —— [x = B 1a
Py

n—-1

HW
for all A,B ¢ Ter(r } and n > 0.
Here n iz ealled the degree of the redex on the LHS. Note that reduction is
only allowed for redexes of positive degree.

Furthermore, the substitution operator used in the previcus definition,

g = {x:=a7, is defined as follows:
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(i) ox = A, 0y = v for x # v
(ii) o(AB) = (oA) (gB})
{iii} oi{dAy.A) = Ay.0A

(iv) o@’) = (oa) .

Note the difference with substitution in 3.2:
. b a
there [x:=(...} ] x = (...},

here [x:=(...)"1x" = ((..0™" — (.. "™™,

. For an example of a BHW~reductiOn see the figure on p.26.

3.7.2, REMARKS., (i} In secltion 7 we will prove by an 'interpretation' of
A-calculus into ATl-caleulus that RHW |=SN {i.e. BHW-reduction is strongly
normalizing).
{Notation; we borrow the sign 'F ' from model theory, meaning: '... has the
property...' or: '...satisfies...'.}
(i1} Creation of redexes. One of the key facts in the proof of (i) is that
a redex R of degree d can only create new redexes of degree < 4.

Here we say that in the step M SN M, a redex R, € M, is created

[y, 1 1 1

by (the contraction of) R iff no redex Ry € MO descends to R1. In LEVY
[74,78] it is weorked out when such creations happen. There are the following

three cases:

I. L.l xeeixe]) Ovaadl... — L0l oy.ny 8T 1. L
. LT Oxax)y wwa)Blo.. — Lo [{Ay.a)B]. ..
IIT. ...[(Ax.Ay.A)CE]... —— ...[0y.2% )B]...

where ¢ is the substitution [x:=ly.al, o’ is [x:=C] and €[ 1, ...[ J... are
arbitrary contexts. (B°, €[ ] stands for o{B}, oic[ .}

It is a matter of routine to verify that the degree of the created iy
redex in the RHS is indeed less than the degree of the Ax redex in the LHS.

n—lj n-1

{The first cecurrence of n-1 in (Rx.A)n B — [x:=B A causes this de-

creasing effect for creation of type I, II; the second fer type III.)}

EXAMPLE.

(Ox. oDt T oy 10 -
HW

8.6.9_,11.6 10 (8:6:9]1

o oy-a 0o thS 1 o cav.a (11,6,10} -

) =

(Oy.n %0 °,
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FIGURE

(m3(13m3)3]3

((I3w

1.3 3. 1.1
((I3w3! (I w 1)

{ww (13w3}1}1

e 090

(m0(13m3)0}0

<

(wowo)o. a B -normal form.

The B ~reduction graph of f(w (I3m3)3)3, where & = (Rx.(x3x3)31.

all arrows are pointing downwards. Bt each arrow the degree of the

contracted redex is indicated.
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(iii} On the other hand, the redexss R' which descend from a redex R in a

BHw-reduction R=M—+ .. —> M
U U
Re=:~.% . .=.=-.% R

have the same degree as R.

For a verification of (ii} and {iii) see LEVY [78], p.29-32.
{iv) The system } in 3.5 can alsc be cbtained from RHW. For, consider terms
M in Ter(lﬂw) such that some redexes = M hawve label 1 and all the other
subterms in M have label 0; let an underlined term ¢ Ter{}) correspond to
such M as in 3.5. Then SHw—reduction af such terms M corresponds precisely

to a f-reduction of M.

3.8. Typed h-calculus or 3‘-caleculus is obtained as follows. The labels are

called 'types' here and the set of types T is defined inductively by

(i} O e T

{(ii) a,B e v = {a*B) € T.

Now we do not work with the whole set Ter(lT) as defined in 3.1, but with =a
subset T of terms subject to the restriction that types must match in the

sense of the following inductive definition:

(i) K e T for all x € VAR and @ € T
(i) 2B e T e T = @FYE o7
Giii) af e T = tah ¥R T

3.9, LEVY's LABELS

Now we turn to a labeled A-caleculus introduced in J.J. LEVY [75,781].
It is & common generalization of all the labeled A-caleuli we have dealt
with so far. We will refer to it as KL—calculus. It is closely connected
with the concept of eguivalence of reductions {also introduced in LEVY [781),
a concept we will comment on later.

The set L of Lévy-labels is defined inductively as follows. Let L' be
an infinite set of symbeols, L' = {a,b,c,...}. Then define

(i} L' &L
(ii) o,B e L = af e L

(iii} ¢ € L = a ¢ L.

Here af iz the concatenation of o and B, without brackets.
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The definition of the set Ter{AL) of AL-terms and of substitution in
AL is mutatis mutandis {i.e. replace HW by I and n ¢ W by o £ L} the same
as for RHW in 3.7.

Again we simplify multiple labelings whenever possible, now using the
rule:

(Ma]B MaB

L
for all M ¢ A and 0,8 ¢ L:

BL—reduction is defined as

(hx.ﬁ)a B —hE—“~+ [X:=BE-}AE
L

for all A,B ¢ Ter(AL] and ¢ ¢ L. As before, o is called the degree of the
displayed redex. Alsc as before, it is easily checked that during a reduc-
tion the residuals of a redex R keep the same degree as R. (See LEVY [78].)
There are two differences in cur definition as compared to LEVY [75,781;
there underlining and 'overlining' are used (but later Lévy remarked that
the latter is mot necessary) and secondly, our labels zre the mirror image

of those in LEVY [75,78].

3.9.1. EXAMPLES.

(1) {(Ax.(x )h C(ly-ﬂ)d) — —= {{}iy. A] I)bE? {cf. the similar ex-

BL,
ample for 1 abave.}

{2) This example is taken from LEVY [75] but in our revised notation:

(O {0y rT2215 %M %P Gl WSS HH 2

/’
Af”’
k e

(0. (v 29 3% 0w S

Cox. 0229299 P a0 NS 3 R

(O, (uk = j)lbhdf g}edd:a

lbh cba

gibhdfk gikhdfe j ibhdf edcha
(z kA )

The following remarks are also essentially due to LEVY [75,78].
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3.9.2. REMARKS. {1} There is a simple homomorphism Lrom RL to AA {as in 3.1).
Namely, take L' = A and given a RL—term M, erase all but the fikst symbol

of every label o in M. It is easy to check that this procedure transforms
BL—reductions in BL,-reductions in the sense of 3.1. (Cfr. the examples

just given.}

{2} AL iz not SN, but certain restricted forms of it are.

Let P be a predicate on L which is bounded in the sense that the labels &«

for which P{a} holds, are bounded in height, i.e.
Jn e W VYo & L{P{a) = hial < n).

Here the height h{e) is defined by

(i) hi{a) = 0 for a ¢ L'
(ii} h{=B) = max{h{a),h{g)}
(iii) bla} = h(a) + 1.

Now restrict BL—reduction such that contraction of a redex with degree o is
only allowed 1f P(c). Denote the resulting system by AL'P, or in case
P(a) <= h{a) = n, simply by aLem
Now we have AL'P k= sN for bounded P. See LEVY [75,78] for a procf; in sec-
tion 8 we glve an alternative proof.
(3) There is also a "homomorphism" from AL to AHW but not as direct as the
pravious one. Let us describe it as follows.

Firstly, define lg? just as hHW but now allowing alse negative labels
and dropping the restriction that only redexes of positive degree may be

contracted.

Secondly, let £: L — Z satisfy

fi) fta) ¢ M for all a « L"
(ii) ftap) = min{fia},f(g)]
(iii) £(o) = fla) - 1.

Note that h(a} and f(o) are, roughly speaking, opposite in sign:

(*} m-hla) < flo) < M-hia), where m = min {f{a,) | a, € ¢} and

i

M = max{f(ai) | a; e al. We leave the proof of (*) to the reader.

{*%) Now we have for evary f satisfying {1}, (ii}, (iii) above a homomorphism
L HW

from A to RZ « Namely by replacing every label in a reduction in AL by

fla).
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Morsover one easily proves:

3.9.3. PROPOSITION. The following are eguivalent:

. =it

iy A7 = sy

. - X P . . HW .

{ii} In every infinite reduction in Az: a redex of degree £ 0 is contracted.
s . L. HW

{iii) Inm every infinite reduction in 125 the set of degrees of contracted

redexes is unbounded from below.

tiv) Im every infinite reduction in 2" the set {h{e} | « is degree of a
contracted redex} is unbounded from above.

{v) A [= SN for all ne M.

{vi) XL'P F= 8N for all bounded predicates P.

PROQF., By using (*}, {(#+) in the proof of [(iii} < {iv}) and noticing for
- ks . , \ H .
(i) = (iii) that given a reduction K in Az?’ the reduction ®' obtainsed by

adding a fixed n ¢ W to all the labelg in ®, iz again a reduction in hi?. a

The figure on p.3] summarizes this section {without definable exten-

sions) .,

4. FINITE DEVELOPMEWTS
4.0. INTRODUCTION

kY E—reduction is as we remarked in section 3, a gpecial kind of BHW_
reduction. Since BHW-reduction has the property SN {as we will prove in
section 8), B-reductions are therefore strongly normalizing too. This is the
theorem of '¥Finite Developments' (FD).

However, we will give ancther proof of FD in this gsection, bhecausge:
{a) it is much simpler than the proof of }HW F= o,
{b} it generalizes without effort to FD for some exiensgions of A-palcoulusg

such as Afn{l-calculus (see BARENDREGT, BERGSTRA, KLOP, VOLKEN (761,
(o) it generalizes at cnce to FD for definable extensions {(hence also for

CL}, and
{d} our proof strategy is such that we need FD to prove Yl F: 8N

{gee p.32):
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L
A =calculus

L,P
A" ESN for bounded P

homomorphi sm
${a)=first sy
of o

'homomorphisn’

definition

AA—calculus descendants RHW—calculus

——————— it
dy ¥ sn AT = sn
1
A={0,1} !
|
|
1
i
3
t
!
HW-labels = 1
*
A —calculus
*
AT B osw
only B-redexes
underlined
T
A —calculus A-calculus

R e 2 F sw (alrm
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FD for definable

extensions
{sect. 4)

lksect.S)

Church.Rossar
theorem for de-
finable exten-
sions of A-cal-

Church'e theore
for definable
extensions of

Interpretation
of A-calculus
in hI-calculus

AI-calculus {sect.8)

culus {sect.5} {sect.7)

A

Jl(sect.s)

P
SN for X 7

A AT

4,1. PRELIMINARY REMARKS

(i) If T is a 'reduction system', such as A, AI, AP, or CL (in Chapter II

we will consider a general councept of 'reduction system') then L denoctes

the corresponding umferiined reduction system, as defined in 3.5.

{ii) We remind the reader that an essential feature of E_is that in Ejreduc—
tions there is no creation of Efredexes; e.qg. in a Aﬁfreduction =

= MO —j§?+ MI —%%* « .. every contracted S-redex Ri = {ig.ai}Bi (L = 0,1,...}
is a descendant of some §fredex in MO' {There can be B-redexes created,

but no f-redexes.)

{(iii) Let & be a L-reduction and #' be the corresponding f-reduction, ob—
tained by erasing the underlining in f, Then R is called a (E-) development.
The theorem that we will prove now, asserts that for Z = A, AI, AP,

CL all developments are finite,

Notation: I F= FD. Note that by definition, this is equivalent to: I F= SH.
{iv) The method that i1s going to be used in the proof below iz taken from
BARENDREGT, BERGSTRA, FLOF, VOLKEN [76]). Given a development
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R = M, —* M, = ..., to each symbol s ¢ MO a weight ls| ¢ I is asso-

ciated. During the reduction #, every symbol keeps its weight unéhanged.

The assignment of weights ig such that the total weight EMi[ {s= EseM- Is]}
1

of the Mi e# (i =0,1,...) decreases:

Im

0] > |M1| >,

Before giving the actual proof, we need some definitions. Throughout
the proof, I is a definable extension of A-calculusg, having P as set of con-

stants.

4.,1.1. DEFINITION. Let P ¢ P have the reduction rule:
PR X P .
PAl n Q(AI irj1‘r1)

(i} The multiplicity of A, (i = 1,....n) in O, mult(A ), is the mmber of
occurrences of Ai in Q.

(ii) m(P = max{mult (& ) | i =1,...,n}.

(iii) m = max{m{P) | P e B} + 1.

4.1.2. EXAMPLE. Let ¥ be A + CL + {PABC — = P{AAACC)BB}. So
E={IKS,P () =1, k) =1, m(S) = 2, m(P) = 3 andm = 4. This will

be our working example during the proof.

4.1.3. DEFINITION. (i} Let L be the underlined version of I.
(In our example, I = A + CL + {PABC —— P(AAACC)BB}. The set of constants
pPof i is {1,I,K,K,3,5,P,P} and the reduction rules are

{Ax.A(x))B — A(B)
In —— a, KAB —— A, SABC — AC(BC]
PaBc —— P(AAACC)EB.)

(ii) Ew iz defined as follows.
Tar (_E_W) is obtained from Ter(f) by adding natural mmbers as labels to some
of the symbols of I-terms. These labels will be called weights and will be

written as superscripts.

Reduction in EW is just I-reduction where the weights are taken along, in

the sense of Definition 3.2 {I.e. each symbols keeps its own weight during
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the reduction and the presence of weights does not affect the allowed re-

ductions.)

4,1.4, EXAMPLE.

M1 = {l;.xGXT)(EﬁyZPP§3)

i
u, = E?yzppyB(E?yzppyal
i

u, = A s

4.1.5. NOTATION AND DEFINITION,

{1 gw-terms will also be written as MI where M ig a E-term and T is M’'s
weight assignment (seo I is a partial map from Symb (M} to W }.

(ii) if s ¢ M, then !s| = I(s}, the weight of s. We put [s| = 0 if & hae
no weight (I(s) undefined). _

(iii) if W £ M is a subword of M (i.e. 2 sequence of consecytive symbols in

M) then

E.g. in the example above lMil = 26 and fy2PPy3] =5,

4.1.6. DEFINITION. Let MI be a Ew—term.

(i} Let R € M be a f-redex, Then R = (Ax.A})B is called good w.r.t. I iff
1%l » [B] for every occurrence of x in A.

{ii) Let R c M be a P-redex for some P ¢ P. Then R = EAI...EH is called
good w.r.t. I iff [P} = mlAl...Anl where m is as in Definition
4,1.1(¢iidi]),

{idid) MI is called good if every (B- or Ef}redex in M is good w.r.t. I.

4,1.7. EXAMPLE, Tn example 4.1.4, the Efredex nox the Efredex in M, is good

1
w.r.t, the digplayed weight assignment.
_ 24 30 18 2

However , M4 = {Ax.x" x )Py PPy3) is good.

T
4.1.8. PROPOSITION. Let M ¢ Ter(L). Then there is a good M < Ter(zw).

PROOF. Let M = Spre-B-..8,8,8, where s5 ig the i-th symbol from the right,
i
and define the welght assignment I by I(si) = Isi| = {m+1) , for i =0,....L.

Then, since
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i+l i
fmtl) -l ety ety e (mr1) ™

(m+i)-1
we have
" . .
@ 0 5wt ety +e ety
S0 Isi+1[ ks m[sisi_i...soi, hence a fortiori

(i} every x free in A £ (}x.a)B is heavier than B (since m z ! and B is
to the right of %) and
(i1} every P ¢« P is at least m times heavier than the total of its arguments

iil,...,An

Therefore M. is a good EW—term. il

4.1.9. PROPOSITION. Let fi = My — M; — ... be a I-reduction. Let

I I

M0 € Ter{X ). Then there is a corresponding I_-reduction R 0
03 0 —7 W

=M @ —r. M —

0 t T

PROOF, It follows at once from the definitions that evexy step in E can be

"lifted' to the case where extra labels (in casu weights}! are present. [

4,1.10. MAIN LEMMA.
I P I I

I 0 1 .
{i} ILet MloIbe a good Ew-term, and let MO —r Ml be a Ew-reductlon step.

1.,
Then Ml is a good Ew—tenn.
{(ii} Moreover,

I I
0 1
i, > o, 1.

PROOF. First the easiest part of the lemma, (ii). Let R be the redex can-
e I I
OO — Ml1 and let R' ¢ Ml be the contractum of R.

I
CASE 1. R is a B-redex. Say R ¥ (AX....X...%...)B. Since MOO is good, R is

tracted in the step M

good w.r.t. IO' i.e. every ocourrence of x is heavier than B, so
IR"] = j...B...B...] < |[R].

If there is no occurrence of X, also |R'| < |R|, since B disappears.
CASE 2. R is a P-redex Eﬁi...ﬁn. Since R is good w,r.t. IO' P! > m}al...An].

Moreover, the multiplying effect of F is smaller than m. Therefore
Ir'l < [RL
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Hence

I1|

I
a
fa, " | < |MD |.

(i) We have to show that every B or E}redex R1

Let the redex RD < MD be the ancestor of Rl' Clearly R

derlined redex. We will treat only the non-trivial cases.

I= Ml is again good w.r.t. Il'
a iz alss an wuan—

As above R < My is the contracted redex, and R' © M, its contractum,

1

CASE 1. R € R,

1.1, RD is a B-redex and the f- or Efredex R is a subterm of its argument:

RD = {dx.A)CLR] for some context €[ J.
{Bor P
Rl = (Ax.ayelr'd.

I

vow [€[R]] > le[rR']]. Since MOO is good, for every occurrence of X in A we

have |x| » fe[R]|. Hence in RI also for every x in A: |x| » |¢lrR']|. So m

1
is good w.r.t. I

1

1.2, RO is a P-redex and R is subterm of one of its arguments:

R, = 331"'ﬁj“‘An {1=9<n)
lg_or P ¢lRr]
Ry FPA.LALLA

Cclr'].

A similar reasoning as in case 1.1 applies.

CASE 2. Ry S R
Z2.1. RO is a B-redex, R is a B-redex and R substitutes something In the ar-

gument of:

L

R = [Ay.-—{{3x.A(¥v)}B{y))—-1C
— —_—

ls A

R' =

- ———({Ax.A(C))BI(C) ) -
B m——

Fy

Mow in R for all ¥ in Aly),B(y) we have ly| > !¢!, hence IB{y}| > |B(C)]|.
Furthermore, for all x in Aly) we have lx| » 1B{y)].
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Hence in R, : Ix] » IB(C) .

So R_1 is good w.r.t. 11.
2.2, Fb is a P-redex, R is a 8-redex and R substitutes scomething in one or

more of the arguments of Ryt

R = [iy.———(fﬁi(y)...a (v))—-1Ic

8 o
R' = _——[_EA {C)...a_(C})——

L._L__.,_B__/

R
1
Here in R: |yl > Icl ana [P| > mIAl(y)...Anty)I.

is still good w.r.t. I,. [

Hence in R': |Pl > mla, (©...a (©]. so R 1

1
4.1.11. THEOREM. (Finite pevelopments)
Let T be a definable extension of i-calculus. Then T F FD {i.e. E_F= SN) .

PROQF. Let & be a I-reduction, & = Mb ——+—M1 —%* ... By Proposition 4.1.8

MO has a good weight assignment I_. By Propesition 4.1.9 # can he extended

Ip I 0
to a Ew-reduction MD —— Ml —_— ..

By Lemma 4.1.10 we have

I I
4]
o, > M) >

Hence ® is finite. []

4.1.12. REMARK, Note that the above proof yields the following bonus: Every
development of M € Ter{A) has at most i steps, where m is the length of M

in symbols.
4.2. FAST DEVELOPMENTS

This concept is introduced for use in Chapter II. Instead of evaluating
{Xxi...xn.A(xl,...,xn)]Bl...Bn to A(BI""'Bn) in n steps, we can proceed

faster by performing such a reduction in cne step.

4.2,1., DEFINITION. le—calculus {m for 'manv') is defined as AB-calculus,

but with the B-reduction rule replaced by the rules (for all n = i)

Bn: U‘xi“'xn'mxi""'xn”Bl“'Hn — A(Bl,. .. ,Bn)
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4.2.2. DEFINITION. AR , underlined Rﬁm—calculus, is defined like &ﬁ fun—

derlined AB-calcuius). That is:

{i} only Bn—redexes (nz1) may be underiined. Notation:

R = R ) . i - ] . = - A
R (Axl * 1B Bn is a ﬁn redex., If here A ly1 ¥y A' we

1
: 1
.may write R as (lxl...xnyl...yk.A JBlﬂ..Bn.
{11} Only B _-redexes (n=l) may be contracted in AR .
-1 —m

(1iii) Reductions in AR are called 'fast developments'.

4.2.3. EXAMPLE, (Axyz.xxz2z)IIII “E;4 (Az.IIzz}II i8 a reduction in MR  +to

a B -normal form.
—m

4.2.4. REMARK, The extension to hﬁﬁm (definable extensions of lﬁm) and

ABP , or AP  and AP for short, is straightforward.
—n m —m

4.2.5. THEOREM. (Finite fast developments)
F e .
AP E FD  (I.e. X2k s

PROOF. Entirely =imilar to 4.1. []
4.3. AN ALTERNATIVE PROOF OF FD FOR AP.

4.3.0. The following proof of Ap F= FD is due to-HYLAND [73]. We include it
here (omitting some details) in order to give some extra information about
developments which we need in Chapter II.

In this subsection we will omit the P of AP; the extension of the re-

sults below from A to AP is entirely straightforward.

4.3.1. DEFINITION. Let the 'disjointness property' (DP) be defined as fol-
lows:
For every reduction f = M — ,.. —= M'" and every subterm S = M the

descendants 51,...,Sn £ M (nz0) of 5 are palrwise disjoine.

4.3.2. REMBRK.

{1y AR i# DF. For, let & contain x as free variable (8¥x) and consider
M= (Ay.yy) {Ax.8(x)) — (Ax.8(x)) (Ax.8(x)) —> S(Ax.5(x)) = M'.

{ii) Trivially CL F=DP, since there is no substitution in CL.
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NMext we will prowve that Af F DP, i.e. the disjointness property holds
for developments ®. Before we do that, we show that the finlteness of devel-
opments [FD) follows almost immediately from thié fact. This cobservation is

due to Silvio Micalil (personal communication).
4.3.3. LEMMA (Micali). A8 | opP = )8 E FD.

PROOF. Consider M ¢ AB in which 10,...,§ﬂ are the head-A's of the underlined
redexes. We will refer to the subscripts O,...,n as 'colors'. Note that in

M all colors are different.
(k)

Now let a development & = M — M' s || —> M —* ... be given.

k)

In every M e 8 we will attach superscripts to the éi—occurrences

(i ¢ {0,...,n}) as follows. Let ii be such an occurrence and let R be the

redex having ii as head-symbol, ILet d (=d(ii}) be the number of different
aolers of 1j's contained in R, Then d is the superscript attached to R's

head-symbol éi' We will call 4 the 'color degree'! of Ei‘

EXAMPQE, Let in M(k} the inclusion relations between the ﬁi-redexes he as
in the figure, where ii means that the li—redex 2 the Aj-redex.

3

Then the color degrees are as indicated in the figure; e.g. the one

occurrence of 33 has color degree 5 since the ia-redex cantains the fiwe

colors 0,2,2,4,5.

15 Note that by DP, a color cannot contain
7 itself, so l_i = l.j =d, <d,.
/////,//// \\\\ - - —j i |
YR S VI |
ld/f\ap ll jo MNow assign to M(i) the multi-set {(cee
=0 -2 | - =0 Def.6.4.1. below) of the Color degrees
/ﬂ\ +1 of all the §i~occurrences in M(k},
ég lg in the example: <6,3,3,2,1,%,1,2,1,1,1=>,
and consider the effect on this multi-
set of contracting, say. 33' Then in the multiset of M(k+1) the number

d(éi]+1(i =0,1,2,4,5) may increase after the contracticn, they must re-

main < &, regardless what happens exactly with those E.g. the residuals

_, -
of the és—redex can after the contraction at most contain the four colors

0,1,2,4 {not 5 itself by DP)}.
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Hence by Prop.6.4.2 after the contraction we have a lower multiset
w.r.t. the well-ordering there defined, and so the development ® must ter-

minate. [

How we will turn to the proof of DP for developments. In fact we ob-—
tain more. 4.4.4 - 4.4.6 are due to HYLAND [73]. (We are going intoc some
detall, since afterwards we want to extend the results below to fast devel-

opments.)

4.3.4. DEFINITION. Let M ¢ Af. On Sub(M}, the set of subterm occurrences of
M, we define the following twa relations e* and &
(1) <* is defined by:

(i) CceD = C < b {(c is the strict (or proper) subterm relation}

{ii) if C, D are subterms of an underlined redex

(Ax. .... D(x)....){~=C==} such that x ¢ FV(D), then C ¥ D

{i1i) < is transitive,

(2} <7 is defined by:
*E

cCc D = for some developmant M —+ ... — M' and some descen-

dants C', D' £ M' of C, resp. D we have C' « D',

4.3.5. PROPOSITION. Let M ¢ AR and M —E+ M,

B * w*
et C',h' = M' be some descendants of C,D £ M. Then C' ¢ D' = C c D.

* . b s

PROQF, If ¢' = D' in virtue of clause {i}, then it is easy to see that
&

Cc Din virtue of clause (i) or (ii).

If CY 2 D' in virtue of {ii), then M'

i

~——{AX. D' () --} (--C" =) =

and now there are 2 caseg:

CASE 1. M = —=({Ax.~~D{x)~--) (~-C~=))}==: then C & o by clause (ii}.
CASE 2. M & ~-[ldy.—-({Ax.——D{x}--) {(-—y—) ) -=][--C—]1]-~
E

Then D -* E =" C, hence D B C.
{Since x ¢ FV{D) there are no cthear cases to consider.)

Finally, the case that C <" D' by clause (iii), is trivial to deal
with., [

4.3.6. LEMMA (Hyland}. Let M ¢ AB.
(i) For ail C,D c M (DZx):

* %
Cc D <<= (CcC D.
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*
(ii} < is a strict partial ordering (p.c.) on Sub(M}.

C.4.3
{iii) Likewise for c .

. .
PROCF. (i} =. Suppose C ¢ D and b is not a variable. {That D is not allow-
ed to be a variable is because C ¢ x is possible, but never C <** x since
an X has no descendants after a substitution for x.}

Then in fact, say,

& * * *

=P 26y P2y P Py o T %

= C

for some chain of applications of clauses {i} or {ii). Now, drawing a figure

of the term-formation tree of M and locking for a few moments at the chain

o, Dl....,C in it, it ilg intuitively entirely clear that there is a devel-

opment at the end of which one has C' © D' for some residuals C', D' of C,D.
The formal proof, however, is rather tedious since it involves a lot

of checking of simple details. The proof will be given using induction to

k. the number of 'steps' in the displayed chain from b to C.

*
CASE 1. Let the first "step', from D to D, be a > .. -application. Let

0 1 {ii)
R = {};...Do(x)..](..Dl..] be the corresponding underlined redex., Then af-

ter ceontraction of R the original chain D ,...,C is transformed inte a

0
chain Dé,...,c as follows:

D S* D D* D =¥ =~ D =¢C | i? > 4 t
0 a1 T G2 TED D R T +Te” cenotes
H - . . the descendant
|
l;! o [ [ relation w.r.t.
l * " l * « l contraction of the
L r L] 1 =
o Ty Pt T P2 Tt %k T Y ax-redex)

where each (i}- or (ii)-step is carried over in a similar step except the

first step; so in the latter chain D ..,C there are less (ii)-steps.

o’
CASE 2. The situation DO Dti] D1 Dtii]"'c where Dl Z %, the bound wvariable
of the underlipned redex R corresponding to the step D1 :Tii] D2, is similar.
Then &lso the first 3*.. -step becomes a =% -step after contraction of R

(il) (i)

and the other steps stay similar.

Otherwise we have:
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o o—
L 4 — 4
(Y = —

etcetera.
*

(ii)

* *
5, by induction to the number of = -steps in D 2 ...2 C we are

through.

{In order to prove the assertions in '"Case 17 and 'Case 2', one has

to check the propositions

. iy* 53*
A = B = x and A > . B and = FA = .. B
{(ii) {ii)
L | | | |
Ax | Ax| Jx ] Ax Ax] x|
l \lf \[" ix* v \L 'l’
A" o It al o . Bzl A o 9dB'=ER
{ii)

i.e. for all &,A',B as in the diagram, there exists B' as in the diagram.)
This ends the proof of (i) =.
{i}) «=: Buppose C S D, i.e. there is a development R: M = MO — Ml —r ...
Mk = M' and descendants C', DV © M' of C,D © M such that C'" ¢ D',
Now use induction on the number of steps in #. The basis of the induc-
x descendants from C,D © MD'
and having descendants C',D" £ M' such that €' ¢ B'. So by induction hypo—

tion is trivial. Further, there are C", D" ¢ M

* %
thesis C' ¢ D". Hence by Prop. 4.3.5 C c D.

{ii} Immediately. Notice that:

cc b = the head-symbol of C is to the left of the head-symbol
of D,
*k *k 43
{iii) We have only to show that < is trangitive, So let C < E D.

b3
Then E # x, hence we can apply (i) and get c ¢ Db. [J
4.3.7. COROLLARY. Ag F DP.

Fx - .
PROOF. Since < is a strict p.o., we have for no C,0 <** ¢. That is: P, [0
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"
4.3.8. REMARK, In HYLAND [73] < is written as >, Lemma 4.3.6 i= used there
te prove FD as follows. Define for each underlined redex R in M ¢ A the

degree A(R} by
d(R) = max{a(R") | R' " R} + 1

{the R' are underlinad redexes in M) and assign to M the multiset of the
d(R) for all underlined redexes R in M. This multiset is argued to decredse
(w.r.t. the well-ordering in Preop. ©.4.2) during a development. This argu-
ment, however, seems incomplete since there is a complication due to the
fact that the p.o. ¥ need not be a tree (see figure below), like < is.

The complication ¢an be avolded however by using instead of d(R}:
a*(R) = max{d’(R*) | R* <" R} + 1.

X .
EXAMPLE. The p.o. {w.r.t. & } of underlined redexes R in M plus degrees
a'{r).

For 'fast' developments {reductions in A , see 4.2} we have analogous

* * K
definitions of ¢ and < =
m m

4.3.9, DEFINITION. Lét M ¢ AB . Then for C,D £ M:

(i) ccp =» cc D
it

{1i} if C,D are subterms of an underlined redex

.

(A5y. ... Dlx)..IRA B LA
H
L

[
where ; = xl,...,xn {some nx1}), y = yl,...,ym {some m>()}, i some num-

£
ber such that 1 £ i £ 1 and xi e FV{D), then C Cm o.

*
(1iiJC c" Ec D = C < D.
i1 m m



44

&
The definiticn of “n carries over immediately from Def. 4.3.4.(ii).
Likewise Prop. 4.3.5 and Lemma 4.3.6, as the resader may check.

Hence the following fact, needed in Ch.II:

4.3.10. COROLLARY. X F DP. [
— = -

5. ABSTREACT REDUCTION SYSTEMS

In thig secticn we define scme properties of 'abstract' reduction
systems (i.e. replacement systems in the sense of STAPLES [75]1) and state
some simple facts about them, for the most part well-known. This is done
only in as far we need those definitions and facts in the sequel; we are
not primarily interested here in ahstract reducticon systems and their
properties for their own sake. FPor the latter, see e,g. HUET [78], STAPLES
{75], HINDLEY [69,741. '

Part of this section (5.16,5.17,5.18) is for use in Chapter II, the
remark about 'conservative extensions' {(5.10,5.11) iz referred to in Chapter
IiI.

We start with some definitions and notatiens (a few of them occurred

already above, but are repeated for the sake of completeness).

5.1, DEFINITION, (1} a&n abstract reduction system {(ARS) is a structure

A= «<n, 5 Pher CORSisting of some set A and some sequence of binary re-
lations = (weX), called reduction relations.
(2) Mostly we will be interested in ARS's A = <A, — > having only one re-—

duction relation.
These are called replacement systems in STAPLES [75].
{3} ——> ig the transitive reflexive closure of —,

= iz the reflexive closure of —_—,

= ig the 'conwvertibility' relation {i.e., the equivalence relation)

generated by —=

Likewise —=>, —, = for
o o o

Identity of elements of & is denoted by =.

3

(4) The converse relation of 5 1s dencted by < 5 °F by ;:T+ .

{5) —;_4 U —— is denoted by ——7 .

B ap

5.2, DEFINITION. (1) Let «,f be reduction relations on A, Then o @ B (o
commutes weakly with B) 1ff
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B 8
F e X
24

where the deotted arrows have the usual existential meaning, i.e.:
Ya,b,c e 2 3d £ & (cTaTb --‘»c—(;qbd «—E-—b].
Further, o commutes with B iff —a-% ® ——é&b

{(2) The reduction relation —— is called 'weakly Church-Rosser' (WCR) iff

—— is weakly self-commuting:

i.e. Ya,b,e 3d {[c+—a -1 = o —» d «—5hl.

- L '
{3} — is called subcommutative (as in STAPLES [ 777}, notation WCR_l, iff

i.e. Ya,b,e Idlc #—a — b = g —> d 40— B},

{4} — has the Church-Rosser property (' is CR") iff

......... R

i.e. Ya,b,c 3@ {(c ®¢—a — b = g —» q «— k).

f5) Let A = <Ry, —g— >. Then A E PP {Postponement of R's after o's)

B B

iff for all a,a' € &:

a —» a' = EIbeAaTbb—E-w-a‘.

afl

5.3. PROPOSITION. Let A = <a, —s > be an ARS. Then the Following are equiv~

alent:
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i) ~—r i5 CR
{ii) —= ig WCR (weakly self-commuting)
(iii) —= ig gelf-commuting
=
iv) —= 1Is WCR !
{v} _PP_}’{_
{wi}
i
1
1
1
|
Y =Y

i.e. ¥a,b,c 3d {c +—a —% b =2 ¢ —% d <=— )
{vii} ¥a,b Jdc {a=h = a —= ¢ «— b)

{= is the egquivalence relation generated by —)

PROOF. The egquivalence of {(i),...,(iv) follows at once from the definitions.

The proof of the remaining equivalences is routine. []

5.4, FEMARK. (vi}) is called 'property C' in NEWMAN [42]. Cfr. alsoc the "Strip
Lemma' in BARENDREGT [763. (vwii)] is often used as definition of the CR-
pProperty.

In NEWMAN [42], BUET {781 a CR reduction relation is called 'confluent'.

. -1
5.5. PROPOSITION. ret A = By > Let o commute with B ~. Then A %ppOL

g R’

FROCEF. It suffices to prove that — and —ﬁ can be interchanged:

B

(——’3”"7&“\,) This follows at once from the

hh&h“‘?)f‘ﬁ- ” hypothesis that a commutes with
' el o
5.6. DEFINITION. Let A = <a,—> >,
{1) a £ A is a normal form {w.r.t.—) iff +db € 2 a + b. b ¢ & has a nor-
mal form iff 3a € A a is nf & b —» a,
(2) A |= WN (— is weakly normalizing) 1ff every a ¢ A has a nf.
(3) A |= SN {(—> is strongly normalizing) iff every reduction in A termi-

nates. (In HUET [78]: — is noetherian.}

{4) A [ oM (unicity of normal forms) iff

Ya,b ¢ & {(a,b are nf & a=H = a=b).
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(5) A Fz NF (normal form property} iff
Ya,b ¢ A {2 is nf &8 a=b = b —» a).

In the following lemma some sufficient conditions for the CR property are

given,

5.7. LEMMA. Let A |= <a,—— >. Then the following implications hold:
{1) {Newman) SN & WCR = CR.

(2) WN & UN = CR.
-
{3) wca_l = CR
{4) (Hindley, Rosen) Let — ba _ET+ ¥ —EEA . Suppose o, commates with uj

for all i,j ¢ {1,2} (=0 in particular the o, are gelf-commuting, I.e.

CR).

Then — is CR.

(ABnalogously for -—r = U, G, )

PROQF
(1) See NEWMAN [42]:; or for a shorter proof, HUET [787.
{2} Let reductiong a =% b and a ~ ¢ be given, By WN b,c have normal

forme b’ resp. ¢'. By UN b'=c'. 5o

a-=—=—32h

N

LA, JEN

{3} Easy.
{4) Easy (see a.g. STAPLES [751). O

5.8. REMARK, Note that WCR # CR, as is shown by the ARS defined as in Figure
1 of 5.9. Figures 2,3,4 give similar counterexamples. Now the following
question arises. First we define for n,m 2 1:
£n
Ak wcr iff
n,m

) <m

Yoo - —-¥

=n
where ———#® denotes a reduction of at most n steps. (So WCRi 1 = WCE.} The
r
above mentioned gounterexamples show WCR1 ’ & OR, (Question: WCRn n # CR
L r
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for all n,m 2 1?7 Indeed one can find for every n,m = 1 an A such +hat

A |= Wl:Rn n but A B CR. Figure 5 gives an A whers WCR is satisfied but

2,2
not WCRl .3

In fact, one can find all sorts of 'logically possible’ counterexamples ,
in the following sense. Call a set B ¢ ]Ni closed 1ff {(n,m) € B= (m,n} < B
and (n+l,m) € B= (n,m) € B, {Here N = M- {0}.) Define
Wwer{A) = {(n,m) e mi P& E WCRn'm}: so WCR(A) measures 'how CR' A is.
{(Example: for A in figure & we have WCR(A) as in filgure 7 of 5.9.) Obwvicus—
ly WCR({A) ic closed, and:

Ak cr =
WCR(A) = N e
+
Vo < L, (l,n) e WCR(A) <=

WCR{A) is infinite.

s 2 \ . .
Now let an arbitrary finite closed B < ZIN+ be given. Then {(we claim with-

ocut proof} one can constyuct an A such that WCRIA) = B,

3.9. EXAMPLES, {In the feollowing figures the direction of the reduction ar-

rows, wWhen not indicated, is always to the right and/or downwards.)

o
RN
S

Figure 1



1 2 3
H—F—p =
1HZ1 1
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4 &
Figure 2 Figure 3
1 2
1
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|
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Figure 3
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N
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5.10. DEFINITION.

(1) Let A = ﬁA,v£+ ». A is consistent iff =5 # A x A, i.e. not every pair
of elements is convertible.

{2) Let A = <A,T > and B = <B,? >,
Then A = B (B is an extension of A, or: A is a substructure of B) iff
(i) AR cB

{ii} ~E+ = restriction of “E+ to &, i.e.
Ya,a' ¢ & (a —E+ at = a *Ef a'l.
(1iiY A& is closed under —E+, i.e.
¥a € & (a ~§+ b = b ea).
(3) Let A« B, B is a conservative extension of A iff
Va,a' ¢ & (a =_ a' &= a=_a'l.

REMARK. Note that a conservative extension B of a consistent A is again

consistent.
The next theorem gives some important consequences of the CR property.

5.11. THEOREM.

t1) Let A = <A,~—— > and let there be two distinct normal forms in A. Then:
AL crR= A is consistent.

{2) CR = UN

(3) CR = NF

(4) ret A < B. Then: B F cR = B is a conservative extension of A.

The proocfs are very elementary and will be omitted.
We will now make a remark about cofinality (see also B12). First some

definitions.

5.12. DEFINITION. Let A = <A,— > be an ARS and a ¢ A, Let A = {b|a =~ b}
and w~+é be the restricticn of — teo Ra.

Then the reduction graph of a, G(a), is the ARS an,——+a>.
{In STAPLES [75] G(a) is called the 'local system below a'.)
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5.13. DEFINITION. Let A = <&,— > be an ARS.

(i) Tet X, Y ¢ A. Then Y is coffnal in X iff Y ¢ X and ¥% ¢ X 3y ¢ ¥ x —>» y.

tii) A != CP ('A has the cofinality property') iff in every reduction graph
G{a) {aeA) there iz a cofinal reduction gequence #l: a = aO —r 3, —* ...

t
{(finite or infinite).

I.eeor

Yo e Gla) Ja e 8 b —» a
n n

5.14. THEOREM. Let A = <a,~+ > be a countable ARS. Then:
Al ce = AL cr.

PROOF. (=*} Suppose a —*® b and a — ¢, By CP there is a cofinal

H;: a = ay —ra oL in G(a). Hence b —» a_ and c —= a for scme n,m.
Say n % m. Then a, is a common reduct of b, c. Herice CR holds.

fe=) Let 2y € A and ccnsider G(AO). By hypothesis, G(ao} is countable: say
G{ao) == {anln e W1, {The case that G(ao} is finite is easy.) Now define a

sequence {bn|n e W} c G(ao), by induction on n;

b'D = ao
bn+1 = the first common reduct of brl and an+1 in the sequence
{ao,al,..-}.

Then {.‘::nfn € N} is cofinal in G(aO) , and yields a ecofinal reduction se—
Jquence bO — b1 —% ... (after interpolation of reduction steps between

=
bk and bk+1' k=0). 0O

5.15 REMARK. {1} The restriction to countable ARS's is essential For the

implication CR = CF, I counterexample For uncoun-able ARS's 1= obtained
by taking A = <A,—— > = <u,<> where 6 is an ordinal in which the ordinal
w is not cofinal.

(ii) Let A = <a,— > be an ARS and defines K S A to be a reduction chain

iff
Ya,b € K (a —=»b Vb —» a).

Furthermore, let us call CP' the property obtained by replacing in Defini-

r

tion 5.13 of CP 'reduction seguence' by 'reduction chain’.
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Now it is an easy exercise to prove that for countable A, CP €= CP'.

Also now, however, the restriction to countabhle ARS's is essential for
the implication CR = CP'. For, consider the following uncountable counter-
example: let A' be an uncountable set and let 8 = {X ¢ &' 1 X finite}. Then
A = <a,—= > = <a,c> is an ARS such that A |== CR. But: for every reduction
chain K < A, the union Y X (= U e X) is countable. Hence if a ¢ A' - U K,

X
then for no ¥ ¢ X one has {al ¢ ¥ (i.e. fal —= X}. Therefore K is not co-

final in G{@) = &,

Although the next two items are for use in Chapter II, we include them

here since they also apply to abstract reduction systems.

5.16. DEFINITION. Let A= <p,— >,

(1) A is inductive ({as in HUET [78]) iff for every reduction aD -—-—>a1 —_—

a, —=* (finite or infinite) there is some a € A such that a —% g
for all n. Notation: A |= Ind.

{2) A is increasing iff there is a map | |: & — I guch that for all
a,b € A:

a—+b = |al < I|b}l.

Notation: A ]= Inc.

(3) A is well-founded iff there are no 'infinite descending — — chains'
sees T A, TR A, — a, 7 ag. (BEquivalently, iff

-—1-5* = +~— 15 SN.} Notation: A ’= WF .

(4) A is finitely branching iff for all a € A the set of immediate reducts

of a, {b e & [ a — b}, is finite. Notation: A }_-, FB. (In HURT [78],

FB = 'locally finite'.) Purther, we write A [ Fe ifr ——+ is FB.

5.17. LEMMA.

{1} Ind & Inc = SN {Nederpelt)
{2) Ine =» WF

{3) wN & UN = 1Ind

(4) WF & Bt = TInc.

PROOF. {1) Suppose ay — a, — ag — .,. 15 an infinite reduction. By
Ind there is an a such that a - a for all n. By Inc there is a nom [
such that |a01 < Ta11 < |a2| < ... But also [an[ < lal for all n. Contra-

diction.
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{2) Trivial.
(3} A finite reduction trivially has a 'bound’, namely the last element,
S¢ consider an infinite reduction a, L —+ g, —2> & —

o 1 2 o
narmal forms aé of a for all n. By N all the aA are identical, Hence

. By WN there are

a__?) al >a2 3 o=

é&””’/’/’

Q’:‘“ o3

[*H)
o -

{4) Let A = <A,— > satisfy WF and FB_l. Let a € & and consider
xa={h|b~—:e>a}. 1

By Konigs TLemma, WF and FB imply that xa iz Finite. Now define for
all a ¢ &;: Jal = cara. X, By our previcus remark, lal € B . Moreover, if
a — a' then |lal < [a'] (for, a' ¢ X, is impossible since then a reduction

cycle a' —» a — a' would arise, contradicting WF) . Hence A F: Ine, )

REMARKS. Ad (1): in a less explicit form this proposition sceurs in
NEDERFELT [73]. In Chapter II we will extensively deal with the method in-
troduced by NEDERPELT [737 to reduce the property SN to WM, for some Systems.
BAd(3}, (4): in Chapter IT we will prove that for certain 'Combinatory
Reduetion Systems' as defined there, one has Inc = WF and E‘B-1 = NE, where

NE is the property 'non-erasing' {(like e.g. the AT-calculus}.

Finally, we will show that the property Inc entails (in the presence
of WCR} the equivalence of SN and WN, a topic which will interest us espe—

cially in Chapter IIX. First we will prove a more general fact.

5.18. THEOREM. Let G(a) Be a& in Def. 5.12 and suppose:

(1) Gla) E WCR, and

{(2) a has a normal form b such that the length of reductions a —» b is
bounded (i.e., In ¢ W W¥: a —» b 1R} < n, where |8/| is the number of

steps in ®),

Then: Gla) F UN & CR & SN.

PROOF, SN & WCR = CR and CR = UN, so only to prove: G(a) k am.
Suppose not so. Then there is an infinite reduction

fl: a = g Tray ha, — ... . Let X = {c € B(a) | ¢ —» b}. Then,

clearly, by hypothesis (2}, & must leave X eventually, i.e.
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ke MV 2k ay € X. (x).

Now define for ¢ ¢ X the natural number
lel = max.{[R] | f: ¢ — bl.

By hypothesis (2), [¢! is indeed defined. Note that for all c,c’ e X:
c—>c' = || » lev].

Now we will prove by (course-of-values) induction on |c| that X is

closed under reduction, il.e.:
ce E&c—rg' = ' e XK. {x*)

Then we have a contradiction with {%) and we are done.

BASIS. Suppose lc| = 0. Then c is in fact the normal form b and (**) is

vacuously true.

INDUCTION STEF. Induction hypothesis: suppose (%%} is proved for all c € X

such that |zl £ n.

Now consider c, ¢ X such that [cO[ = n+l, (See figure below.} Let
¢ € X be such that ¢, —* ¢; then lel s n. Suppose (for a proof by contra-
diction) that CO —+ d for some d ¢ X. By WCR, ¢ and 4 have a common reduct
e. Bince @ ¢ X, aleso e ¢ X. Hence there are ¢, e' such that ¢ — ¢! —
e' —» e and ¢’ ¢ X but @’ ¢ X, Now Tc'l £ |el < ]COI, so the induction
hypothesis applies to ¢' and we have a contradiction. Hence (%%} is proved

0

£ [ =J
SOr Sg



5.19., COROLLARY.
(1) WCR & WN & Ing = UN & CR & SN
(ii) WCR & Inc = ({WN < SN).

BROOF,

(1) Hypothesis (2} of theorem 5.18 is ensured by Inc.
(ii} Trivial frem (i}. [

55
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5.20. The figure below gives a survey of several of the facts treated in

this section,

<
W’CR"1
NF < cR § CP
WN & UN Consistence
SN & WCR
Ind & Inc : WCR
WN
Inc

B & WF

Some implications holding for ARS's.
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6. THE CHURCH-ROSSER THEOREM

After the digressions in the previous section about Abstract Reduction
Systems we will now rveturn to the main theme of this Chapter, A-calculus
plus labels and definable extensions AP of l-calculus. Note that these ‘con-
crete' reduction systems are also ARS's; so the definitions and propositions
in the previous section apply to them. Often we will be able to prove re-
fined results for these systems, by considering not only the binary reduc-
tion relations M —* N, but the ternary relation M —5+ N obtained by speci-
fying (the occurrence of) the contracted redex in M.

We will prove in this section that AL, AE F= CR, i.e. the Church-Rosser
theorem holds for Lévy's A-calculus, hence for all other labeled (typed,
underlined) A-calculi we considered in §3, and for definable extensions of
A, hence for CL.

Let us remind Def. 5.2.(4) of CkR: 1f ﬂi =A— ... —* B and
#i_=A-—> ... — ¢ are two 'divergent’ reductions, one can find 'conver-

2

gent' reductions 83 and 84:

An alternative formulation (easily seen to be equivalent; see also

Prop.5.3} is:

VB, ID (B =C = B —» D & ¢ ~» D)
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e.qg.

“ \D/

Some lmportant consequences of the CR theorem are mentioned in Theorem 5.11.

We will prove CR using FD (Thecrem 4.1.11). In fact a strengthened
version CR+ is proved; namely, there is a canonical procedure of finding
the common reduct D of B and €, Moreover we will obtain as corollaries the
well-known Lemma of Parallel Moves, and the commutativity of g- and Pi—
reducticns {(see Def.5.2.{1)).

An almost similar versicn of CR+ for AL.was first proved by LEVY f781,
not via FD however. Here we look in a slightly more detailed way to what
happens in a 'reduction diagram', which will help us in Chapter IV to deal
with Bn-reductions.

The method below of constructing a reduction diagram by 'tiling' was

independently considered by Hindlevy (in an unpublished note).
6.1, CONSTRUCTION OF REDUCTION DTIAGRAMS

Let two coinitial finite reduction sequences #, = M, — ... —+ M

1 a

and Rz = MO —_ Mi-—u+ I e M$ be given. We want to construct a Commen
reduct of Mn and M& by filling up a dlagram D as indicated in the figure,
vig. by successively adjoining 'elementary diagrams'; these are the dia-

gramg which one cobtains by checking that AP F: WCR {(Daf.5.2.(2)).
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The order in which the elementary diagrams are adjoined, is umimportant.
Tt is fairly evident what is meant by 'elementary diagrams’; however since

we will use 'empty' steps, we will now 1iet them.

6.1.1. For the A-calculus the elementary reduction diagrams are of the fol-

lowing types.

R
(1) 1 N 5
8 B 8 .
3 1
R2 2] nz 0 times; for n = O B : =

: i
] |
K !
b kY, b b
. g

B B8

Here R2 < Arg(Rl), the argument of Rl' and mult(Rl} = n where mult{(Ax.A)B}
is the multiplicity of x in A.

In case n = 0 and ‘emrcy' or trivial' step is intreoduced.

R_|B a8 if R1 2 R, and not case (i).

2

™
S
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(1ii) . R,

if R, = R

[RE]
—
3%

(iv] R {v) =

i
i1l

- e ————

Further, we have all the elementary diagrams obtained from these by re-

flection in the main diagonal.

6.1.2. For definable extensions AP we have moreover the following elementary

diagrams:
(i) R1 .
P A n =z 0 times, in case R2 is a subterm of one
st 8 of the argquments of Rl‘

: Likewise with B8 and P interchanged, if

i R2 < Arq(Ril .

8

W ¥

{ii)

'l .

R
1 L
P
RE B 8 if not case (i}
Likewise with B, P interchanged.
P 7



6l

(1ii} R . {iv) ) R .

P ’T I P I

[ L

I 1 |
R|P I | I _
I= = | =

1 { |

¥ | :

El | X

Vo _t L R

= P

Further, all the diagrame obtained from these by reflecticn in the main
diagonal.

The =—=——=—=- steps, at which nothing happens, are called trivial cr
empty (f), and serve to keep the diagram P in a rectangular shape. This
enables us to hawve the intuition of reduction gtaps in a reduction diagram
D as objects 'moving' or 'propagating’ in two directions i and ~eeer . may
be 'splitting' on the way or becoming absorbed (= changing in a @-step.)
This intuition will prove to he especially rewarding in the fEn-case, which
is dealt with in Ch.IV.

Note that in each case the redexes contracted in the side BD are

& B

C D
raesiduals of the one contracted in AC, likewise for CD and AB.

6.1.3. ELEMENTARY REDUCTION DIAGRAMS WITH LABELS

Let an elementary diagram (e.d.) ¥ as above be given, say

M
My s 713
BM

B D 4 where My {1 =1,...,5) are unlabeled -

B terms.
LY
M B Mg
2 II
L
Mow let I1 be some Lévy-labeling for Ml; result: a A" -term Ml . Then one

I
has to check that D extends to a labeled e.d. U
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M ! s M 3 That is, Ml -4-M2 —~4-M5 extends to
' I I
" 4 ML " 2 M 5r

T
L 4 1 2 5
|

D I and Ml ——ﬁ-M3 —_— M4 ———r M5 extends to
2 = Il 1‘3 1'4 I
2 5 M —_— M. = M —r M_", and now’

1 3 4 7

we mist have I5 = Ié. This is a tedious but routine exercise which will be

left to the reader.

Since the extendability of e.d.'s ! to labeled e.d.'s PI holds for
AL, it holds alsc for all of the ‘homomorphic images' of lL, that is for
all the labeled/typed/underlined A-calculi we have encountered thus far -
except underlined Ap-calculi (definable extensions of A-calculus). For the
latter a separate routine exercise yields the same result.

Since developments are a special case of underlined reduction in A-—

calculus or AP-calculus, we note in particular that for developments we

” have e.d.'s.

6.1.4. DEFINITION. Elementary diagrams having two or more 'empty' steps, are

called trivial.

6.2, NOTATTION.

(i} In the remainder_of this chapter 'I' will dencote a definable extension
AP of A, or a substructure of AP (w.r.t, © as defined in 5.10). So I
refers for instance to A, AI, AP, AIP (as defined in 7.1.}:
and CL.

{ii} I denotes the underlined wversion of I, as defined in 3.5.
6.3. PROPOSITION. I k CR.

PROOF. By Theorem 4.1.11 we have ¥ F= SN, By 6.1.3 we have T Fr WCR. Hence
by Mewman's Lemma 5.7.(1), I E cr. O ’

In the next lemma the preceeding proposition will be considerably
strengthened. For that purpcse we need transfinite induction up to the or-

. tn
dinal number w . Therefore:

. . . o
6.4, INTERMEZZ0. Trapnsfinite induction up to w .
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6.4.1, DEFINITION. (i) Let ¢ be some ordinal, and let T he the set of all
n-tuples <B£""’Bn> {(neN) of ordinals less than ¢. Let = be the equiva-

lence relation on T defined by:

i = >

(1) <al,az> az,ul

i3 = gf = ' x ot . R % de-

f1i) t=2 &' = t1 * £ o*x t2 t1 % t 2 For all t1 t2 ¢ T. Here e
notes concatenation of tuples,

(1i1) t1 = t2 & t2 = t3 = t1 S t3.

Further, let T be the set of equivalence classes of T under = . So alements
of T can be thought of as tuples <81,...,6n> where the order of the Bi
(i=1,...,n) is irrelevant. We call the elements of T alse 'multisets',
(ii} Now consider the following 'reduction relation' — on T: in
<81,....Bi....8n> an arbitrary'Bi (i=1,...,n) may be replaced by an ar-
bitrarily large finite number of slements YiqreeeVig each less than Bi.

So

e I Foomr Y. geac¥. sanas .
<81r 81 Bn i ‘51 lel Y] ' Bn>

6.4.2. PROPOSITION. The reduction relation — on T is strongly normalizing.

In fact —% is a well-ordering of T of order type w®

PROOF. Group the elements of a given tuple together as follows:

<Terlr---:Y1l sz---rYzf ------ ' Ykl---r"{k)‘
L y o 1 v \___V__,___;
n1 times n2 times nk times

such that 11 > To ol ® Yk’ Assign to such a tuple the ordinal
Y1 Yk

w ny LR S} oy (a 'Cantor normal form'). The proposition now fol-

lows by elementary ordinal arithmetic, [

+ . - .
6.5. MAIN LEMMA. E_F= CR , i.e. each construction of a I-reduction diagram

{as In 6.1} terminates.

PROOF. Consider M ¢ Tex(E) and I-reductians 81, 82 as in figure £.5.1. Let
the reduction diagranm D(ﬁl,ﬂz} be tonstructed up to the displayed stage, by
the successive addition of elementary diagrams. Compared to Proposition 6.3,
there is now the additional problem of the trivial steps in the e.d.'s; a

priori it would be possible that they would make 9(31,32} "explode™, i.e,
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that the comstruction deces not terminate but regulte in an HEscher-like

figure, with ever decreasing tiles, az in figures &.5.2 and &.5.3.

5| /! A
1 a

&

2

stage of construction of
T (63{1 ,022)

F

3
A A4 AE

Z
n

Figure &,.5.1.

Figure 6.5.2



65

Figure 60,5.2

{In the last two figures care has been taken of the constraint that an e.d,

can split at one side at most; so e.qg.

is impossible. Figure 6.5.3 is the result of starting with the part boundsd
by ABCDEF, reinserting an isomorphic copy of this part in the coxner CDE,

and repeating this procedure ad infinitum whenever such a corner ic formed, }

Give M a qood weight assignment (see Definition 4.1.6). Extend ﬂ. R
and all the reductions in p{ﬂl,ﬁ } as far as completed, to reductiocns w1th
weight assignments. By Lemma 4.1.10 the weight assignments stay good for all
the terms in these reductions.

Now assign to each construction stage of D(R ,82) the multiset of

natural numbers <]A11,IA I,...,]A 1> where the A are as in figure 6.5, 1

and |Ai| is the weight 0: A, U= 1,...,n}. {In fact we should write [A |
where Ii iz the weight assignment of Ai.)

Next consider what happens to this multiset after adding an e.d. IF
the e.d. is trivial, the multiset remains the same. Otherwise, suppose that

we add, say:
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AG A?
\Bl

92

iy 7B
5 3

Now all the steps are proper reduction steps, so |A6| » FBiI: i=1,2,3 by
Lemma 4.1,10{(ii). Hence the multiset corresponding to this stage of the
construction, <|All....,!1%5[, IB3F. |32I, lEll, |R?If---;|hnl> is less than
the previous one w.r.t. the well-ordering in Proposition 6.4.2.

Therefore after some stage in the construction, no nontrivial e.d.'s
can be added, Further it is clear that addition of trivial e.d.'s {(which
have no '"splitting' effect) moust terminate too.

Finally, each diagram construction ends in the same result. This is
evident by Lemma 5.7.{3), considering as objects: stages of construction,

and as reduction: addition of arn e.d. []

In fackt, we ¢an obtain more information out of the proof of Lemma 6.5,
In order to state a refinement of this Main Lemma, we need the following

definition.

6.6. DEFINITION. (Complete developments)
Tet M £ Ter(E} and let IR be the set of underlined redexes in M. Let
R=M— M — ... =+ N be a maximal E-reduction; i.e. N is a I-normal
form, hence N contains no underlining.

Now let ﬂ* be the I-reduction cbtained from & by erasing the under-
lining symbols. Then & is called a compiete (L-)development w.r.t. the

set af redexes .

' £
6.7. CONVENTION. Let M, IR be as in Definition 6.6 and M be M without un-

derlining. Henceforth we will ldentify:

(maximal) E-reductions of M, and

{complete) I-developments of M w.r.t. R.

6.9. REFINED MATN LEMMA. (I} First formulation.

Let M £ Ter({I). Let IRi {i = 0,1) be two sets of redexes in M, and let ﬂi

be two complete developments W.r.t.imi (i = 0,1).
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Then the construction of the L-reduction diagram D(Ro,ﬁi) terminates (see
following figure) and the right resp. lower side Mi —r M2 is in fact a
complete development of E%_, the set of residnals of the redexes in R,

1

(i =0,1).

(11} Second formuiation.
Let IOl be E where the head symbol of a redex may be labeled with 0,1 or

01 and where cnly reduction of labsled redexes is allowed. (So 201 is 1ike

L, but now using underlining symbols of two ‘colors'.)

et M < Ter(ZDl) and Iet HO be a I_ -reduction of M in which only 0~ or 0i-

01
redexes are contracted; likewise in ﬁl only 1- or Ql-redexes are contracted.

{(See figure.) Moreover, in MO no label 0, 01 is present, and M, contains

i
no fabel 1, 01. Then
{i) the construction of the EOI—reduction diagram U{ﬂo,ﬂli terminateg;
(i1} im the right side MO — M2 only l-redexes are contracted and in the

lower side only O-redexes:;

{1ii} moreover in M2 no labels are present.

R, complete development

0
of 0-, Ol-redexes
M M_{3x ,P
- o7 0Ty
P | P
0" 01’ 0'P01 N
s

fA)

; :

r — |

al o

o _
ek >
B 8 G %
° . Sl I
u e T s N NPy - o
] X — &G 4
2 o propagation s 'ELJ-

By =i g
5 O W
3% oo

rg‘ﬂ
N
P
Ao 0
> i ‘f
AP eIM i

( 0’ OE) I complete development Mz

of O-redexes
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PROOF. Clearly (I) and (II) are equivalent formulations. We will prove (IT).

{i) There is an obvious projection I —* I, namely replacing AD'll'AOI by

01
A and Fh'Pl'P01 by P. So an 'exploding' EOl—diagfam would give rise to an

exploding I-diagram, in contradiction with the Main Lemma 6.5.
(i) The steps in & are contractions of labels 1 or 01, hence for the

propagated steps the same holds. Therefore in M, —% M, only label 1 con-

0 2

tractions can occur since in MO there are no labels 0l. Likewise for ﬂo.

{iii) Temediate by the Fact that in Ml no label 1, 0l ocours and in MO no
label O, 01. 0O

as a first corcllary of the refined Main Lemma we hawve

+
6.9. CHURCH-ROSSER THECREM. F F= CR , I.2.;: Fet & = M —— Ml —_—r ... —* N

and R' = M ——4-Mi —* ... —+ N' be E-reducticns. Then W, N' have a common

reduct which can be found by the comstruction of D(ﬁl.ﬁz}.

7

AN

NN

ﬂr
c.dev
c.dev c.dev.
o, dev.,
NI

Using the refined Main Lemma we can fill in block by block of the diagram
DR, f"). Here we use the fact that a single reductiom step is trivially a

complete development. [J
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€.10, NOTATION. (i) If R 82 are two coinitial reductions, the right side
of ﬂmﬂ ﬂ 1 is denoted by L /ﬂ and will be called the projection of ﬁ by

CRI. Ll.kEWlSE for the lower side-

®
N 1
R2 F(ﬂl, ﬂzfﬂl
M
3
1/ﬁ2
(ii} If Rl =M — ... —+ N and ﬁz =N-— N' — .., is a finite or in-

_..._..).N

finite reduction, then Rl * ﬁz denotes the concatenation M —

— N — .

(iii) If & consists of one step, & = M —E&-N, we will write R = {Rr}.

6.11. REMARK. Even if ﬁl ig infinite and ﬂz is finite, the reduction diagram
ﬂ(ﬁl,ﬂz) and the projection ﬁl/ﬁg are defined.

%

6l
2

¥

IJ(-Rl ,ﬂz)

Ry /8o

The second corollary of the refined Main Lerma is:

6.12. PARATLEL MOVES LEMMA (PM).

(i) Let in M some redexes be labeled with 0. Let RO be a complete develop-
ment. {c.dev.) of the O-redexes, and let ® be an arbitrary reduction M —= N.
{See figure,)

Then ﬁo/ﬁ is a complete development of the O-redexss in N.

M R N
. dgg AO'PO ﬂ(ﬁ;ﬁﬂ) i.d;v.
. oo
4 Y

(ii} As a special case of (i) we have:
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M i

)

b P, {r})

s
e a3

Fie Y e T e I s |

\/ . Y

e

{likewise for PO instead of 3\0)

PROOF. (i) Induction on the length of &. []
Thirdly, we have at once from the refined Main Lemma:

6.13. COROLLARY. Let & be (a substructure of) a definable extension

<Ter{AP}, —*, =+ > .
( B Pi isd

Then the reductions -—, 1}3-_# (ieJ) are pairwise commuting (see Defini-

B i
tion 5.2.0(11).

6.14., REMARK. By 6.1.3 it is clear that the results of this section general-
ize immediately to the case where L- or HW- labels or types, as in section 2,

are present.

6.15. EXAMPLE. TIn the next figure an example of a A-reduction diagram is

given:
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Ia.)

Ax.xx and R

{Here w

wfaa)

w {wal

1w { wR)

o "
A B
o o
o o
IIIIIIIIIIIIIIIIIIIIII M -II|I|II!|||!.|-I||I|IM
o
3
s w
= i}
S —— +— - — —— —— — —— — = —
Y _ _
I I
I I
I I
I I
—_1 I
o [
_— v} '
L 3, I
=2 st 1
= | :
is} us]
= U S O S '}
e
32
- o
m fis
3 e -
3
™
2 !
i 3 1
o I
|
|
]
4 = =
] E) 3
[+ m
] & o

aa (wa) aa{wal aaflaal

aa (wR])

akR {wR}
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7. CHURCH's THEOREM

A well-known thecorem in CHURCH [41] (p.26, 7XXXI) states that for AT-
caleulus a term is weakly.normalizing (has & normal form) iff it is strongly
normalizing. A corollary {(p.27, 7XXXII) is that a AI-term has a normal form
iff all its subterms do. For A-calculus Church's Theorem fails as the term
(Ax. 1} (where & 2 (Ax.xx) {ix.xx) and T

Mt.x) shows, since in (Ax.I) @ ~» I
the subtetm 2 is erased. Intuitively, the reason that AI satisfies Church's
thecrem is found in the fact that in AI there is no erasing possible. I.e.
in a reduction step every redex R, axcept the one contracted, has at least
one residual; in other words, a redex R cannot be 'thrown away', like @ in
the example above, or as in CL: KACIR] + &, (In fact, we will prove in
Chapter IT that Church's Theorem holds for all ‘regular' Cembinatory Redic-
tiocn Systems which are non-erasing.)

In this section we will prove Church's Theorem for definable extensions

AIP of Al-calculus,

7-1. DEPINITION. Let P be a set of new constants, P = (P, | i ¢ I}, and let

(as in Def.1.12.1} reduction rules be given for the Pi {ied<I} as follows:

Piai...an - QL<A1""'An'P‘ reassPL )

31 jni
for some Qi(xl""'xn'yl""'yn,) € Ter({AIl) such that FV(Qi) = {xl,...,xn}.
(So all the meta-variables Al,.%.,An cccur actually in the RHS of the reduc—

tion rule,)
Then the reduction system Al together with P and the new reduction
rules, is called a definable extensicn of AI-calculus. We will refer to it

as AIP-calculus.

7.2. EXAMPLES,

(1) AP where P = {I,J} and with the rules Tan — A, JABCD — AB(ADC) is
a definable extension of AL.

(ii) The set of terms built up from I1,J as in {i) and with the same reduc—
tion xules, is the reduction system CLI (which is the non-erasing
variant of CL, as Al is the non-erasing variant of X).

_ CL, is a substructure of ATP in (i} in the sense of Def.5.10.(2),

{iii) AT{P} with the rule PaBC —* P(AC)B is a definable extension of AL,

which will play a role in the next section.
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7.3. REMARK. (i} As in the case of AP-calculi (definable extensions of A),
it is not hard to prove that for P finite, the new constants Pi plus their
reduction rules can be defined in AI-calculus, using the multiple Ffixed
point theorem for AI-calculus. Here the condition that the meta-variables
Rl,...,An ocour actually in the RHS of the reduction rule, is essential.

(ii) Note that AIP is non-erasing.

Church's Theorem will be a corollary of the following stronger fact:

7.4. LEMMA. Let I be a substructure of a definable extension AIP of AT.
Let 6l be an infinite reduction in L and ' = M >..,~ N a Finite reduction
in I.

Then H/R* is infinite,

PROOF, The proof is a consegquence of FD (4,1.11), CR+ (6.9}, PM (6.12) and

the fact that there is no erasure in I c© AIP,

Clearly it suffices to consider the case that &' = M —§+ N is one step,
in another notation: ' = {R}.
= #, infini M
M MD r Infinite Mn X . :ﬁu 1
rad -
; A
o T e T el
% 4o
3 1
0
= [(a x. 8 ®.T sp
R ( Ox AlB L %) 5 1 9
. NV SN — o e e e e memm e m— PP
=N = N = N
N=Ng N n i+

Suppose the lemma does not hold and R/{R} is finite; say after N it is
empty (*). Assign to the head-X of R the label 0 and to all the other A's
in M the label 1. Then ﬂi = Mn — Nn ig a development of lo-redexes (by
PM) .

How consider the first step in Mn —_— Mn —* ... where a ll—redex

+1
is contracted, say this is Mm — Mm+1' {(By D such a step must exist!)

2, = i - .
2 M o— Nm ig again a 10 development
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CLATM.
&t
Mm — Mm+1 / 2 2.

Then we have a contradiction with ().

PROOF OF THE CLATM. Since there is no erasure in I, there are ng elementary

'# or fi.e. n » 0 in 6.1.1.(i) and
-- 6.1.2.(1))

The only poessibkbility for absorption of a step is an e.d.

diagrams of type

&
R k
2 1w
___]
@
where R1 = R2. " "
Hepnce in m mtl
1 | the bottom side is not ¥, since in Mm
o the kl—redex ¢ the set of lo-redexes.
2 So the
o |
"1 2

bottom side is P, — P! — Ql' This argument can be repeated for the next

1 i
.d. !
a -Pl

etc. This proves the claim., []

7.5. COROLLARY (Church's Theorem).

Let L be a substructure of a definable extension of Al-calculus. Let

M £ Ter(R}. Then:

(i) M« WN <= M < SN.
In other words: if WM has a normal form W, then every reduction of M
terminates eventually (in N, by CR).

(ii) M = WN = ¥M' c M M' £ WN

(M has a normal form iff all its subterms have a normal form.)

PROOF. (i) += is trivial. = suppose M ¢« WN but M ¢ SW. So there is a reduc-

tion ' = M —» N to a normal form N and there is an infinite reduction
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=M —— ...,

By Lemma 7.4, /" = N — ... is an infinite reduction. This contradicts

the fact that N is a normal form. (ii) 1is an easy consequence of {i}. I

7.6. REMARK. In A-calculus one can ask what happens in a step P R o
which Is ‘critical’ in the sense that P ¢ SN but Q € SN. (So by Lemma 7.4
there are no critical steps in I ¢ AIP.) In BARENDREGT, BERGETRA, KLOP,
VOAIKEN[ 761, Chapter II, it is proved that in such a step the redex R must
be of the form (Ax.A)B where x ¢ FV(A}, i.e. R erases its argument B. This

result is refined in BERGSTRA, KLOP [78]1.

8. STRONG NORMALTZATION OF LABELED A-CALCULI (VIA AT-CALCULUS)

Introduction. In this section we will prove that lL'P (for bounded P} and
its homomorphic images RHW and 2t have the property of strong normalization
{SN), i.e. every AL'P—reductiOn {resp. XHE,RT—] terminates.

{1} Such a preoof can probably be given using Tait's method of (strong) com-
putability, although we have not seen yet such a proof for lL; for RHW this
is done by de Vrijer (unpublished} and for lr {and even for the much stronger
system A" + recursor R, also called "G8d&el's T"} this is done in e.g.
TROELSTRA [73]. Metamathematically speaking the method has the drawbhack of
using rather strong means, but it is amazingly slick.

{2} Another proof for RL F= SN is by a method due to D. van Daalen; see
LEvY [75,78].

{3} For AU+ R there is a proof of Howard, using an ordinal assignment up
o €’ but only of WN. It is complicated but constructive, as opposed to
Tait's method. See SCHUTTE [77] 516. (Instead of R, Schiitte nses the iter-
ator J.)

(4} For P (+ numerals and some bhasic arithmetical functions: successor and
addition}) a proof of SN was given by Gandy (umpublished) wvia an interpre—
taticn in lIT, typed AI-calculus.

{S) Here we will give a proof of SN for the stronger system lL also wvia an
interpretation in XIL, Lévy-labeled AI-calculus. Apart from the idea of an
interpretation, there seems to be no resemblance with (4}.

{6} DB VRIJER [75] and NEDERPELT [73] prove SN for certain A-calculi (re-
lated to the AUTOMATH project of de Bruijn) having A-terms as types.

{7} After this Chapter was written, we have elaborated the idea of this

section in a general setting; see Chapter IZ. There we use a method due to
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NEDERPELT [ 73] in an essential way.

In fact, the result in this section is a corollary of a general theorem
in Chapter II; nevertheless we have maintained this section £ here since it
provides an intuitive idea and an introduction to the part of Chapter II in

questicn.

The next lemma was independently proved by J.J. Lévy (personal commu-
. HwW
nicatien), By AT we mean Ail-calculus plus Byland-Wadsworth labels as in

L;P

3.7 likewige for AI {(AI-calecnlus plus Lévy's labels, see 3.9) and 21"

{typed AIl-calculus, see 3.8).

8.1. LEMMA.

(1) At L osw

(11} AT""" £ SN for bounded P
(114) 21" b sw.

PROOF. We will prove {i}; by Proposition 3.9%.3 this implies {ii), which im-
plies {ifi).

Suppose that there exists an infinite reduction ® in XIHW, starting
with M. Mow consider a reduction 6i' of M chtained by repeatedly contracting
an innermost redex (lx.A)n+1 B, Such a contraction deoes not multiply exist-
ing redexes (since B contains none), and the redexes which are created by
this contraction, have degree < n+l. {(See 3.7.2.(ii).) Let #' be
M= MO —~+—M1 —+ ... and assign to Mi (i =0,1,...) the maltiset of de-
grees of redexes in Mi {Def.6.4.1). Then, by our previous remark and by
Proposition 6.4.2, we see that H' must terminate, say in the IIHw-normal
form M . .

n W

Now construct the AT -diagram D(R,8'). {Sece figure.) By Lemma 7.4
{which holds alsc in the presence of labels; see Remark 6.11] it follows
that #/8' is infinite. But M is a AT _pormal form, hence @/f/' must he

empty. Contradiction.

wsu, ! -
i DR, ®")
My R/R T
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8.2. INTUITION. The above simple proof suggests that it might he profitable
to interpret lL in AIL. .

Firstiy, let us simulate a given reduction # = 4 —— ... in A-calculus
by a reduction ' in AI-calculus as follows. Replace in M every subterm
Az.A by Ax.[A,x] where [,] is some pairing operator to be specified later.

How consider e.qg.:

in A-calculus: # = {ix.I) ABC —— IBC —> BC —r

in AI-caleulus: ®* = (Ax.[I,x]} ABC — [I,A] BC — ?

In order to be able to simulate the second step in #, we are led to
introduce the rule: [M,N]L ~~~> [ML,N]. Bnd now the second step in & can

be simulated:
l1,nIlBC ~~> [IB,A]C ~~> [IBC,8] — [Bc,A].

In this way we ensure that the 'dummy subterms' A which are carried along
in [...,A] do not form an chstacle to perform the 'proper' reduction steps

which are copied from #.

Secondly, we have to add L-labels. Everything extends to the labeled
case in a pleasant way; there is only one 'caveat': the intuition that in
[a,B] the A is the proper part and B is the dummy part, suggests that we
add the rule for label manipulation

[B,B]a _— [AG,B].

The necessity of this rule can be illustrated by the following example:

[a,B1% ¢ > [ac,B]*
] . not |
¥ 1
(a%,2] ¢ '
t
W
[a%,B] # [y, B]

8.3, DEFINITION. Let AP be the definable extension of h-calculus obtained

by adding a constant P with reduction rule

Papc ~w~r—> PLBACIB
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for all A,B,C ¢ Ter({AP).

8.4. PROPOSITION. Every M ¢ Ter(iP) has a P-normal form M', i.e. M' con-

tains no P-redexes and M ~u M!'.,

PROOF. Dafine the tree t(M} of 4 ¢ Ter{iP) inductively as follows.

i} tix) = x and t(P) =F

/N

{iii} t{ix.a) = R

fiiy - tiaB) =

/2N

E.g. t{(Ax.Pax(yy)}) (Ax.xyP)) =

So P-reduction in tres form looks like:

g by

VAN
SN
AN

How consider E{M) as a partial
ordering (p.o,) of its nodes.
Then if M ~> M', the p.o."'s
t{M} and t{M') contain just as
many points, but in the p.o.

t(M'} more pairs of points

are comparable. Hence the proposition follows, since in a p.o. of say n

points the number of comparable pairs 1s bounded (by (g)). O



We will restrict the set Ter (AF) to those terms in which every P is
followed by at least two arguments, (T.e. every P occurs as the head symbol
of Phlhz...ﬂn for some Ai,...rAn and n = 2.} Furthermore, we will write
(a,B] instead of PaB.

8.5. DEFINITION, lr ] is the reduction system <Ter(1[ j)‘ —Eq , ~> > where
. ]

Ter(lr ]} {the set of terms indicated above) is defined inductively by the
=

clauses

{iY, (1i), (1ii) similar to Definition 1.1 of Ter{i)

{iv) A.B € Ter(h[ 1) = [a,8] ¢ Ter(h[,])

and ~~> is defined by [a&,BJC ~> [AC,B].
{T.e. the translation of the P-reduction rule in Definition 5.3.)

A [,)-normal form is a term in which no ~~~>-step is possible.

8.6. DEFINITICN. (1) R iz a reduction relation on Ter(}xr ]) defined by

(a,B] —E—+-A for all A,B « Ter(ltr]).

Obviously every k-reduction ends, in a unigque term ¢ Ter(i} (the k-
normal formj}. The unicity follows from a simple Church-Rosser argument

fapply Lemma 5.7, (1) and Theorem 5.11.{2)}.

(2} e Ter(k[ ]) — Ter (i) is the map defined by

K: M +—— the k-normal form of M.

(Remark: ¥ can also directly be defined:

(1) ki{x) = x

(11} K(AB) = (x(R)x(B})
(iii} K{Ax.A}) = Ax.k (&)
tiv) k([Aa,Bl} = k(A).

But the propositions about k in the sequel are sasier to prove using —E+.)

B.7. PROPOSITION, Lef B ¢ Ter(R[ ]} be in [ ,]J-nf and let A —E+ B. Then B

ig in [,]-nf,



80

PROOF. routine. [

8.8. PROPOSITION, Let A,B,C ¢ Ter(hr ]} be such that A —E+-B —E+-C and A is
e -
in [,J-nf. (See figure.)

Then there is a D ¢ Ter(hr ]) such that A —§+ 3] ??b C.

'
i

L

o
™
0

PROOF. Just contract the 'same' B-redex in A as the one contracted in B. Tt
is routine to check that this is indeed possible. (We need A to be in

[,J-nf, for consider othervwise e.q.

a=zlI1,MmIN
lk
B 2 1IN z >N = ¢y, [0

8.9. PROPOSITION. Let B « Ter(l[ ]) be in [,]-nf and B,C ¢ Ter(}) such that
- r

A F?—+ B —§—+ C. Then there is a D ¢ Ter(X } such that A —+ D == (,

.1 P

A in [, ]-nf

B

)

b
L it

[
.

W
™
™

PROOF. Choose an arbitrary k-reduction from A ta B:

{n}
1 1l - \_a B.
A Al ¢ AT - k

Since A is in [,]-nf, by Prop. 8.7 also A(i) is in L,)nf (L = 1,...,n).
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N
Now repeated application of the preceeding proposition A B D
vields: (see fiqure) K k
N 3,: D'
k . k
R' DII
and since C is a k-nf (because B is) we have (D) = C. B
i i
' 1
i 1
{n) {n}
A jnl
R
k
Y
B B c

8.10. PROPOSITION. (i) Fet A,B,C ¢ Ter(lr ]} be such that C +~E—-A e B,

Then B —E—e-c or 4D ¢ A~z D 5 B. (See left figurel)

C

{(ii) Let A -~ B, Then k(A) = k{B). (See right figure.)

PROCF .
{i} routine.

(ii) immediately from (i). []
The next definition is ecrucial,

8,11, DEFINITION. Let Ter(hI[ I) be the set of l[ ]—terms suich that in terms
r r
of the form Ax.A the variable ¥ ¢ FV(&).

Now define 1: Ter(i} — Ter(J\I[ ]) inductively by
(i) 1{x} = x

(ii) 1{BB} = {t1(A)1(B))

tiii) 1{ix.8) = ax.[1(n),x].
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B.il.1. REMARK., If M ¢ Ter{i}, then obviocusly xe1{M) = M.

4,12, Bddition of labels. We want to reconsider 8.5-8.11, now in the pre-

sence of L-labels or HW-labels,
- e L .
Ad 8.5. The definition of l[ ]Jterms iz an unproblematic union of the
r

definitions of XL-terms {3.9) and of 1E J—terms {9.5).

Reduction in A? ] iz given by:

(i) {Ax.A} ES13 ——r— [x:=B£]A§-
{11} [x:=alx™ = &%

(iii) @B s A"

(iv) [a,8]% -—— [2%8]

{v) [A,B]C ~~=> [AC,B]

for ali A,B,C ¢ Ter(l? ]) and o,8,8 £ L. Reductions (iii), {iv) which con-
cern the manipulation-éf labels, are not considered as ‘proper' reductions;
we will execute them immediately whenever pessible (hence we work in fact
with ——— ~ normal forms}. In this way we ensure moreover what we need in
{v) (see the last example in B.2), viz. that a subterm [A,B] must be un-
labeled. '

ad B8.6(1) Define: [A,B] —§r+-g for all A,B ¢ Ter(l? 1
L 't

).
Ad B.6(2):

Define KL aimilar as before. The reader may convince himself that the ex-
tension of the Propositions 8.7-8.10 to the labeled case is entirely
straightforward and unproblematic. We will only present the extension of 1

to the labeled case:

Ad 8.11L. Let 1_: Ter(%L} ——*—T@r(ll? j) be defined by:
o ]

L
(i) 1L(x) = o
{(ii) lL(RB) = IL(AJIL(B)
(iii) IL(hx.A} = lx.[tL{A},x]
(iv) % = o an®

Now we get the [,]-analogue of lemma 8.1:

8,13. LEMMA. AI_ - {P bounded E sN, likewise AI?W} and AIF 3"
- ¥ - F
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PROCF. Suppose an infinite reduction @ = M — ... in say XI%'? is given.
r
As before, in 8.1, we find a terminating reduction ®' of M by contraction

of immermost redexes, where after each f-step we take the [, 1-nf:

DiR,R")

3!
/
}

a8
L/ F -
N in lI[']—nf

Bpplying Church's theorem 7.5 on lIr 7 a substructure of a definable
-
extension of AI, yields: ®/f' is infinite. Contradiction. [l

Finally we can collect the fruits of our labor:

P
8.14. THEOREM. A" (¥ bounded), 3™, 27 | sw.

PROOF. Suppose an infinite reduction & = M -Eza-... in A Fis given. Let
N = 1L(M): by Remark 8.11.1 we have KL(N} = M. {(See figure below.} Now re-—
peated application of the {according to 8.12) labeled versions of ‘Proposi-
tions 8.9 and B8.10(ii} yields an infinite reductlon LT Y lIr ? as in the
figure, But this contradicts Lemma 2,13, Hence 1 F— SN; for the other two

reduction systems SN follows from this, as before,

f' in RI£ ]
iy H— > -
___E__ﬂﬁ; 3 5
ol e “of /L “L L
ﬂ in >l I; kY 3’
M 7 g 7 T
B L
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9. STANDARDIZATION

In this section we will give the first of two new proofs of the well-
known Standardization Theorem for Af-calculus. This proof extends {see 9.10)
also to definable extensions of A-calcoulus; but in 5.1 - 9.7 we will con-
sider only AB-calculus, for nctational simplicity. In Chapter TV the same
method will be used to prove the Standardization Theorem for Afn—calculus.

In fact we will prove (see 9.8.3) a strong version of the Standardi-
zation Theorem, due to LEVY [72]. To this end, in 2.8 Lévy's concept of

'equivalence of reductions' will be intreoduced.

9.1. DEFINITION. Standard reductions

A reduction @ = MD — Ml —+ === (finite or infinite) is standard if the

guccessive redex contractions take place from left to right.

More precisely: let * be an auxiliary symbol to ke attached to sane
redex-A's: (A*X.A}B, indicating that it is henceforth forbidden to contract
this redex. Now the reductien ® is provided with markers * by the following
inductive definition.

Suppose up to Mn

-1
R
u ~Bapy where R iz the contracted redex. Mark
n n+l n

the markers are attached. Consider the step

k3
(i} every % in L which descends from a % in M o1
{ii) every A in Mn to the left of the head-} of Rn, if not yet marked by

(i) .

Now we define: ® is standard if no marked redex is contracted in &,

9.1.1. REMARK. (1} Tt is equivalent to require in (ii}: every redex-% in
Mﬁ to the left of ... and so on,
{2} Tt is easy to see that this defipition is equivalent to the usual one,
as in HINDLEY [781, in terms of residuals - but we find that the use of =
facilitates our way of speaking.
{3} Hindley distinguiches 'weakly standard' and 'strongly standard'. His
"strongly standard® is the above concept "standard'. Hindley proved that
for the Af-calculus the two concepts coincide, see HINDLEY [78]).

Ry Ry

9.2. DEFINITION. Let R = MO ——+—M1 —= ——— bhe a finite or infinite redug—

tion sequerice. A redex R € M. is contracted in ® if for some n ¢ W, Rn is

0
a residual of R.
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9.2.1, WNOTATION.

(1) 1me(R) iz the Ileftmost redex in HO that is contracted in ®.

(ii) p®) = &/{lpc(®) }; i.e. p() is the projection of & by the contracticn
of the redex lmc{fl).

(iii} If 5,5" ¢ M, then s < s' means: s is to the left of s'.
If §,8' £ M, then & < 8' means: the headsymbel of S is to the left of

that of §'.

9.3. DEFINITION of the standardization procedurs

Let & = MO — Ml — ... Mn be a given reduction sequence. Define by in-

duction a reduction segquence ﬂs as follows:

lmc{pzﬁ)

R = v wct@® ] 1me (pR)

1
s M .

Mé -
a pessibly infinite sequence, It stops when there is po 1mc(pnﬂ) for some

. n
n, i.e. when p @ = @,

We will show that ﬂs ig "the" standard reduction for #; that is, ﬂs is
a standard reduction MO —* ... —+—Mn which is moreover equivalent to R in a
sense later to ke specified.

The constructicn of ﬂs is illustrated in the next figure, Ds is the

corresponding "standarvdization diagram".

Ds - MD & Mn
< 1mc {R) { Lmc (6 }/R
pft = ®&/{1mc (&)}
M'
1
line: {p@R) 5
. p &
MZ
ﬂs { uls {p2tﬂ) 3
. p R
lmc(pBQ) a
M p @
4
1 1




86

9.4. PROPOSITION. {imc{f)]}/® = @ (consists of empty steps.)

PROQF. Immediately by the Parallel Moves Lemma 6.12; let R in the figure
there bhe lmc(#}. The head-i of R, AO' is clearly not multiplied in &, since

it is lmc(®) . Hence after the unigque A.-contraction in R, no AO is present,

Q
in particular not in M_. By PM, {R}/R must be therefore empty. [

93.5. COROLLARY. The right side of'ﬂs is empty. [
9.6. LEMMA. ﬁs is finite.

PROOF. We will use the labeled AHW—calculus as introduced in 3.7.

Let us recall the main properties of these labels:

(i) every subterm of a given A-term has a label ¢ W written as super-
soript.

fil} the degree of a redex ((lx.Aa)de}r is d.

(iii} Indexed reduction ig defiped as in 3,7; for the application here we
need only to recall that contraction of a redex is allowed iff its
degree is > 0.

(iv} in an indexed reduction residuals of a redex with degree d, have
again degree 4.

(v} Strong Normalization (SN} for indexed reduction: ewvery indexed xe-—
duction terminates.

{vi) every finite reduction ® = MO — . = Mn can be extended to an in-
dazed reduction, by choosing sufficiently large indexes for MO and
'{aking these along' through #. Similarly for two finite coinitial
ﬂi, ﬁz.

Now take an indexing for & (by vi). By (iv) lmc(f} has the degree of
the residual of lmc{R) which is contracted in &; i.e. a pogitive degree.
Therefore the indexing can be extended to all of the diagram T({imc(&)}, 8.
Hence the bottom side of this diagram, ®', is again indexed. and so forth.
In this way the indexing of # determines a unique indexing of the whole

diagram Ds' Thus in particular ﬂs is indexed; hence by (v) it terminates. [}

9.6.1. REMARK. Instead of using SN for RHW to prove the termination of Rs,
one can alternatively use FD (the theorem of Finite Developments, 4.1.11).
"The proof using FD is somewhat longer: in outline i1t is as follows {(for a
complete proof see BARENDREGT T801).
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Suppose ﬁg is infinite. Then for some k. the projection of ﬂs by
MU L., —F Mk is infinite (see figure)}, i.e. contains infinitely many non-
empty steps, while the projection of ﬂs by My = e = M .y is finite, i.e.
centains only @ steps after some term B.

Let 81,82,33 be as in the figure. Now by PM(6.12}, @ is a development.

& Mk Mk+1

2

w
Mﬁ

™
sl
R )

ASARANARN

RN
u%
i
=

2

I

AN
VN S

NN

Furthermore, it is not hard to prove that the step {lmc{®)} propagates to

the right, without splitting, until it is "absorbed” as follows:

M, i (Agx.A') B M

el

lme{(fl) = (;\Ox.m_BzR

i

E

n 1 ‘
(ROK.A B i

Using this, and the fact that Rz is a development, one can easily show that
also ﬂl myst be a development; hence, by FD, ﬁl is finite. Contradiction.

Hence lﬁs is finite. [J

9.7. STANDARDIZATION THEOREM. Let & be a finite reduction. Then ﬂs is a

standard reduction for R, 1.e.

(1) ® and ﬂs have the same first and last term, and

{ii) ﬁs is standard.

PROOF. (i) is almost trivial: since 85 ig finite, the construction of the
diagram ﬂs = Dfﬂs,RJ terminates, hence ﬂs hags a bottom side, R/ﬁs. This
bottom side is empty, for otherwise RS would have gone Ffurther, by its
definition.

(ii) Attach markers * in ﬂs as described in Def.2.1. Suppose Hs is not
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standard,. Let MA be the first term in ﬂs such that in the step M& - Mé+1
a marked redex R is contracted. Let M; ke the term in ﬁs in which the
funigque) ancestor R' of this redex is marked for the first time. Label all
the A's in Mﬂ with distinct labsle such that AO ig the head-A of R', and

extend this labeling throughout the diagram in the figure.

o
g A ™
* A
}LU 1 = M" lil ;\12 . ;Li'k
N
i
i |
{
i 2
|
v
-
AO pmlﬁ
EMI - —r 7
- A, A A, A, oA, T X,
1l 11 1l 12 12 lk lk

n+l
was marked in M; for the First time. Hence 0 ¢ {il""'ik}’ because other-

Now 11, the redex contracted in Mg — M' , iz > ko in M&, since 10

wise Ap or a } < 10 should hawve been 1m0(pnﬁ}.
By the PM Lemma (6.12), the contracted labels in pmﬂ form a subset of
{il,...,ik}. Hence no LO can be contracted in pmﬂ, contradicting the as-

sumption that R = (le.A)B = imc{p"®) . [

9.7.1. REMARK. By the same method, one can also prove the 'completehess of
ingide-out reductions', as it is called in WELCH [75] and LEVY [75]. Here
the definition of 'inside-out reduction' {(noit to be confused with 'innar-
most' reduction) is analogous to Definition 9.1 of 'standard’™ reduction:
replace in Def.9.1 the relation < ('to the laft of') by £ ('subterm of').
Bo ipgtead of 'freezing' all redexes < the contracted redex by attaching
the marker *, we freeze all redexes © the contracted redex,

Now we have:

PROPOSITION, If M 7?% N, then there is an inside-ouf reduction M iégéﬁ L

such that ¥ —» L,

B

Since there is a short and elegant proof of the propesition in LEVY
L
[757 Thm.4, using X, we will give only a sketch:

Define, analogous to the definition of HS' a reduction ﬂi o by repeated
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contraction of an "innermost contracted redex" {instead of the "leftmost
contracted redex") .

The proof that such an Hi.o. fnot uniquely determined now, as ﬁs was) ter-
minates and is an inside-out reduction indeed, is entirely analogeous to the
corresponding proofs for ﬂs. Now let ﬁi o. be the reduction diagram cor-—

regponding to the construction of Ri o+ Cthen the hottom side is, as before,

@#. However, the right side of Di o, Will be in general not empty. So we have

which proves the proposition. ([}

9.8. Egquivalence of reducticns, In fact we have just proved something more

than Theorem 9.7 as it stands. In order to feormulate this, we will introduce
Lévy's notion of ‘'equivalent reductions'. The noticn is intuitively cleaw
and ties up nicely with AL. {In the next section it will be compared with
some other notions of equivalence for reductions.}

Suppose that & , 32 are finite reductjons such that ﬁzfﬁl = @. This

1
means that in 9(31;321 the steps coming from ﬂz (propagating to the right)

are "absorbed" by those of ﬁi {(propagating downwards). In an intuitive

Sense one can say: ﬁl does the same things as R, and possibly more. There-

2
fore:

9.8.1. DEFINITION (LEVY 78] 2,1.p.37).

fi) ﬁi = GQ s <= ﬂzfﬂl = @.

(i1} ﬁlleﬂg v e lRl 282 &6{226{1,
{ﬂi,ﬁz are 'Lévy-equivalent')



a0

9.8.2. REMARK. {1} It is not hard to prove that ='L is indeed an eguivalence

relation; the trangitivity is ensured by the 'cube lemma' {ses LEVY [781

2.2.1}.

{2) Warning: if Rz*ﬁ and & have the same first and last term, it does not
follow that ﬁ ﬂl. The notion of diagram is essential here. Counterex-
ample:

ﬂl = Q{I1) — [I, ‘Rz = QIT) — (1L, 83 = Q(II} — QI.
For then ﬂzfﬁl = QT — BRI # @.
{3} Lévy uses a slightly different but egquivalent definition of 81/82 and

of D(Rl,ﬂ2} {not using our e.d.'s).

Now we can prove the strong version of the Standardization Theorem for

AB—caleulus:

9.8.3. STANDARDIZATION THEOREM (Strengthened version, Lévy).

Let R be a finite reduction segquence. Then # is the unique standard reduc-

tion for 8 such that (Hs = i,

FROOF. (i) ﬂs = R is a direct consequence of the definition of = 7 For in-
deed in the standardization diagram Ds both the right side and the lower
side were empty.

(ii) Unicity. Suppose ﬂo is another standard reduction with the same first
and last term as i, such that & EL ﬂo. Then, because ﬂs QE % and hecause
= is transitiwve, we have ﬁp ﬁb ﬂs.

Now suppose that

@ Ry Rk.—
= ———— N
s MO Mk Mk Mn
and
o _ Ry Rg-1 Rt |
f= Mo T Mg T e T M

where R 4 Rk {as always: the occurrence of Rk # oce. of Rk
Then, testing whether 9(8 ﬁ ) has empty bottom and right side, we

have the following situation:
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cF
Ea
=
i
X
=

I 1 T
! . }
I I 1
1
I ! i
o |
b
g g gl
| | |
l i :
1 [
" e B Mkt by
8 B -
Rﬁ Ri Aé lé
o ’
HY ——
M1
@
1 |
Ml
Al S
_ k k
Suppose Mk = where Ak' lﬁ are the head-A's of Rk and

Rl'( and J\;: < J\k. (The other case follo;]s{ by symmetry.)

Now it is clear, using that Mk —_ .. Mn is standard, that ki propa-
gites without splitting or becoming absorbed. Hence the right side of
v(ﬁo,ﬂs} is not @, hence & ¥i ﬂs, contradiction. [J]

9.9. REMARK. All the facts in this section 9 generalize to definable ex-
tensions AP of k-calculus. In Def. 9.1: "frozen" P-redexes Pg are marked
as P*K; 9.2 - 9.5 also extend immediately. At this moment, the proof of
Lemma 9.6 does not seem to generalize to AP, since we used RHW F'SN and
for AP in general we have not vet a HW- or L-labeling available. However,
in Chapter II.6.2.7.15, we will extend Theorem 8.14, stating that

P
AW L

F BN, to a class of reduction systems containing the definable
extensions. Then also the proof of Lemma 9.6 generalizes to AP. Even now
we have the Standardization Theorem for AP, since in ILemma 9.6 we could
alternatively use FD (see Remark 9.6.1}.

The notion of Lévy-equivalence, the 'cube lemma' for AP, and the strong

version of the Standardization Theorem {9.8.3) also carry over, as one

easily checks.



22

9.10. REMARK. There is a close comnection between KL and QL' which is ex-
tensively studied in LEVY [78]. We mention a few points: the reduction graph
G(MI) of a Lévy-labeled term MI, is isomorphic with RED(M)/~ , the set of
finite reductions of M modulo = - The reduction graph G{M) of the unlabeled
term M, is a homomorphic image of RED{MJ/:i; that there is no isomorphism
between those structures is because there are 'syntactical accidents', as
Lévy calls them, The paradigm of such a syntactical accident is:
I(Ix) == Ix; in twe, clearly not Lévy-equivalent, ways I(Ix) is reduced to
the same result. For more examples of this sort, see our Examples 10.1.1.
LEVY [78] gives furthermore information about RED(M}/ei in terms of
lattices; e.g. they are not complete but can be completed by taking also
infinite reductions of M into account. As an example consider the lattice
{(not complete) RED(M}ﬁgL where M = [lx.Ka(x(m3m3)}(Kb). Here Ka := ix.a
and uy 2 AX.xxx. Tt is isomorphic with G({M), since there are no syntactical
accidents here. RED(M}/ﬁi can be completed by adding two péints, i.e.
ﬂl/gi and 82/21 where ﬁl =M —F L W WL ... ek L @w_w W .. and

37373 37333

32 =M — Ka{Kb(m3m3)) — Ka(Kb(w3w3m3}) —“ﬁ-Ka(Kb(w3w3w3w3)3 —_— ...

{infinite reductions).
M

Ka(Kb(w3m3})

\ (x.a) (¥b)

a

Reduction graph of M = (kx.Ka(x(m}wB}T}(Kb}.
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10. STANDARDIZATION AND EQUIVALENCE OF REDUCTIONS

In this section we give a seccond new proof of the Standerdization
Theorem, thereby demonstrating a close connection between Lévy-equivalence
of reductions as introduced in Def. 9.8.1, and standardizatioﬁ. We start
with comparing in 10.1 several definitions of equivalence which have been
proposed in the literature. In 10.2 we continue with = and show that it
can be generated by a 'meta-reduction = hetween finite reductions Rl' [

2

with fixed first and last term. ﬁ1,== 82 will mean that R2 is 'more stan-

dard' than ﬂi' The reduction =» has the following properties:
{1} it is strongly normalizing,

{2} it has the CR property,

{3) the 'e=r -normal forms' are exactly the standard reductions,

{4} it generates = as equivalence relation.

Moreover, we obtain a simple proof of the Standardization Theorem.

When writing this section, we realized that Prop. 2.2.9 in LEVY [78],
due to Berry, is roughly the same as (4) above. A closely related idea is
stated in BERRY-LEVY [79]; see our remark after 10.2.6. There however the
direction in = is not considered, and (hence) neither the connection with
standardization. ‘

In 10.3 we make scme remarks on the cardinality of an eguivalence

class [&3 .
i

10.1. Some definitions of equivalence between finite reduction seguences

10.1.0. DEFINITION.
(i} fl ~ 8" & &, ' have the same first and last term. (HINDLEY [78']
calls such #, /' weakly equivalent.)

{(ii) TLet & = My — .-« —* M_. Then: & ~r A e R ~ f* & for every redex

R C MDr the residuale of R via ® coincide with those of R via ®'.

{(This definition is introduced by HINDLEY [78'], who calles such
f, &' strongly equivalent.)

{iii) & ~s R = & ~ R* & for every subterm S c MD the descendants of S

via R coincide with those of § via @', (This definition is proposed
by C. Wadsworth in private communication to H. Barendregt.)
(iv) # ~a R == & ~ A' 2 for every symbol s € M_ the descendants of s via

(4]
# coincide with those of s via ®R'.
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{v) i = 7' = /R =f'"/& = @, as in Def. 9.8,1,

(vi} & s R, 'permutation equivalence', will be defined in Definition
10.2.2.

{vii) The following definitiom iz given in LEvVY [787 p.d1 Prop.2.2.2 and is
due to G. Berry:
[0 ~ fi' <= &, &' result from each other by repeated permutation of
adjacent complete develcopments.
(For a more precise definiticn see LEVY [78] p.41).

10.1.1., EXAMPLES. T

. _ 1 . 12 ,
{i}) f = Il(IZX] —_— sz and fi' = II(sz}l > le. 1, 2 serve to dis-

tinguish the occurrences of I. This example is from LEvy [78].

(1) & - K, (K,AB)B NLSTN K,AB and &' = X (K,AB)B 2, X 2B.

|

(i11) ® = (Ax. (37.A)K) B —X 5 (w.A)B

N e
;R = " -——BZ—> x.aly:=x{)B

Here x 4 FV(Aa).
{iv) TLet L be such that Lx —-% L(Lx}, to be specifiec:

I, = [iab.aa(aab} ][ lab.aafaab) ].
&

__» R
Then L(Lx) i L{L{Lx})) in two different ways.

(v} Define A, B such that Ax —* A(xI} and B —» BT.
£
Then AB -m3# A(BI) in two different ways.

For all the above examples we have ® ';’zL, +R' 9*"5 &,

(vi} & = II 12(13143{) '-1—"*"'"3—"'* 12(I4x) —5 I4x

Hr = 1] n u n > T _X.

4 2
Iow ® $L, ~r 7"8 ],

(vii) & = [iz_=(zx) JT — 11(12:;} — I X

i 2
‘Rr = " "
- =z L
Now R # , ~r s R,

{viii) Let A& = iab,aba. Then:

EkohlA2—+——>A1A2A1—‘—*—'—}32A1A2-"—**¥2§13{2Al=GR“
| S v i
R
1 s
W




(ix)

Now

& &

R'S"L| R &§'L

& ~
R ¢§ #L
In general, let C be a cyclic reduction: C = MO —_—F .. —vé-Mn =M
Let C(l} =C*C % .., % C (i timesg). Here * denotes concatenation
reductions.
. . {1} L0
Then {1} Vi,j i#3 =2 C $L ¢
. . (i) (3}
2] 4, . & C ~ .
(2) " if3 S

PROOF. (1) Follows directly from the definitioms.

(2)

Is a direct conseguence of the fact that there are only finitely many

binary relations on the set of subterms of M_, (and '... descends to !

o

a binary relation.} [

10.1

(i)

{ii)

.2. THEOREM.
= _r =
5 T .. ™ ~©
U(B}
s @ s
"R
The implications unpder {i] are the only cnes.

PROCF. (i) (1}: see LEVY [78] p.41,42

(2)
(3}

{4)

is proved in Theorem 10.2.6 bhelow;

is easily proved by tracing the subterms (or symbols) in reducticn
diagrams, starting with the elementary diagrams;

(=) follows since most of the symbols in a term are also subterms
{except A, and brackets);

{#) fellows since either a subterm is a variable (hence a symboll or
else it is compound, and hence determined by its outermost brackets.

Then apply the hypothesis to those bracket symbols.

95

0"
=33

iz
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The non-numbered implications are trivial.
{ii) That no more implications hold, follows from the preceding examples

lexample {wviii) sufficesy. [

10.1.3. REMARK. Note that all the equivalences considered in Theorem 10.1.2
have the following pleasant property:

Any two coinitial reductions ending in a normal form, are equivalent.
r
PROOF. Immediately, wvia = - ]

10.2. Standard reducticons and =

10.2.1. DRFINITION. An anti~standard pair (a.s.pair) of reduction steps is
a reduction consisting of two steps, which is not standard,

A A
10.2.1.1. REMARK. Obviously, 1f & = M L M' 2 M" is an a.s. pair,

A A
then M = ———EL——E-—-where ll, Az are the head-%'s of B-redexes and 12 < A

1
10.2.2. DEFINITION. (i) RED is the set of all finite reduction sequences.

{(ii} The 'meta-reduction' == on RED is defined as follows:

Ay A
(1) It R =m M" 2 M" 1s an a.s. pair, then & = ', where
®' is 'the' standard reduction for &:
2 Ag M A
‘Rr =M erl — - M".
| -

n=o time;

{2) If & = /', then ﬂl * R « ﬁz t:»ﬁl * @' % &2.
(tii) == is the transitive reflexive closure of =s .

# is the equivalence relation generated by =, called permutation

equivalence.

10.2.2.1. REMARK, Note the comnection between =+ and the elementary diagrams

introduced in 6.1.1, as suggested by the following figure (where 12 < ll):

My Ao M
Ay Ay
MoA Ny
Mﬂ M“
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10.2.2.2. PROPOSITION. (LEVY [78] 2.2.6 Prop.p.40).

iﬂl * tﬂ2/tFil = iﬂz * iﬁl,/lﬁ.z. I.e.: let & be the right-upper reduction of a

reduction diagram U and ®' be the left-lower reduction of T7; then R = 7.

!
Y
v
o
ar
PROOF. Simply by 'folding out' D:
‘Rl lﬁzf’lﬂ
= i
1
T low ey | % 18
172 '
n
] /R |
RI/QE b : i
21 i @
_______ L
g ]

Hence indeed # = &

1

* (ﬁ2/ﬂil s ! = tﬁfz # (ﬁlfﬁzl. []

13.2.2.3. REMARK. Let # be an a.s. pair and let fl = #', Then nRuL ', as

is evident from Remark 10.2.2.1 and the preceding proposition.

10.2.2.4. PROPOSITION (LEVY [78] Prop.2.2.4).

IftﬁuLﬁ', tbentRi *d’i*(ﬂsz(Ri * 8 *lﬂz.

PROOF., Immediate, by the following diagram construction:
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8} LiEA ﬁz
} ] 1
' ! i
il ! 1 1
1 : a ! Q iEi
! 1
R i P2
T T
F |
f ' i
14 i IE
!
R e
@ l
& R
I
2 2 2 Ig
N R I A
o] @ g

0
10.2.2.5. LEMMA. IFf ® ~ 8' then nRuL ],

PROOF. If & == @', then £ = ' follows by Remark 10.2.2.3 and Proposition
10.2.2.4,
_ From this, and the transitivity of = {(LEVY [78] 2.2.3} the lemma fol-
lows. [

10.2.3. PROPOSITION. == is acyclic.

PROCOF, Suppose not; that is; there is a = -reduction

HO =='81 =, ., = ﬂn = ﬁD' We prove by induction on [ﬁoi, the number of

steps of HO' that such a = -cycle cannot exist, (#). The basis step of the
induction is trivial. :

Induction hypothesis: suppose {*) is true for [® | < m. Now let !ﬂo| = m+l.

¢
Suppose for some £ < n the permuted a.s. pair is at the beginning of

ﬁE' as displayed below; and let £ he the Ieast such number. Then A

and the final reduction ﬂn must begin with the contraction of a

1 P

< . ® .
12 Z 11 < lo Hence 2 # ﬂo

i1f there is no such £, then erasing the first step in ﬁo,...,ﬁ vields
n

again a = -cycle Ré B L. = R; = ﬂé where Iﬂal = m; contradiction. 0
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jEE = M — -
a = X
1— M_ﬂ'ﬁ_._
A 4y

i
=
=
=
H
R

g
r
<K
\

R, . = M-—Ei—é Wit g o

.,

— X
Pz 0 times

=R =m —=
0 n

T I
10.2.3.1. REMARK. Note that & = I, (I,x) 2, T, x L.«
3 I I
1 2
_ " -
Rl sz x

is not a =+ —cycle, since we are considering reductions together with the

specification of contracted redexes. Hence ﬂo # 81,

10.2.4. DEFINITION, et R = M — | ,, —= N be a finite reduction. Then

the labeling I of M is adeguate for & iff R can be extended to a labeled
reduction MI —F L., NJ, which will be called RI.

10.2.4.1. PROFOSITION., Let # = M — ___ -—+ N. Then there is a labeling
I of M which is adeguate for &.

PROOF. Easy., [

10.2.5. THEOREM. (i) The reduction =— ig strongly normalizing (i.e. every

sequence fl = (' = A" = .. terminares).

{ii) *The = —normal forms' are the standard reductions.

99
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PROOF. (i) Suppose that there is an infinite sequence BO b ﬂl =L,

jet I be a labeling which is adegquate for ﬁo;

5 s {by Prop.10.2.4.1, I exists).
Now it is easy to see that the labeling I of MI is also adequate for

ﬂl =M -— ... ; we have only {0 check that things work for an a.s. pair,
as follows.

Consider the figqure

Here it immediately follows (from the fact that residuals of a redex
(Ax.PJdm have again the same degree d) that the degrees of the redexes con-
tracted from & to D to C are the same as the degrees dl'dz of the redexes
contracted from A to B to C. Further, the labeling I was adeguate for ﬁO’

hence d],d » 0. Hence I is also adequate for &

2 17
5o the supposed infinite sequence extends to the infinite seguence of

labeled reductions
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Now by SN for labeled reduction (Thecrem 2.14), every labeled reduction
starting from MI must terminate. Hence, by Kénigs Lemma, there are only
finitely many such reductions. Hence the sequance'ﬁI = ﬂ? = ... must con-

o}
tain a cycle. Contradicticon with Prop.l0.2.3.

PROOF of (ii). Suppose f is not standard. Claim: then ® contains an a.s.

pair. For, let

_ k-1 K
A=y == e =iy " Mg T T My,

i -y

a.s. pair

where k is the least number s.t. MO I I & Mk+1 is mot standard. Then
it is not hard to see that Mk-i -%-Mk —mé-Mk+1 iz an a.s. pair.
from the claim it follows immediately that the endpoints of magsimal

= -sequences are standard reductions. ]

2.5.1. COROLLARY (Standardimation theorem).

v 3 R~ & &' is standard.

PROOF. Every = -reduction of & leads to a2 standard reducticn &' for &, by
theorem i0.2.5. [

Next we will show that every maximal = -reduction of ® ends in a
unigue standard reduction ' for #. We can proceed in two ways: prove

directly that = has the WCR property, by means of checking several cases:

l/\ 1evﬁ&ﬂ-1fﬁ=ﬂmﬂ then

NN E‘R ﬂm}lﬁ‘ ﬂﬂlﬂ

R f' 4

Then by Newman's Lemma 5.7.(1} we have CR and hence UN (Unigueness of Nor-

mal form) for ++.. The other way is as follows,

10.2,6. THEOREM. R m ®' o= a~ .
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PROOF. {~#) iz Lemma 10.2.2.5.

(=) suppose K = /1, so PR,&) is like:

We will show that one can directly read off a 'conversion', say
Hemr=meae .., == R, from DR, ).
Ramember the 'construction of diagrams’® (6.1}, which proceeded as in

the figure, by adjeining elementary diagrams:

Iy

Here ﬁl,ﬁg are the two given coini&ia& reductions; the 'conversion' (i.e.
a sequence of — and «— ) FG = bl 'reduces' to the conversion T

i
via [.

Now suppose we have the completed diagram D(ﬁl,ﬁ2) availabhle, and con-
sider the following procedure of again filling up the diagram; but now

starting from the upper right corner:

This 'dual' procedure is in fact a = -conversion of the reduction 83 to

ﬂ4 via @, That is, every adjunction of an elementary diagram [] corresponds

either to
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{1} a == -reduction step, in case O is f

p=0 times

ar {2) an = -gxpansion, in case U is ﬁ p=0
times

or - (3} a trivial step, in case O is

]

pre
[ :

L]
bl
U S R

So filling up ‘D{Gl ,ﬂz) in this way yields a =~ —conversion, interlaced with
trivial steps, of reductions which are alse interlaced with trivial steps.
Omitting all the trivial steps, cone gets the desired Droper == —Conversion
R, = a_/& R = |, /8.
fron:l3 ﬁl*(2/11t04 82*(1/2)
In particular, for the &, &' s.t. & = #' we have a = -conversion be—

tween them. [
Before formulating the corocllaries of this theorem, we need the

10.2.7. PROPOSITION. Let ﬂl, ﬂz be standard reductions and suppose that
o |/, =®_.

g, By Then &, = &,
PROCGF. This is Prop.2.3.2 in LEVY [78] p.43. We have alsc proved it, inh
Theorem 9.8.3.(ii). [

10.2.8. COROLLARY. {i) EBvery =~ -eguivalence class contains a unique
‘== -normal form' {i.e. standard reduction).
{ii} = is CR

{iii) Standardization Theorem, strenghtened version:

For every ® there ig a unigque standard reduction ®' = &,

PROOF. {i), (iii}. Consider an equivalence class Eﬂ]ﬁ = {R'/8 =~ A}, By
Theorem 10.2.4.{i) there is at least cne '= -pormal form' in [‘R]ﬁ,' How
suppose there are two different = -normal forms lﬁi ..132 as in the fiqure
below.

By Theorem 10,2.5(ii), ﬁl ,622 are standard. By definition of a4,
ﬂl ] ﬁz, and hence by Theorem 10.2.6 lﬂl =~ ﬁz. Therefore, by Proposition
10.2.7, ﬂl = ﬂz.
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{ii} We have just proved the unigueness of == -normal forms (UN). Together

with SN for = (Theorem 10.2.5(i)) this vields CR {(by Lemma 5.7.(2}).

10.2.8.1. REMARK. (i} Corollary 10.2.8.(i) and (iii) are due to LEVY [7B8]:
see 2.3,4 Corollaire.

{ii) Theorem 10.2.6 is very close to Prop.2.2.9, due to G. Berry, in LEVY
[78] p.41, where it is proved that AL = =t Or Prop.I.2.7 p.25 in BERRY-
LEVY [79] where the analcogous fact for 'Recursive Program Schemes' is
proved. The theorem is even closer to a remark on p.25 of RERRY-LEVY [79]:
"In fact, it is possible to generalize this congruence only by the permu-
tation lemma of I.1.4". This remark amounts to: for Recursive Frogram
Schemes, = ¢oincides with the eguivalence generated by <=, whare <= is the

gymmetric closure of == for RPS's.

10.2.9. REMARK. Note the following correspondence between the present proof
of the Standardization Theorem and the proof in secticon 9: in the latter

proof we had the 'standardization diagram'

D =D&R) =
5 5

having the property that steps moving to the right (see the figure above],
do not split, Otherwise said, case (2) in the proof of Theorem 10.2.6 does

not apply here, Hence the above procedure yields not only a = ~conversion
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from & to Rs' but even a == -reduction from ® to ﬁs: {zee figure)

®

. reduces to IRS in six proper =— -steps.

1
H

mmmmpmemen
RPN RS

|
!

- — -

=

_.!I.- —-
TR

| S [ R

[ S B,

b-— - —
|
'
'
i
'

i
I
I
I
I
1
'
]
E
I

From the proof of theorem 10.2.6 we obtain the following

10.2.10. COROLLARY. Iet &' ,R" be two reduction paths in a diagram 'D(d?l,tﬂzj

having the same begin and end point. ‘Then ' = ®",

i0.2.10.1, REMARK. By Thecrem 10.1.2 hence also #' ~ &". So each symbol in
- ]

B traces back to a unique father symbol in A, regardless of the chosen

path. (For an—reduétion diagrams this property is lost, as we will see in

Ch.IV.}

In this subsection we will make a few remarks omn E‘R]m:
{1) in the M-calculus card. [ﬂ]su can be any number < NO, in AI-calculus

and JLT-ca.]_culus ttyped A-calculus) any n < H_, but not NO'

0
{2} we will give a condition for an & to have card. [lﬂ]m = NO' and show
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that this property of # is not decidable.

10.3.1. EXAMPLES.
Notation: Mr o= MILI...I(n times I); KI is shbrt for Ax.T.

Q= wwy; w = Ax,wm,

{1} ﬂn = KI(IINH} — KI(IINn—l) — ... KI({II} — KII —+ I
R 1= " — " — ... KI(TI} — I
It= .

"

!

. ———KI(ITI} % I

ﬁo = KI(II ) — T

This example shows that ¥n ¢ W 3R card [R], = n + L.

(ii)Letﬁn:Km—+KIQ—+...-—+K:m + T

| S— s
v

n times

Then ([Rojm’ =) is an infinite ascending chain:
RCI = ﬂl 4=HR2 = .,
{iii} The next example shows that also in AI-calcoulus card [ﬂ]ﬁ can be any
finite number > 0:
Let & = D — 171zt e L — 1.

Then card [ ] =n + 2.
¥

10.3.2. PROPOSITION. There is no Infinitely upwardly branching point in

{[H]m' =}, as in the figure:

PROCF. Let us distinguish two kinds of = -sgteps:
a) these in which the "contractum" (or permutation) of the a.s. pair con-

sists of at least two — -steps:
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- A—>B —> { ——
h-—-v——ﬂ

§

—— ==+ B! — = —+ O -

pzl times

(b} those in which the contractum is just one —> -step.

They can only be of the form

-~ ¢[x¥aB]

» ¢[KAB'] —— ¢[a) -—---

v

b

—~ g[KaB] —— ¢[a]

where €[ ] is some context, KA := Ax.A (x4FV(A)), and B — B'.

Now consider an #' as in the above figure. Only finitely many subreductioms
of ' can be the contractum of an a.s. pair. (A" is subreduction of

] ] - 1
fosp FRLQ R @ @ =&

In case {(a) the original a.s. pair is completely determined by the con—

tractum,
In case (b} there are just as many original a.s=. pairs as B has redexes,

Hence ' can be reached by one e= -step from at most finitely many ®". []

10.3.3. DEFINITION. {i} Let M ¢ Ter(A). Then «(M) will mean: M is not SN
{strongly normalizing), i.e, M has an infinite reduction. (Par abus de
langage: 'M is infinite’.)

(ii) If & is a finite reduction, Bs will denote the unicue standard reduc-
ticn = &, _

{1ii} [ﬂjﬂ = [R 6 e R}

{iv) I step €lxaB] — ¢lalis called erasing. Here KA := (Ax.A) where

x 4 FV(A). The term B is called the. argument of the redex KAB.
18.3.3.1. PROPOSITION. The property = of i-terms is undecidable.

PROOF. Suppose = were decidable Then so was the property "M is SN", in
particular for AT-terms M. Hence for AI-terms M, the property "M has a

normal form" would be decidable; but is a well-known fact that this is not
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the case. (See e.g. BARENDREGT [801.,) [

10.3.4. DEFINITION. Let @ ¢ Ter(A). The labeling I is callsd strongly ade-
gquate for 9, iff I is adequaté for every reducticon @ — ... — D' (=ee

Defl. 10.2.4}.

10.3.4.1. PROPOSITION. ILet 0 € Texr{X}. Then: Q@ is stropgly normalizing <=

§ has a strongly adeguate labeling.

PROCF. (&) Follows by SN for labkeled reduction {(Theorem £.14) .

{=) Suppose P £ SN. Then, by Konig's Lemma, there are only finitely many

reductions #, =9 — ... — 0" (1 =1,...,n). Let I, be a labeling of @
which is adeéuate forx ﬁj {by Proposition 10.2.4.1, Ijjexists). Then take

I = max, I, in the obwvious sense. Wow I is strongly adegquate for
J

I I F .
10.3.5. DEFINITION. Let & =N — ,,. — N be a labeled reduction. Then

@& is called special iff

(i) & erases only strongly normalizing arguments {(i.e. if ® contains a
step ... KAB ... — ... A ,,,, then B ¢ 5N},
(i1} Whenever & contains an erasing step as in {i) and B ¢ SN, then the

induced labeling of B is strongly adecuate for B.

10.3.5.1. PROPOSITION. If ® = M — ... — N erases only strongly normal-
izing arguments, then ® can bes extended to a special labeled reduction
@l =t — '

PROOF. Routine. [J
10.3.6. LEMMA, If ﬂ2 =3 ﬂl and ﬁi ie spocial, then ﬂg is special.

PROOF, Suppase ﬁz - ﬂi and ﬁi is special. Corresponding te (i), (ii) in
Def. 10.3.5 we have

{1} to show that ﬂ2 dogs not erase infinite arguments. Suppose ﬂg does
arase an infinite argument:

#, =& » ¢{rAB] — elad » &*, where.ﬁ(B}.

2
Now there are three cases.

CASE 1. The displayed erasing step is not a member of the a.s. pair of

steps, which Is 'permuted’ in Rz = ﬁl. Then ﬂl contains the same erasing
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step, and Gl erases an infinite argument; contradiecting the assumption that

ﬂi is special.

CASE 2. The displayed erasing step is the left step of the permuted a.s.

palr of steps. There are three subcases.

Case.2.1. Then

ﬂg = ... 'L Ox.——KA(x)B(x)--)D] > €[ (A, —-a (x} =) D]
.Hﬁ§+ e'[--a{0)~--] — ... and

&1 = ... =, C'[--Ka(D)B (D) —] X c'f--a)~-] — ... and now ﬁl erases

B(D) which is still infinite.

case 2.2.

R = ... - €0 (%P (%)) (—KaB--) ] — @'[ (Ax.P(x}} (——A~-} ]
— @'[P{--A--}] — ... and

Ro= ... — ... Do) S KK

(a1 — ...
Here p 2 (0 is the multiplieity of the cccurrence of x in P(x). If p 2 1,
then ﬂl erases the infinite term B; and if p = 0, then ﬂl arases the in-

A
finite argqument (--KAG--} in the step s

Case 2.3, KAB is disjoint from the ix-redex. Then ﬂl erases B, trivial.

CASE 3, The displayed erasing step T[KAR] X ©fal is the right step of
the permuted a.s. pair. Let the redex contracted in the left step of the
4.5. palr, begin with Ax. Again there are three subcases. Let R' be the

contractum of the Ax-redex.

Case 3.1. R' c A: then 81 erases B

Case 2.2. R" c B. Then:

R, = o —> CIKA (- (VP (2))0--) —r CTKA (P (@) —) —> €[A] —> ...
and & = ... — C[KA(-- (Ax.P(x))Q~) ] Sor gla] —> ...
Now since B = ~~P(@)-- is infinite, --{AX.P({X))D—— is alsc infinite. So

also ﬂl erases an infinite argument,.
Case 3.3. Similar to case 2.3.

So in all cases 1,2,3 the assumption that ﬂi iz special is contradict-

ed. This proves (i).
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(ii) To show: (1) I is adeguate for 612, and (2) if Bysev.,B ave the argu~
ments erased by ﬁz (so by (i) BI,...,Bm € 3N) and Il;...,Im are their in-
duced labelings, then Il""'Im are strongly adéquate for Bl,...,Bm_

The proof of (1) is easy. (Cf. the proof of Theorem 10.2.5 in which

the converse was proved: if ﬂz

adequate for Rl. As in that proof, it is sufficient to consider the case

= ﬂl and I is adequate for 82' then I is

that 82 is an a.s. pair. See the figure in the proof of Theorem 10.2.5.)

To prove (2), we distinguish two cases.

Case (a}. The step ﬂz = ﬂl iz of type (a), as in the proof of Proposition

10.3.2. This is the easy case, as an inspection will show.

Case (b). The step ﬂz = ﬂl is of type (b). I.e., the "contractum” of the

a.5. pair consists of just one step:

= Lv. —* c[mi'] E‘—)» c[Kman_I"] ﬂ ofal — .

——»c[mfj — glal —— ...

»324 <=

We have only to consider the steps (%), (*%) in IR;, since the other steps
of ﬂ; coincide with steps of ﬂi.

The assumption is that the induced labeling I' of Bi {in ﬂ?] is
strongly adequate for Bi' Now in the step (%) which reduces Bi to Bi, sotme—

P J : .
thing ¢an be eraged; say this is €, Then C is SN and J is strongly adequate
I* . T : ,
L in 81. Also it is clear that in the step (#*) I" is
r 1

. "o T .
strongly adequate for Bi; since Bi ig a reduct of Bi « This proves (ii). [J

. J
for €, since C £ B

10.3.7. THEQOREM, ILet & be a finite reduction. Then: {ﬂ]? is infinite &= &

aerases an infinite argument.

PROOF. (+=) Suppose fl erases an infinite argument:
®R=...— clxas]l — ola]l — ... where «(8).

Let B = BO — B1 — B2 — ... be an infinite reduction of E.
Define for all n e M :

ﬁn = ... —= ¢[kan] —+€[KBE1] — ... -—--+|E[KABn} — ¢la] —
Then chviousiy & = ﬁo = f

= e ..,
1 2

" Hence [R]" is infinite.

(=} Let us first remark that by Proposition 10,3.2 and Kdnig's Lemma:
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[ﬁ]ﬁ is infinite = there is an infinite 'ascending' sequence

Hoem ' == J{ o=,
Now suppose that the implication which is to be proved, does not hold.

S0 suppose that [R] is infinite, hence that there is a sequence

f <= £ += ..., but that & nevertheless erases only strongly normalizing

argunieznts.

Then by Proposition 10.3.5.1, # can be extended to a special labeled
reduction RI. By Lemma 10.3.6 we have now an infinite seguence of special
labeled reductions 8F <= &'T eo vl o S "
But that is impcssible, since there are only finitely many labeled reduc-
tions of MI {the first term of ﬂI, R'I,...) and since =* isg acyclic. (This
is the same argument as at the end of the proof of Theorem 10.2,5. (i},

but now for an 'ascending' = -sequence, instead of a descending one,) [

10.3.8. COROLLARY, Let £ be a finite reductionm.

{i) [a:lm is infinite <= -RS erases an infinite argument.

(11} In AI-calculus [ﬂ]m is finite, for every &.
Similariy in 3T -calculus {typed A-calculus).

(iil) The property '[iﬂ]ﬁ ig infinite' is not decidable.

PROOF. (i) [ﬂlm = [ﬂsjk, by Corcllary 10.2.8,{i), {ii). Hence the result
foliows from the preceding theorem.

{ii) At once by the preceding theorem, since in Ai-calculus there is no

erasing and in A ~caleulus there are no 'infinite' terms (i.e. A" [=SN,

Theorem £.14).

(iii} By (i} and Proposition 10.3.3.i. [

10.3.9. EXAMPLE. (i} Let & be {Ax.KI(xx))w — (ix.IJw —> I, where
W T AM.EH.

Then lf[ﬁ]w,%} is as in the figure:

ﬂ
I .
1/



Nete that in & no infinite subterm is erased, contrary to Rs.

(ii). Let ® be a reduction from M = [Ax.KI{Iwx} w to I.

M KI { Tww)

Cax KT {wx) Ja

KT {too}

FAx.RT (xx) Ju L KIS

K1

[Ax.Tiw I

Then ([ﬁ]ﬁ, ==} can be pictured as follows (at each node there is a reduc-

tion which ir indicated asz a tuple in an obvious shorthand.)

(I, w32, w,K) {I,u,K,ix)

(L,w, A%, K} N(T,K,Ax)

(A, T,o,u,n,K)
(K, ax)

(ha, T, uw,w,K)

(A, I,w,K

(hx,I,K)

(A, K}
standard reduction
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I1. NORMALIZATION

11.0. DEFINITION. (i} Let M € AP (a definahle extension of A-calculus),
and R,R' be R- or FLredéXes ih M. Then: R is tolthe Jeft of R', notation
R < R', if the head-symbol of B (& or P} is to the left of that of R'.
(ii} R £ M is the leftmost redex in M iff R < R' for every redex R' in M.
The leftmost redex is alsec called the normal redex, for a reason that
wiil be clear soon.
{iii) A reduction & {finite or infinite) is normal (or leftmost) if it
proéeeds by contracting in each step the leftmost redex. A leftmost step
will be denoted as ——— .

im

{iv} A reduction @ = M —+ M, —>

b 1 ... is gquasi-normal if it is finite, or

else if

Y¥i A9 > i Mj —l_i:—+Mj+1'

Quasi-normal reducticons are alsco called eventually Ieftmost reductions.
(v) A reductien is maximal if it ends in a normal form, or is infinite.
{(vi}) A class € of maximal reductions is sald to be normalizing iF for all
e Cs

#{0} has a normal form = # ends in this normal form. Here ®{D} is
the first term of ®; see the following notational convention.

{*Par abus de langage' we will henceforth just say: ‘such-and-such
;éductiuns are normalizing' instead of 'the class of mawximal g.a.s, re-

ductions is normalizing'.)

11.0.1. REMARX. The terminology 'normalizing', 'normal redex' and 'Nor-
malization Theorem' is historical (frem CURRY, FEYS [581). One should not
confuse the property asserted by the Normalizatfon Theorem 11.2 with the
properties WN and SN (Weak and Strong Mormalization), which do not hold
for A,

11.1. NOTATION. Let & = MO —_— Ml —_ ...

{i) Then write R{m) = M for all n (for which M is defined).
fiiy () =M —nm — ..
n n n+i

m('ﬁ) =My .. M

So fl = n(cR) e (ﬁ)n = #{0) — #H(1) — ...
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11.2. NORMALIZATION THEOREM

Normal reductions are normalizing,

PROOF. Let ® = M —* N where N is in normal form. By the Standardization
Theorem (9.7}, there is & standard reduction Rs = M —# N. Morsover, RS i=
a normal reduction. For suppose not, then RS '"by-passes' in some step the
leftmost redex. By the usual arguments, one proves easily that this by -

passed redex has a residual in N, But N is a normal form. Contradiction. (]

Next we will prove that quasi-normal reductions are normalizing too.
For an alternative proof see BARENDREGT [807: the reason for including an
alternative proof here is that it lends itself to a generalization to ABn-
calculus (Ch.IV}. .

10.3. PROPQSITION. Let ﬂan = My — M, —> ... be a guasi-normal (gn)re-

duction. Then:
I3 R = e - -
(1) k(lqn] Mo— Mg is a qn reduction,
{ii) £ & = NO —_— .. — MO is an arbitrary reduction, alsc

* f = M. Sa. 1 .
‘qun Wy — My M — iz qn

FROOF. Trivial from the definitions. [J

11.4. DEFINITION. Let R = MU —_— Ml —* ... be a finite or infinite re-

duction and R ¢ M some redex in .

R is called secured in & iff eventually there are no regiduals of R

left (i.e. zome Mn+k containg no residuals of R).
11.5. LEMMA. FLet 'an = MO —* ... be a gu-reduction, and let R ¢ MO be the

leftmost redex.

Then R is secured in 8 .
an

PROCF. almost trivial: the first leftmost step in aqn contracts the unique
residual of R. [J

11.6. COROLLARY (Quasi-normalization Theorem).
Quasi-normal reductions are normaliziang.

PROOF. Suppose M has a normal form N. Let Rn = M —» N be the normal re-

duction to N.



Now suppose that an infinite quasi-normal ﬁqn, starting with M, exists.

M. &

mEMg Ry oM, R, ] . -ﬁMHEN
d M! Im Em I
! |
M2 :
2

1
(ﬁhn}n4 i
|
1

| @
... M' 1
|
o) 3 j
1
I}
i

&
oo m o ;
@ .
I
I
|
Ml d
g

By the preceeding lemma, and the Parallel Moves Lemma {6.12) for some n
the projection {RD}/(ﬁqn)n = ff,
By Propositien 11.3, f(ﬂqn)n/{Ro}] * n(ﬂqm} is again quasi-normal, hence

R, c M

1 is secured in it,

1
Repeating this arguwment we get 2 k such that

ﬂﬂ/(ﬁqn)k =4,

i

and hecause Mn = N is in normal form, also

® ) /R = 0.

Hence M£ =M 2N, i.e, l ends in the normal form. [J
n an

12. COFINAT, REDUCTIONS

The reduction graph 6 (M} of & term M, that is the structure
<{N/M —» N}, —+ >, can be quite complicated and sometimes it is very

useful tc know a ¢ofinal reduction path ﬂc =M —+ M — M" — ___ in
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G (M), in order to reduce properties of the whole graph G (M) to properties
of & .
o)

12.1, DEFINITION. ﬂc is a cofinal reduction path in G (M) iff
VN ¢ G(M) In ¢ N N —» Hcfn).

In BARENDREGT e.a. [77] some typical applications of cofipal reductions

can be found. In BARENDREGT e.a. [76] (Ch.II) it is proved that a certain
kind of reduction called Knuth-Gross reduction is cofinal (for A as well
as ABn). For technical applications, sometimes one needs a refinement of
this result. Such a refinement will be proved now. In Chapter IV the same

is done for AfBn-calculus.

12.2. DEFINITION. # is called secured iff every redex R in 8 is secured in
R. (I.e.: 1iff Vn ¥redex R < fi(n} R i= secured in (ﬂ)n.)

(See alsc Definition 11.4.)
REMARK. Obviously, for all n: ® is secured «= (H)n is secured.

The next theorem is obtained independently in MICALIL [78], where as
an application a 'space saving' reduction strategy is given. When writing
this section, we learned that the theorem occurs moreover in O'DONNELL [771,
where it is proved in an abstract setting; see Theorem 8 and 8'. Our 'se-—

cured' reductions are called there 'complete!.

12.3. THEOREM. Let ® be 2 reduction path in G(M). Then:  is secured == R

15 cofinal.



FROOF. Let the secured reduction & = ¥ — ... and an arbitrary reduction
R =M — ... —+ N be given. We have to prove that N —» ®{k) for some k,

Construct P(R', R} (=ee figure). Now for some 1 _, ﬂ(io) does not centain a

a
iCl ((:’) = EF.

By the remark after 12.2 also (io(ﬂ)/'{RO})*(ﬂ}iO is secured.

residual of RO' Hence by PM(6.12): {RO]*/

Hence for some 1i,: ({RO]*{Rl})/il(tR) = ¢@. So for some k, ﬁ'/k(lﬂ) = @;
i.e. N —= R{k). 0O

&
M M _
_ 1 2 =
M:MU - Mn"
0 Ry Ry =~
i ERf'i.'RO}
if o
o
ﬁ e e —4
(o {5,/ 6=t
1
0
CIEIRT SO g
(Ryia(ry )7, &
PR ,M)
f R/ & =
w| &r&=g

12.3.1. REMARK. The converse implication does not hold:; counterexample:
Let M = Az.zRf where f T (Ax.xx) (Ax.xx}), and consider

R=M—M —>M—+ .. where every time the right occurrence of 0 ig

contracted.

12.4. DEFINITION., Let M be a AP-term. Consider the set of all B-redexes and
P-redexes in M, and let N be the result of a complete development of all
those redexes. Then N is unique (by FD, Theorem 4.1.11 and Prop.6.3}.
NOTATION: M -—-K—G—+ N. Here ﬂia-**stands for 'Knuth-Gross'-reduction. A Knuth-
Gross reduction is a sequence of KG-'steps'.

Knuth-Gross reduction is called the 'full computation rule' for Re-—

cursive Program Schemes (see MANNA [741]).



118

12,5, gOROLLARY. Knuth-Gross reductions (in AP) are cofinal.

PROOF., after each complete development of the total set of redexes of M, no
residuals are left of the redexes in M. And so on. Hence the KG-reduction is

secured. [

12.6. DEFINTTION. £l is a quasi~KG-reduction if it is finite or contains in-

finitely many KG-reduction 'steps',

12.7. COROLLARY. muasi-KG-reductions {(in AP) are cofinal.

FROOF. Let MO "o Ml + s > Mn be a finite reduction, and let &

be a gquasl-KG-reduction. Let A o B the first KG-step in #. (See fiqure.)

Now by PM(6.12}) A —% C is a development of the residuals of RD, and
hence (since ~E6—+ is in fact a complete development of all the redezes in
B) B —# D is the empty reduction. Repeating this arqument, we find that in—

deed Mo— fifm) for some m. [J

KG
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CHAPTER II

REGULAR COMBINATORY REDUCTION  SYSTEMS

In this chapter we introduce a generalization of the reduction systems
in Chapter I (subsystems of definable extensions of Af-caleulus, such as
AL, CL, Recursive Program Schemes), which we will call 'Combinatory Reduc-
tion Systems' (CRS), A CRS is.in fact a TRS (Term Rewriting System) pos-
sibly with bound variables. S0 we will consider variable-binding mechanisms
other than the usual one in A-calculus; see Remarks 1.17, 1.18, 1.20 below
for & general discussion and a comparison with some notions of ‘reduction
system' which occur in the literature.

We will consider in the present chapter only CRS's with two well-known
constraints: the reduction rules must be "left-Iipear' and the 'non-ambi-
guity' property must be satisfied. For reasons of economy we use the ab-

breviaticen
reguiar = left-iinear & non-ambiguous.

{In Chapter III we will consider some non-left-linear CRS's.)

In Bection 1 we introduce the concept of a regular CRS. Section 2 con—
tains the definitions of 'descendant' for regular CRS's (via labels, as in
I.3}, and of 'development'. In Section 3 a proof of the Church-Rosser theo—
rem for regular CRS's is given; thie is done via an analysis of combinatory
reductions into a 'term rewriting part' {(as im CL) and a 'substitution
past' ({as in A). Some non-trivial technical propositions are required to
prove even the simple property WCR for regular CRS'sS (Lemma 3.10}. In this
stage the Finite Developments theorem and its corollaries CR+, PM (analogous
to resp. Thm. I.4.1.11 and itg corollaries I.6.9 and I.6.12) are not yet
proved; to obtain FD, which is a Strong Normalization result, we introduce
) 'reduqtions with memory' and generalize a method of R, Nederpelt to the

class of regular CRS's. Using this methed, which seems interesting for its
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own sake, we obtain FD and hence CR+, PM; now a large part of Chapter I
generalizes at once to regular CRS's {e.g. Lévy-equivalence of reductions).
In Section 5 we investigate the property 'non-erasing' and state a
generalization of Church's Theorem (I.7.5} for regular non-erasing CRS's.

in Section & we explore further conditions which ensure Streong Normal-
ization for regular CRS's; as in Section 5, an application in Proof Theory
is given. We prove here a generalization of Theorem I.8.14 ElHW F:SN. eta.}.
Furthermore, Lévy's method of labeling {£.3.9} is generalized to all regular
CRS's, together with the corresponding SN result. This yields a tocl to
prove the Standardization and Normalization Theorem for a restricted class

of regular CRS's (viz. the '"left-normal’ ones).
1. COMBINATORY REDUCTION SYSTEMS

In this section we will define the concept of a Combinatory Reduction
System (CRS). A CRS I will be a pair {Ter(E),{pi/iGI}> where Texr(E) is the
set of terms of I and where the p, are reduction relations on Ter(I).

S50 a CRS is a special kind of ARS, as in I.5. The reduction relations
pi are generated by reduction rules fi; Red(Z) = {Ii/iEI} ig the set of re-
duction rules of L, Ter({Z) is built inductively from the alphabet of L. In
order to define the fi {ieI), we will use meta-variables (written as Z plus
sub- and superscripts) in a formal way; that is, they serve to define the
set Mter(i) of meta-terms. There will be meta-variables of ‘arity Q', as

in the definition of, say, the reduction rules for CL:

3
z1z2z3 —_— zlz3(2223)

but. also of arity >‘O, to allow a description of reduction rules involving

substitution, as e.g. in the rules form = 1:
Bm = (lxl...xm.zo(xl,...,xm)}Zl...Zm — ZO(ZI,...,Zm}

{see I.4.2.1). Here Z_ is m-air and the other meta-variables are O-air.

0
Our universe of discourse in this and the next Chapter is the class
of CRE"s; this class will be closed under the formation of substructures,

as defined for ARS's in Def.I.5.10. In fact that definition has to be
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slightly extended, since in that case only one reduction relation is pre-

sent. Therefore:

1.0. DEFINITION, Let I = <S,{ri/iel}> and L' = <S',{r£/ieI'}> be BRS's.
Then I' c I (I' is a substructure of I) iff

(i) S8' < S and I' ¢ I,
{ii) for all i ¢ I°', ri is the restriction of ri to §F,

(iii) S' 1s closed underxr ri, for all i € I.

1.1. DEFINITION. The alphabet of a CRS consists of

{i)  a countably infinite set var = {x,v,2,...} of variables,
(it} the iImproper symbols (,,,),[,1
{iii) some set § = {Qi/iel} of constants

{iv] a set of metavariables Mvar = {Zi/i,k ¢ M1,

k
Here k is called the arity of Zi.

(REMBRK, As in Chapter I, the metavariables in, say, a rule as KZOZ1 —_— ZU
or (lx.zotx))zl ~—w-ZU(ZI) will range over the set of terms; but here we

will treat the metavariables in a more formal way, using wvaluations.)

>

1.2, DEFINITION. The set Ter of terms of a CRS with the above alphabet is
defined inductively by

(i) § u Var c Ter
(il) x ¢ Var, A € Ter = [x]a ¢ Ter (abstraction)

{iii) A,B ¢ Texr = (AB) € Ter {application)

provided A is not of the form [x1a’.

1.3. REMARK. (i) CRS's having an alphabet and terms as defined above but
without the metavariables of pogitive arity, without 1.2(ii) and without
the proviso in 1.2{iii), are known as Term Rewriting Systems {TRS's); see
e.g. HUET [78]. These are CRS's 'without substitution', such as CL.

(i1) The proviso in Definition 1.2(iii) is not really necessary, but no-
tationally pleasant; see Remark 1.9 helow.

(iii} In [x]a the displayed occurrence of x is said to bind the freoe oc-
currences cf x in A. The definition of the notions 'free and bound variable!
is analogous to that in the case of X-valculus {(see I.1}, There are the

usual problems due to a-conversion (renaming of bound variables, see I.1.8),



122

but as usual they can safely be ignored (here anyway).

We will adopt the convention that all the abstractors [x] in a term be
different.
{iv) The usual notational convention of 'asscciation to the left' {(as in
I.1.2) will be employed. Outer brackets will be omitted. We write an n-
fold abstraction term [x l[x 1. [x in as [x x K 1a or [x1a. A term

172°
QIx]A for some constant Q € Q will be written as Ox.a,

1.4. EXAMPLE. (i} Let I be a CRS such that X ¢ ¢, Then {((Alx](xx)}A}
¢ Ter{iI). Using the notational conventions above this term may be written
(Ax.xx}h. Another I-term: (Mx.xx)[yz](yyz).

{(In practide we won't need and will not consider such pathological
"A-terms", but in this stage we want to be as liberal as possible in our
term formation,) .

(ii) Let I be a CRS such that {3,¥, &, =} © Q. Then Jy. Vx. & (=xx) (=yy) is

a X-tarm,

1.5. REMARK. ACZEL [78] employs a different notation, in which every term
is denoted by an n-ary functien (n=0): F(Al,...,An} instead of cur FAl...An.
The two notatlons are practically equivalent; our notation yields more

terms, viz. alsa F, sFA /FA ,... are subterms of FA A . {(However, when

A-terms are present cone can use lxl...x .-E(xl,..%,xn) instead of F,
lxz...xn.F{Al,xz,...,xn) instead of FA1, and so on.)] We hawve preferred our
notation to conform with the notation in Chapter I.

Instead of cur set & of constants, ACEEL [78] uses a set F = {Fi/ieI}
of fbrms, sach form having an arity <k1,..ﬂ.kn>, an n-tuple of natural pum-
bers (n=0). A form of arity < » {n=0) 1z called there a constant, a form
of arity <0,90,...,0> is called a simple form. Term formation in ACZEL [78]

is as follows:

(i) Wwar © Ter

(ii) if F ¢ F with arity <k reeask > and Ajs.-aeA € Ter, then

1 n
1

Filx, ]Al,....[x ]A ) & Ter, where [£+] (L = 1,...,n) is a string of

ki variables,

So e.g. 'application' .{-,-) is a simple form of arity <0Q,0>, and 'A-ab-
straction' A{[-1-) is a form of arity <i>. The recursor R iz a simple form
‘of arity <0,0,0>, An interesting non-simple form of arity <1,1,0> is en-

countered when derivations in "Natural Deducticn' are reduced to a normal
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form; see Example 1.12.{v).

1.6. DEFINITION. (1} The set Mter of meta—terms over the alphabet as in

Def.l.l is defined induétively as follows:
(1), (1), (iii) as in Def.1.2, replacing Ter by Mter

k
{ivy Hl""'Hk e Mter = Zi (Hl,...,Hk} ¢ Mter, for all k,i =z Q.

(2) A meta-term H is called closed, if it contains no free variables, i.e.

if every X ¢ Var occurring in H is bound by an occurrence of [x],

REMARK ad (1): So in particular O-ary meta-variables are meta-terms. On the
other hand, ntl-ary meta-variables are not in Mter, The purpose of the

k
brackets in Zi {Hl,...,HkJ will be clarified in 1.1Q, 1.11 below. Further-

more, note that Ter ¢ Mter.,

As in ACZEL [ 781, we will use H, H', Hl"" as "meta-meta-variables"

ranging over Mter.

1.7, DEFINITION of formation trees corresponding to meta-terms.

Let H &« Mter. Then t{H), the formation tree of H, is defined by induction

on the formation of H as follows.

{1} rix) = %, T(Qi) = ”,i
(i) T¢lxMH} = [x]

Tfé]

(111} t(aB) =

(iv) T{Z(HI,...,HkH = Z(Hl,...,Hk) {k=0}
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1.8, EXAMPIE. (i} The terms in Fxample 1.4 have formation trees

1\ | > |
tx] A Ix] [yl [yl
| ] |
b4 x [z] v
| | |
= ® ¥ [=3

AN |

b4 x ¥ ¥
. i 2 0] .
(1i} The meta—-term (lx.Zi(x))ZE(y,Z3) has the formation tree
X
'\2 o
[x] . Zz(y,zs)
zltx}
1.9. REMARK. Note that by the restriction in Def.1.Z.(iii), an [x] has
only one successor in T{(H). without this restriction, we would have forma-

tion trees like

T({[x]A)B) = [x]

. suggesting that the free occurrences of x in both TA and 1B are bound by
[x], which is not intended since the scope of [x] in ([x]a}B does not ex-

tend o B. So the restriction in Def.1.2.{iii) yields the pleasant property
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that the scope of a variable x equals the whole subtree below that ocour-

rence of x in the formation tree.

1.,10. DEFINITION. (i) A valuyation p is a map Mter - Ter such that

Q(Z:] = A(xi,...,xk); i.e. p assigns to a k-ary metavariable a term plus
a specification of Kk wvariables.

{2) The valuvation p is extended to a map Mter + Ter, also denocted by p, as

foliows:

(i) pix) = X, D(Q_i) = QL

(ii) p{lxlm Ixlo (g}

(111) p(H H)) = o(H;)0(H))

(iv) p(zf(H ""'Hk” = p(2" 1(pH1,...,on:

Here in {iv) it is meant that if p(Z 1= A{xl,...,xk] then
p(z )(pHi,...,ka) := A(le,...,ka}, i.e. the result of the simultanecus

substitution of pHi for xi (I = 1,...,k}) in A.

1.10,1, REMARK. Given a meta-term H and a wvaluation p, the term pH is cb~
tained by performing a number of nested simultaneous substitutions.

Hence one can agsk whether the order in which these substitutions are
performed, affects the end result- and one may even ask if there ig always
an end result. That indeed every execution of the simultaneous substitua-—
tions terminates in a unigue result, 1s a consequence of &Em F: SN (Theorem
1.4.2,5, stating that all developments are finite in le—calculus], and of
&Em F: WCR (the weak Church-Rosser property for underlined ABm—calculus,
which is easy to check).

2 1 o,
1.10.2, EXAMPLE. Let 2 , 2, Z be IESP. a binary, an unary, and a O-ary

2
metavariable, Let H = Z {Z (ZO.ZG}, Z (Z 1} and let p be a valuation such

that:

D(Zz] = A(x,y) where B = xyxz

D(Zi] = B{z) where B = xzy
0

p{Z7) = u.

Then ¢ (H) = pzz{pzz[pzo,pzﬂ),pzl(pzo}] = the unigue result of a complete
.Em—develcpmant of (Axy.A(x,y)) ((Axy. A(x,y])uu}((lz B{z)lu) =

= uuuz (xuy} (uuaz) z.
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t.11. DEFINITION. (1) A reduction rule (in ACZEL [787: contraction schema)

is & pair (Hl,Hz) of meta-terms, written ag H, > H,, such that

1 2
{1} the top of T(HI) is a constant Qi,
(i1} Hl' H2 are closed,

(iii) the meta-variables in H2 pcocur already in HI'

{iv) the meta-variables Z: in H1 occur only at end-nodes of 1(H1} in the
form Z:(;}, where ; = XjreeerX is a string of pairwise distinct
variables.

(2) If, moreovayr, no metavariable occurs twice in Hl, the reduction rule

Hl > H2 is called left-linear,

(3) The reduction rule H1 4-52 defines a reduction relation, which also will
he dencted as +, on Ter, as follows:

c[ptnl)] — mtptnzﬂ

for every context €[ ] (defined analogously as for Af in I.1.5) and every
valuation p.

. r
If r =H, =+ H then we will also write — for the reduction rela-

1 2"
tion defined by r. A term of the form p(Hl) for some wvaluation p is called
an r-redex.

As usual, —» denctes th transitive reflexive closure of —,

. 1.0
1.12. EXAMPLES. (i) Y — 72 (2 )
e /\ZO 0“0
[x] o
I
1
ZO(x]

is the rule of B-reduction. Henceforth we will omit the superscripts of
meta-variables, indicating their arity, and write 2, Zl, ZZ' zZ', 2", ... .
Sometimes we will write instead of a meta-~term its formation tree, as
above, since it often makes the structure ¢f the meta—ﬁerm more apparent.
{ii) The definition of the recursor R yields an example of two left-linear
reduction rules where no substitution is involved (so with only O-ary

meta~variables) :

R zlz2 o —* 21

R 3122 (sz3: —_ 2223(12212223)
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{iii) The reduction rules for 'Surjective Pairing', which we will consider
in Chapter ITI, yield an example of a non left-linear reduction rule {the
third onej:
U Dz z) —
0( 0 1) ZO

1
ﬂ(ﬂoz) (9133 — 2

Dl(Dzozll — 7

{iv} A pathological example:

/Q\ 5 (Z, (3 (DD
[xd Cy]

f l
ZI(X) Zz(yl

Let us give an example of an actual reduction step induced by this reduc-
tion rule. Let le = A(x) where A = xxK and pZ2 = Bly) where B = ¥S, then
D(Zl(x}} = xxK and p(Zz(y}} = yS8, and we have as an instance of the reduc-

tion rule the following reduction step:

D([x] xxK)) ([y1(yS)) —r
[x:= [y:= [x:=T1xxK) J{¥S) I (xxK)

{x:= [y:= TIK 3ty$) J(xxK) =
[®:= TIKS JixxK) =
TIKS(TIKSYK.

(v) The next example is from Proof Theory; see PRAWITZ [71], p.252. In a
normalization procedure for derivationsg (in ‘Watural Deduction’') we hawve

here the 'v-reductions' (i = 1,2}:

z_0 £¢1] [¢2] Zg

b 2 2, [é.]

0, S — L
BE, v g
i [

Here Qi' P are 'rule-constants' for the v-introduction and v-elimination
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rule. Omitting the formulas q;i,w which function as 'types' of the deriva-

tions ZO,Zl,ZZ, these reductions can be written linearly as follows:

P(Q_lzoi ([x]z1 {x)) ([y]Zz(y} ) — Z, (7).

(Likéwise one can consider the &-, >-, V-, 3- reductions in PRAWITZ [71]
p.252,253; these 5 proper reductions together constitute a regular CRS.
The vE-reductions induce an ambiquity however. See Def.1.14 and 1.16. for

the concepts 'ambiguous' and ‘regqular'.)
(viy (;\[x].z1 {x) 122 ———r lf’(z1 (22})52

'B-reduction with memory'; see Saction 4.

1,13, DEFINITION, If E, H' are meta-terms, we wrlte H EU B" to indicate

that the subterm H' "occurs at placé g"* in H. Here the sequence numbers
g = <m1,...,nk> {k=0} are possibly empty sequences of natural numbers, de-

signating the nodes in a tred T(H) as in the figqure:

&T(H')

ef,1,1,0,0%

S0 H « H',
—<0,1>
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REMARK. A shortcoming of the formation trees 7 (H') is that the nodes ¢ in
T(H') are not in bijective correspondence with the subterm occurrences in
H', as is apparent from the figure above. (If one uses Aczel's notation as
explained in Remark 1.5 above, and the corresponding formation trees, then
this shortcoming is remcoved.} However, for our purposes the trees t{H")

suffice.

We illustrate the next definition by some examples.”

{i) Coneider a CRS E with the set of reduction rules

Red{Z} = {r, : P(QZ)} — A, r, s 0z — B}.

1

Then the fact that the r,-redex Rl = P{J(pz)) contains as subterm a r,-

redex 22 = Q{p2) is undesirable if one wants to have the CR-property.
(For Ry —> & and also R, —— PB and there is no common reduct of A, PB)
(ii) A more subtle case of this kind of "interference”™ between reduction

rules is given by

Red(f) = {(F —— A / ﬂ,\-——> B}
Q 2y ‘q
R z
T K
2y
Here, toe, there is ‘interference'; namely if R = P
for some terms X,¥, then R —= A and alse : |
R — PB. R AN
i l
X Y

{iii) A reducticn rule may also interfere with itself (example of HUET
£783):
if Red(Z} = {P(Pz) —> A} and R = P(P(PX)}, then R —+ A and R — PA.

. This leads us to:
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1.14. DEFINITION,

{1} Let Hl, H2 £ Mter., Then H1 G H2 (“Hl interferes with H_ "} <=

2
(i} if H, = H, : for some ¢ and non-terminal g # < > in Hz,
'H H,.
P, S P,
ii) 1f H H_: - i i .
fii) 4if 1 # 3 for some p and non-terminal ¢ in H2, le Ec DH2
An equivalent definition is:

H, f H, iff whenever pH, ¢ pH,, then pH, < pZ for some metavariable Z in

HZ. .
{2} 1f r, = Hi -%-Hi and r, = H2 ——A—Hé are two reduction rules (possibly
the same) of a CRS, we say that r, interferes with r, 1ff H1 5 H2'
{3) Let Red(L) = {ri = Hi — Hi ] 1 € I} be the set of reduction rules of

a CRS I,
Then Red(E) (or just I} is non-ambigucus iff
(1) H 4 Hj for i # 1,
(ii) for no 1,j £ I, ri interferes with rj.
1.15. BEXAMPLES.

{1) Red(Z)
{2} Red(I)

{Iz — 2z} is non-ambiguous, but Red(L') = {I({Iz} — 12} is.

{(kx.Zi(x})Z2 —> %,{%,) (B-reduction),
(Ax.xx} (Ax.xx) — Ax.x}
is ambiguous.
{3) The following example is from ACZEL [78]. Let I have the rules:

B-reduction

pairing: Dofﬂzizz) - 2z,

D1 (Dzizz) — 3

definition by cases:

1 —
Rn“lzi -2 z
' 1
' [l

iterator:

-79_2132 — g,

J(32012122 —_ zi(Jzozlzzj .



131

Then I is a non-ambiguous CRS.
{(Note that the rules for Rz above are similar to the rules:

- 1f true then Z, else Z2 —* 3

1
if false then Z

1
else Z2 — Zz.}

1
{4) Church's 8-rule. See CHURCH [41]) p.62.
Let T be AB-calculus plus the rules

$aB — [ if A = B and A,B are closed normal forms

SAB — KI if A £ B and A,B are closed norwmal forms.
In fact cone should write, as pointed ocut in HINDLEY [781]:

Red(f) = {8} v {68B — 1I|A,B closed nf's, A = B} u
{638 —* I]A,B closed nf's, A # B}

to seme that I 1s a CRS. Note thet the infinitely many d-reduction rules have

na metavariables. Clearly, I is non-ambiguous.

(5) Redi{I) = {z1 + 22 — Zz + ZI

21 + S:z2 — S{zl+zzl

(zl+22) + 23 — zl + (22+ZE:)}

iz ambiguous, in several ways. (Here Zl + Zz stands for + ZIZZ.}

(6) The following very familiar CRS I has constants 0 (zero), 8 (suscesser),
A (addition), M (multiplication), and E (exponentiation).

Red (L) = {Az0 — 3, Azl(Szz) -—+.S(Az:122},
Mzo — 0, le (szzl A{szlzz)zl,
Ezo — S0, Ez1 (Szz) —_ M(E:zlzz)zl}.

The rules are non~ambiguous and left-linear.

1.i6. DEFINITION. Let Red(Il) be non-ambiguous and let the reduction rules
in Red(Z) be left-linear (Pef.I.11.{2)}. Then & is called a regular CRS.

1.17. REMARK. The definition of CR5's is, loosely speaking, the union of
the definitions of

{1}  the contraction schemes in ACZEL [78],

{ii} the Term Rewriting Systems as in e.g. HUET [?8];
(1ii) the A(a)-reductions of HINDLEY [78].

- (See Figure 1.18.)
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Bd(i). Aczel's contraction schemes are less general then CRS's, since

there in a scheme H — H', the formation tree T(H)} has typically the form

F
e //\ T
) - >
0 G1 Z, [xlj [rzj
>
ZO 22(x1} G2
Lyi] [ym]
23 (%)) MEIRM
(1) (11) (III)  {(IV) v

I.e. all the 'arquments' of F can only have the form (I},..., (V). Here (I),
{II) are special cases of the form (V) and {(III) is a special case of {IV).
So the meta-terms H in the 1HS® of contracticn schemes in ACZEL [78] have
a limited depth (viz. 4). In our definition T(H) can be arbitrarily deep,
hence the concept of a CRS also covers that of a TRS,
ad(ili). Hindley's X({a)-reductions generalize the class of regqular (i.e.
non-ambigquous, left-linear) TRS's, In a reduction rule H - H', Hindley
admits only O-ary metavariables (apart from the rule g).

among Hindley's A(a)-reductions are the so-called 8-rules of Church.

These are of the form

A, c..A —* B
1 n

where the Ai (i = 1,...,n) and B are closed terms and the Ai Are morenver
in Bd-normal form, So they are reduction 'rules' without metavariables;
aach rule has only one instance, namely itself. Moreover the zset of these

rules has to be non-ambiguous, An example was given in 1.15(4).
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A subclass of Hindley's A{a)-reductions and Aczel's contraction
schemes was considered in STENLUND [723. There the CR theorem is prowved
for ARndR-calculus; n refers to n-reduction whiéh we do not consider ex-—
cept in Chapter IV, & refers to Church's d-reductions and R-reductions are
a generalization of the usual recursor as in Example 1.12(ii). An inspec-
tion.of Stenlund's definition shows that (when np is left aside) his ABSR
is a regular CRS.

4 note on terminology: instead of ‘non-ambiguous" ACZEL [78] calls
such a I consistent, HUET [78] gays that euch a Z (for TRS's) has no opiti-
cal pairs, and ROSEN [73] speaks of the non-overlapping conditien, In
HINDLEY [78] the non-ambiguity of I is about the same as his (D2} & (DS) &
{(DB); (D3) is the left-linearity.

.
Hindley's h &SP

la-rednction

Aczel's
schama's

Term Rewriting Systems

JProof Th, W R cLerzz + £
raduction ¢
Church's
d-rules
regular irregular

Conkinatory Reduction]Systems

Venn diagram of the extensions of various notions of reduction.

Here 'RPS' is the class of Recursive Program Schemes, as in I.1.13; "A@S.P."
‘refers to the example in 1.12(iii); 'Proof Th. reduction' refers to the

reduction ruie in Example 1.12.(v), '®' stands for the recursor (Example
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1.12.(ii), and crelzz + £ refers to a non-left-linear extension of CL which

will bhe gonsidered in Chapter III, -

In order to facilitate notation, let us define the following operétion

on CRE's.

1.19. DEFINITION. (i) Let 21, 22 be CRS's having disjoint sets of constants.
Then the direct sum EI ] 22 is the CRS having as alphabet the union of the
alphabets of Il, Ez and such that Red(Zlﬁzz} = Red(Zl) 4 Red(EE).

{ii) I1If 21, 22 are CRS's not satisfying the disjolintness requirement in {i),
we take 'isomorphic copies' Ei and I! {e.g. by replacing each constant Q

. 2
of Ei by Q(l) {i=1,2)) and put £, ® L, := L! ® L’

1 2 1 2

1.19.1. EXAMPLE., (i) % @ CL as in Def.I.2.5.1.
(ii) CL @ CL has constants I,1',K,K',§,8" and rules Iz — 2, I'2 —> 2z and

likewise for K,S.

1.19.2. REMARK. Although we will not explore the properties of ® systemat-
ically, we will state some cobservations on &:

{i) the class of CRS"s is closed under ¢; likewise the class of regular
CRS's.

tiiy 1f El, 22 are CRS8's, then

21922}=CR=> 21]=CR&22E=CR
but the converse does not hold, as we will see in Ch.ITY. If moreaver I _,
22 are regular CRS's, the converse holds trivially, by (i) and because
every regqular CRS is CR (Thm.3.11).

{iii) According to Def.I.5.10.(1}, a CRS I 1s consistent iff not every two
I-terms (in¢luding open I-terms, i.e. containing variables) are convertible

by means of the reduction rules. In particular, iff £ ¥ x = v for dif-

ferent variables x,v. Now we have

EI & 22 consistant 3 21' gt

Here = is abvious, and to sea ¢, let Zi be CL and Ez be the CRS having

constants P,0 and as only rules P2 — % and P2 — %g. Then in El P 22:
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PKIxy — Kizxy —> Iy —> v
—+ KKIxy —> Kxy —> x,

When 21;22 are moreover regular, then the converse Implication does hold,

as a consegquence of (ii).

{iv) as for the property Strong Normalization, we remark that cbviously

21 & 22 F= 5N = Zl F 5N & 22 F= SN; but again not conversely.

A counterexample is given by the regular TRS's I, having K as only con-

1
stant and as only rule K2Z' — 3, and I, having constants P.0 and as only

rule P(02) — zPP(02).

Then trivially El F= BN, and also 22 F SN, since in 22 no new redexes can

2

On the other hand, L@ 22 T R s, becanse P{OK) — KPPOK) — ProK.

{{uestion: does the converse implication hold if 21,22 are both RPE's?)

be created (therefore I, = I,, and by Theorem 4.15 below: I, E o8N .

1.20. REMARK. In the study of CRS's we consider, next to the Term Rewriting
part, reductions involving general mechanisms of variable-binding. One can
ask whether this is necessary: it might be thought that the way of variable-
binding and substitution as in A-caleculus ('the theory of functional ab-
straction') is sufficiént, especially in view of a remark in CURRY-FEYS
[56) p.85,86 in which it is stated that "any binding coperation can in prin-
ciple be defined in terms of functional abstraction and an ordinary opera-
tion", and that "the theory of functional abstraction Iz tantamount to the
theory of bound variablesg."

A similar remark is made in CBURCH [56] 806, p.41; here A is called
the 'singulary functional abstraction operator', and it is stated that
"all other operators can in fact be reduced to thisg one",

Indeed it is not hard tc see that for the notation of terms, the
operator A suffices. In CURRY, FEYS [56] examples like '"(3x)X = I(Ax.X}'
are glven to that effect.

As to reduction of terms, however, and the corresponding syntactical
guestions such as the Church-Rosser Theorem, the Parallel Moves Lemma, it
seems to us that one cammot claim that the theory of bound variables is

tantamount to that of A-abstraction, Let us try to make this more precise:

DEFPINITION, Let I be a CRS gsuch that Red(X) contains the rule

f=(3x.Z2(x))2' — Z(Z") as only substituting rule, next to Term Rewriting
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rules. Then we will call Z a A-TRS.

EXAMPLE. XA ©® CL is a A-TRS; in general, if I is.a TRS, then 1 ® I is a
A-TRS. The converse does not held, e.g. if & is such that Red(I) =

= {S,lezz ~—4-hz.zztzlz}} (ZI’Z O-ary metaviarables} then I cannot be

2
written as A @ some TRS.

REMARK. Hindley's i{alreduction systems are in fact regular A~-ThS's.

Now we can interpret the statement from CURRY-FEY¥S [56], cited above,
as claiming that "the theory of CES's is tantamount to the theory of
A-TRS's'.

Indeed, i1t is not hard to show that for every CR2 I there is a
L=-TERS Z*, having the same terms (modulo inessential notational differences)

and such that for all terms L,B:

*
{i} E }=A—-—rB = L i=A—-—>>B, and hence also
(i) 2 k a—=»8 = "k a-—»B.

As a typical example, let % have the rule
r = P(IxIz2' )} ([vyI2"(y)) — hz,2"(2"(2)})

*
{z2', Z" unary metavariables} then £ will have instead of r the rule

*

r = PZIZ2 —_ lz.zz(zlz) {Zl,Z2 O-ary metavariables).

and now for terms ci[x], mz[y] we have in I:
Pilxle txD) (lyle,lyD) — 2z. ¢ le,[2]1]
in one step, while in Al

P(lx.cltletly.czty]} —;;+ )

Az.(Ay.@z[y])((lx.Cl[x])zl ~E+ ~§+

Az.t2[€1[z]].

Bowever, in general the converse implication does not held in (ii) above:
*
I has too many reduction possibilities. So to prove e.g. the CR theorem

*
for I it does nct help, a priori, to have CR for I .
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In fact, it seems to us that the theorxy ¢f CRS's is a refipnement of
that for A-TRS's; essentially the refinement amcunts to the fact that many
gtep reductions such as in thé example for z” above can be dealt with as a
gingle step (in Z}.

Furthermore, let us mention that reductions like xr in I above, do in-
deed in a natural way occur: namely in Proof Theory (see Example 1.12(v));
wa will return to that later.

Finally: our wish to consider more general variable-binding mechanisms
aroge alse in order to have maximum flexibility in defining 'odd" reduc-

tions, like e.g. B[ ] {as in Example 1.12({vi),(vii)}.
2. DESCENDANTS AND LABELS FOR COMBINATORY REDUCTIONS

The following definitions are analogous to Def.I.3.1 and I.3.2. for
AfB-caleulus. To each CRS I we assign a 'labeled’ CRS ZA.
2.1. DEFINITION. Let I be a CRS and A = {ffi,a,b,...} be a set of labels, in-
cluding the empty label @. Then M = Mter(EA), the set of meta-terms of EA’
is defined inductively as follows:

(i) aeh, xevar, Qaconstant of L = (ax),(ad) ¢ M
{(il) ac A, xevar, Ae M = (af[xia)) ¢ M
{(iii} a € A, a,B « M = (a(AB}) ¢ M

. k k., .
{iv] Zi £ Mvar, Al,...,Ak e M = zi(Ai""’Ak) ¢ M (all) i,k=20).

2.2. NOTATION.

{1) Instead of (aA) we will write Aa; we used the notation {aA) to show
that the labeling can be seen as 'internal', i.e. that a labeled combinatory
reduction is just another combinatory reduction where the labels are new
constants.

{2} Instead of Ag we will write A. Hence Mter (I} < Mter(EA}.

{3) Note that meta-terms Zt (Al,...,ak) (i,kz0) do not carry labels; there
is no need for that, since the metavariables Z will be metavariables for
labeled terms In ZA'

(4} Analogous to Def.I.3.1, we will write ZA-meta~terms also in the form
AI where A ¢ Mter(E) and T is a labeling of the subterms of A.

2.3, DEFINITION. (i) To each reduction rule r ¢ Red(E) we associate a set

T4 of reduction rules:
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if r = H — H', then (H;—+ H'} € ry for every labeling I.
(i1) Red(Z;) = U {ry | r ¢ Re@(I)}.

2.4, EXAMPLE. (1) If = Z Z i
EX (1) r 52122 3 T %y 23{%,%,), then ry consists of all

reduction rules
a b C d
Z r——
(((S zl) 5! 23} > Z,2,(2,2.)
for all a,b,c,d « A,
{2} If r = f-reduction rule, then rA consists of all rules

a a' b o
{ (A ([szl(x)) } ?2) — Zl(Zz)

for all a,a",b,c e A.
{(Cf. the definition of BA-reduction in I.3.2, To get the latter, take

a,a' = @#; so Tx containg all rules
b [l
((lx.Zl(x)) ZQJ — Zl(Zzlr

i.e. BAureduction.)

2.5. DEFINITION, Let AI £ Mter(EA) « We call I an initfal labeling of A if
I labels all the sub-meta-terms of A& by a different label # §.

It is now a simple matter to define the concept of descendants for
regular CRS's. (In fact the definition applies to left-linear CRS's.) First

we need a proposition.

2.6. PROPOSITION. (i} Let L be a CRS. Then Iy is a CRS. Moreover:

Red (L} 1is non-ambiquous = Red(ZA) iz nen-ambiguous.
Red (L} is left-linear — Red(EA) is left-Iinear.

{Hence, if E is a regular CRS, then EA iz one.)
R

(ii) Let E be a left-Iinear CRS. If M ??ﬁ-M‘ is a reduoctjon gtep in L, then
I _rJ I NI
there is a unique labeled rule r' ¢ ) such that M T Mr where R™ is

the contracted r'-redex corresponding to the r-redex R in M.
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PROOF. (i) The main point to check is that Reﬂ{EA) is again non-ambiguous.
Suppose not, and consider an ambigquity. Then it is not hard to see that
erasing the labels yields an ambiguity in Red(I}.

{ii) Routine. [I

2.6.1. REMARK. The restriction in Proposition 2.6{ii) to left-linear CRS's
is necessary. For, let I have as only rule r = D2Z2 — 7; so EA has the
set of rules r, = {(P°2)%z —> z{a,b ¢ A}. Now consider M = Dxx rx E M

b I
and take MI = (Daxp) 1 for P # 4; then none of the rA—ru]_es applies to M .

2.7. DEFINITION. Let E be a left-linear CRS. Consider a step M —+ M' in I
and a subterm N © M. "Lift" this reduction step to the step MI —I—-,-l- M'Il in
EA’ where I is some initial labeling and r' is the suitable rule ¢ Ty
{unique by Proposition 2.6).

Then the descendant(s) N' g M' of N are those subterms of M' bearing
the same label as N.
2.8. REMARK. (1) Note that since the right hand side of r' = (HI+H‘} £ Ty
is unlabeled, an r-redex p(H) has no descendants after its contraction,
(2} Descendants of a redex will also be called residuals,
{3) Note that, contrary to the case of A8, in genperal in a step M — M'
not every subterm N' © M' has an ancestor N ¢ M f{i.e. a subterm N of which
N' is a descendant). We remarked this already for CL in Example I.3.4.7.
However, 1f N' has an ancestor N ¢ M, it is unigque, since I was an initial

labeling in Def.2.7.

2.9. To every regular CRS I we will asscciate an underlined version, Z.
{(CE. I.3.5 and I.3.6 where ) is defined.)

2.10. DEFINITION. Let & be a regular CRS, having & as set of constants.
Let § be the set {0/0 ¢ @}. Now define I to be the CRS such that

(i} the set of constants of Eis gu g,

{ii} r = (™ — H') ¢ Red(I), then r= (g‘ﬁ—* H').

{Note: O's occurring in M, E' are not underlined in r.)

2.i11. REMARK. (I) £ c E{O 137 OF more precisely, I can be ‘isomorphically
HAERASL , 2

" embedded' {in ths usual sense) into T

(Cf. the definition of 4 from A

{01}

0,1} in 1.3.5.)



140

Hence by Proposition 2.6, I is again a regular CRS. {Obviocusly,
I' € K & & is reqgular =+ E' is regular.) One can alsoc check directly that:
% regular = I regular; we will omit the routine verification.
(2) The main feature of L isg that in E-reductiens M — ...—r N there is no
creation of I -redexes; cof. the analogous case of AB. I.e. in a I -step
L—+n every I -~redex in B is a residual of a Z -~redex in A. Again the

verification of this fact is routine.

2.12, DEFINITION. (i} Let I be a regular CR3 and I the underlined version.
If &' is a I -reduction and R is the I-reduction obtained by erasing the
underlining (i.e. replacing g by 1), then we will call & a {I-) develop-
ment. Par abus de langage, we will call sometimes alsc ®' a development.
(1i) IF, moreover, ®' terminates in a Z-normal form, R will ke called a
complete (E-) development. (Note that ® does not necessarily end in a I-

normal form; c¢f. the case for Ag.)

2.13. REMARK. (i) The '‘disjointness property' (Def.I.4.3.1), stating that
the descendants of a subterm are disjoint, and which was seen to hold for
one-step reductions in AR-caleulus and even for f-developments (I.4.3.7),

fails here at once: consider e.g. a rule
Mx1Z{x) — 2(2(I}}.

(ii) O'DONMELL [77] states on p.89 (def.22') some axioms for 'pseudoresi—
duals' and on p, 23 (Def, 22} for residuals. These axiows reguire some
well-~bghaviour of his pseudoresiduals. The residuals which we have intro-
duced above for CRS's do not fall under the scope of O'Donnell’s defini—
tion, since our residuals can be very much entwined even after aone step,

(which is forbidden in O'Donnell's definition}, e.g.:
QUlxlz, ) (lylz, (v1) — 2, (2, (7, (3, (1))},
{iii) Tt is simple to see that Lévy's AL-calculus {see 1.3.9), typed

) H
A-caleulus (I.3.8) and 2 W—ca.lculus {I.3.7) are regular CR3's. (I.e. the

I~labeling and the HW-labeling can be viewed as "intermal®.) E.g. AL:
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(a{le1{x})122 —_— = uzl(-uzzl
]H {notation) |” {notation)

a o, a
(1131(X)} 22 “4'231253

for all ¢ € L as defined in I1.3,9. So the o ¢ L and "-" are constants of
the CRS AL.

3. THE CHURCH-ROSSER THEOREM FOR REGULAR COMBINATORY REDUCTIONS

One of our aims in the next sections of this chapter is to prove for

regular CRS's I that

(1) £ £ FD, i.e. £ b 8N (Finite Developments)
-+
(2) L F= CR , i.e. the strong version of the Church-Rosser theorem,

analogous to Theorem I.6.9 for definable extensions of A8.

For X(a)-reductions, a proef of (1), (2} is given by HINDLEY [787,
for TRS's by LEVY-HUET [79]. ACZEL [78] proves CR (not CR%J for his con-
traction schemes by a method analogous to that in the well-known proof of
A8 E CR of Tait and Martin-LSf, see e.g. BARENDREGT (801 or [77].

In the proef of (1), (2} for all regular CRS's we have the problem
that the two methods used in Chapter I to prove AR F: FI! are not of much
help here: Micali's proof (Lemma T.4.3.3) based on the disjointness proper-
ty of AB-developments does not work here since DP does not hold for all
regular CRS's, see Remark 2.13.(i); the proof using 'decreasing weights'
as in I.4.1 might be extended to the present case, but such an extension -
seems very complicated.

Therefore we will split the problem to prove FD, and hence CR+, into
two parts: reduction in a CRS can be analyzed into
{a) a 'Term Rewriting part' where subterms are manipulated (multiplied,

erased, permuted} as in a TRS, and '
(b} a "substitution part', as in MM-calculus.
To do that, we introduce for each CRS I a CRS I_ (where the substi-

£

tution part is suspended or 'frozen') and a CRS EfB' as follows,

3.1. DEFINITION. To each regular CRS I we assign a CRE Ef as follows.

(i} The alphabet of Ef = alphabet of  u {1,-}.

{(ii} The map f,.: Mter{ZI} =~4-Mter(2f) is defined hy

0:
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Bax) = x, £ =@

If

fo([xIA) [x]fO Y]

£,(RB)} = fO(A)fO(B}

fo(ztﬂl,...,Hk)) = (lxl...xk.Z(xl,...,xk}}fU(Hi) ...fO(Hk] .

{1if) fl: Red (L) — Red(Zf) is the map assigning to r = ¥ — E' the rule
fl(r) = H —> fD(H'J.
(vl Red(Z.) = {f (r} | r ¢ Red(D)}.

3.2. DEFINITICH. ZfB has the same alphabet and rules as Z_ plus as extra

f
rules ﬁk—reduction for all k = 1:

B = (Axl...xk.zo(x1,.-.,xkj)zlzz...zk — zo(zl,...,z ]

% k

Em (m for 'many') will denote the union of the Ek—reductions {k=1}, as in

Def.T.4.2.2,

3.3, REMARK. (i) Ef and sz are evidently again regular CRS's, since the
LHS's of the rules are unaltered.

P A ——3F — R, i Z
£8° 2T {0 B So in I
the E-reductions are separated into a 'term rewriting paf%' fl(r} and a

(ii) Obviously, if in E: & - B, then in I

'substitution part’ Em'
{iii) Note that Ef is in fact a TRE, by considering the variables Ke¥irnms
which do not play that role in Ef anymore, as new constants. (This remark

is meant heuristically and we will not prove it.)

3.4. EXAMPLE. (i) 'Frozen' if-calculus, (AB}f, has as only rule (writing
Az for Alx] in the LHS):

flfB) = (Ax.ZI(XJ3ZZ — (Az}zl(x))zz

fii) If ¥ is a TRS, then Ef = L.

+
3.5. DEFINITION. Let I be a regular CRS. Then I | WCR iff
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9 by 1
>
ri |
|
Bl ¥z o
|
i
W
b S »Y,
Ay 1 23

i.e. for all I-terms AO'Al'AZ such that Aﬁ — Ai by ceontraction of an r,=

redex Ri (i = 1,2), there is a common reduct A, to be found by a complete

3
ri—development aof the set Si of residuals in Ai of Ri (i =1,2}.

(Remark: We do not yet know that all! developments of the sets Si (i=1,2)
are finite, nor that all complete developments end in the same term. At
this stage, we do not know even that there Is a complete development of Si.
Later on, in Lemma 3.9 and Theorem 4.15, all this will be proved to hold

indeed.)

+
Checking that ¥ # WCR {for E regular} is neo longer as trivial as for
AB-calculus, due to the possibly complicated substituting behavicur of
CES's. Therefore first:

+
3.6. LEMMA. Let I be a regular CRS. Then I_, E wer .

PROCF. This requires a consideration of the following cases:

(i)

and checking that indeed the common reduct D ¢an be found by reduction of
residuals of the redexes in question, as required by the property WCR+.
This is just as easy as checking that lEm F= WCR+ and that every TRS F=WCR+
{(in fact for that reason zfﬁ was introduced), and we omit the actual veri-

fication. 1

With the aid of the concept Efg we will now first prove a weak form

cf FIr for regular CRS's I (namely that E_P= WN} and get CR as a corollary.
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After introdusing some more theory (the elaboraticon of a methed originally
due to NEDERPELT [73]) this is used to get the fuil FD and cr' theorem.

In the next few pages we will prove to that end some technical (but
intuitively clear) propositions; the main activity thereby is 'Label
tracing'. We will allow ocurselves a bit of informality in the description
of this activity (in the same spirit as when one speaks of 'diagram chasing'
in e.g. category theory), since a more formal treatment would probably not
be more perspicucus.

The next Proposition prepares the way for the main Proposition 3.8.

3.7. PROPOSITION. Efg F= FD. I.e. avery —development terminates.

ZfB

PROCF. Let M ¢ Ter(Zf } and let an underlining of the headsymbol of some

set IR of redexes in ﬁ be given. Furthermore, let & be a reduction of M in
which only underlined redexes are contracted. We have to prove that 8 is
finite.

The proof is a straightferward extension of the proof of Theorems
I.4.1.11 and I.4.2.5;, using the method of 'decreasing weights', and will

therefore be cmitted. [J]

3.7.1. EXAMPLE. Let I have as only rule
(=2, (x)) (Qy.2, () —> 7, (2, (dy.z, (1)) .

Then ZfB has the two rules

(0x.2, (x)) (Qy.2,(y)) — (Aa.Z, (@D (Ax.3, (x)) Qy. Ay' .2, " )y) ]

B, = Ox.z,{x))z, = 2, (2 ).
Mow in I every reduction starting with (Ox.xx) (Qy.yyy) is infinite; in

L__ we have the terminating reduction:

£B

(Ox.xx} {Dy.yyy) — (Ra.aaa} [ (Ax.xx) By (Ay' . y'y'y' v} ]

——= MM{MM) (MM} (where M = (Qv.yvy),

a Zf -noxmal form.

B
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The 'main proposition® gsays nothing more than that a 'separated' com-
plete development ® of a set of redexes in a I-term M, where 'separated'
means that & takes place via I__, can be replaced by a complete development

B
®' in I of the same set of redexas.

3.8. PROPCSITION.

Mt
Mt e Ter(Efl

complete development in Ef complete §m~

evelopment

of P, a set of £ (-

redexes

MeTer{f},___._____ __ __®¢« > M" ¢ Ter{I}

complete development in I of the

-+ -
same set of redexes P, now r-

redexes

Let M be a E-term, and P1""'Pn be a set of resp. rl,.r.,rn-redexes

in M with TireeasT € Red(I). 8ince Ter (L) = Ter(Ef}, M is also a Ef~term:
and Pl""’Pn are resp. fl(rI},...,fl(rn)—redexes in Ef

Mow let M' ¢ Ter{? } be the result of a complete development (c.dev.)
of the f17;7;redexes P, and let M" be the complete B -development {(in Zfﬁj
of all the lx—redexes which have originated by the c. dev. M —= M'. So
M" e Ter{l).

Then there is & ¢.dev. in E from M £o M" of the ;—redexes ;. (See

figures above.)

PROOF. The proof is in five parts. _

{1} In case n = 1 (in B = Pl""’Pn) the proposition follows immediately
from the definitions of Ef and sz' In the case that the ?i—redexes are
disjoint, the preposition follows also immediately by the previcus state-—
ment, _

{2} rReminder: Em—developments have the disjointness property. (Corollary
CI.4.3.10) ile. 1f M Em-develops to M', then the residuals in M' of a sub-

term N c M are palrwise disjoint.
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(3) !
M < Ter(ZfB) M' € Ter(EfB)
fiir} }
|
§m—dev. D iﬁm—dev.

{

|

|

_“_dis_izifz__»}‘}‘

M eTEr(ZfBJ fltrl M eTer(EfB}

CLAIM. Let M ¢ Ter{I__) and M' be the result of an fl(r}—contraction, M"

B
of a B -development (not necessarily complete). Then a common reduct MY
is found by a Emvdevelopment of M' and a development of the (by (2) dis-
joint) fl(r}—redexes which are the residuals of the contracted fl(r)—redex

in M. (See figure above.)

PROOF OF THE CLATM. In Lemmz 3.6, we proved that EfB f= WCR+. S0, wa can
try a successive addition of the elementary diagrams (e.d.'s) shown in the
proof of Lemma 3.6, like in the prcof of CR-" in I.6.1, to find a common
reduct. That the thus obtained reducticon diagram P 'closes' indeed, follows
from the fact that EfB |= Fb (Proposition 3.7) considering that all the
reductions in ¥ are fl(r)- and ﬁm-developments.

Finally, by the construction of ¥ and properties of the e.d4.'s it is
obvious that the £ 1{::') -development M" — M™ thus obtained is a development

of residuals of the original fl{r] ~redex in M.

(4) 1
M e Ter()ZfB] M eTer(Efs}
. LY
£, (x) I
i
|
complete lcomplete §m -
- |
Em development {deve lopment
|
1
1
1,
A ;
_ R
M™ ¢ Ter (L} M™Me Ter (L)

‘CTAIM. Given M,M',M" as in the figure, there is a common reduct M™ ¢ Ter (I}

which is the complete _Bm—development of M' and which ig obtained from
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M" ¢ Ter(l) by a complete development of the r-redexes which are the resi-

duals of the original fltr)+redex in M.

PROQOF OF THE CIATIM. By {(3), (1) and the following figure:

M M
flfr}_
c.ﬁm—dev. _@m--de?.
' v disjoint b2 . b
M fl(rl » 4N & Ter( fBI
r . c.‘gm—dev.

Y
M™ & Ter (L)

(5} Finally we can prove the praoposition. Let M ¢ Ter(I}, M' ¢ Ter(Ef ]

B

and M" ¢ Ter(I) be given as in the statement to prove:

Me Ter () M'eT b M" e
2, Py P, € Ter | fB) }e er ()
|
Ei(rl} fl(rzl El (rn} c.§m—dev. |
|
empty |
o. c. a. c.
complete g -dev. B —dev. B —dev. B -dev. !
B -dev. —m ~m —m b 1} [
- |
(+) (xx) |
|
|
z \ Y ) Y
M r r L r ’M'; _________ _an
i 2 n

Then repeated application of (4) yields the proposition, using {ad{*) in
the figure above) that the complete _B_m-development of M ¢ Ter(Z) is the

empty reduction (since M does not contain ‘E) and {ad(#*) in the figure
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above) that the result of a complete Em—development is unique. I

3.9. COROLLARY. I [ Ww.
I.e. for every L, the corresponding underlined L satisfies Weak Normaliza-
tion., Or in other words: for every L-term M there is a terminating complete

development of a given set of redexes in M.

PROOF. Let M £ Ter(Z) and let R be a set of redexes in M specified hy

underlining their head symbol. (So (M,IR} ¢ Ter(Z).} Now working in I take

£B'

a complete development M —= M' « Ter(Ef } . and next the complete Em—devel—

8
opment of M':

M= Ter(Ei —————— M & Ter(ZfE M" £ Ter{l).

e

3) c.p -dev.
-m

Then apply the propositicn above to get a complete development M —* M" now

taking place in Z. [
+
3.10. LEMMA, Let I be a regular CRS. Then T |= WCR .

.I.
PROOF. (1) Let reductions & ~— A4, (i = 1,2) as in Definition 3.5 of WCR

[#] i
bhe given.
{2) Perform the same steps but now 'separated', i.e. via EfB'
{3) Complete the reduction diagrams 30,91,92,03 as in the figure below.
That these completions are indesd possible, is easily checked by some

“routine arguments. {See figure on p.149,)

ol —_ 5 " — T - Elg
Here BRE i= the set of fl(rz) residuals of the fl(rz) redey R2 in AO' ﬁ%
the set of fl(rz)—residuals of the redexes inimé,_etc.
By a label-tracing argument (color the original redexes RlpRz red

+
resp. blue and correspondingly the Ax's originating frem them; so we have

red and blue B -developments; since Al contains nc red and 32 no blue,
T om

ﬁ3 is colorless) it is obwvious that Aj € Ter (I).
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AO rl—redex RJ Al
- //
// //
e Ry Ro1 7
A -3
o £, () B 1
171 ~—m
R2 fl(rz} N 5 11“1(1'2}]RI . f1 (rz) IR;
N Q 2 1
[
[i-
]
[
Kk '
B, o B Y A
oy E '3
B D, g 0, B
A
/) 2
Vi
rs
y
¥
A 13
2 Ry A —Bm A,

Finally, using Proposition 3.8 yields comolete developments as re-

quired:
- R
AC r1 redex 1 Al
)/I il
/l r/’
AO 1
rz—mdex R complete
) "o
r2 Hev. of IR2 Il-'-‘.2
c.r 1—dev. N
) ‘/\\ A,
J/I n = ’;'(
y of M= R, e
A
A2 3
whare it is routine to check that ]R'l' , ag defined above, equals ]Rl ; the

" ot of residuals of Rl

terchanged. 1)

after contraction of R

2

, and likewise with {,2 in-
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3.11, THEOREM. E |= CR, for every regular CRS L.

PROOF. Let I-reductions ﬁl = -MO — M = ... T M and ‘ﬁz =
MO — Mi — M'2 _— ., —* MI'1 be given. Using the same argument as in the
proof of the preceding Lemma, we can now '£ill in' block-by-block of the
fellowing two-layered reduction diagram, DE behind and 'DZ in frent:
£8
M M '
0 1 M M3
’DZ ,‘_ l“ i
L MDI Ml /’ Ml2 M2/'
M
a
DE
8 .
01
I' I'
L) //’ // //
M
1
M2
) = -+
] J’ I’I
My

Note that after having 'lifted' the edge M[} — Ml —_— ...

of 'DZ to the edge j:
- 1
MO--i MOl“—+M1—+M12—¥... Ml
of the auxiliary diagram DE . the conmstruction of 'Dz follows by
£
MEJl a projection (using Proposition 3.8} of the construction of 'DE
£@r
l- as in the proof of the preceding Lemma.
MT -

0

3.12. REMARK. The status of several analcgues to the case of AB-calculus
in Ch.I is not yet clear, namely:

- {1) FD; if M ¢ Ter(Il}, then all developments of the underlined term

{M,IR} & Ter (2]__} terminate.
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{2} The Parallel Moves Lemma {cf.T.6.12).
(3) CE&; the "stepwise' diagfam construction by adjunction of e.d.'s
terminates.

In fact it ig sufficlent to prove FD; for then PM and CR+ are corol-
laries. That Fb holds for I, i.e. I F= 5N, will be a corollary of a general

method to reduce SN-procofs to WN-proofs. This will be the next subject.
4. REDUCTIONS WITH MEMORY

The difference between i~caleculus and iI-calculus is that in the
former subterms can be erased. This is the reason that some pleasant prop-—
erties of the iI-calculus fail for A-calculus; see I.7. We will now asso-
ciate to each regqular CRS I a regular CRS E['] in which there is no era-
sure, This will lead tc amethod to reduce SN-proofs to WN-proofs, de-
seribed in the next section; corollaries are the theorems FD, CR+, BM for

regular CRS's I.

4.1. DEFINITION. Let @ = {Qi | 1 € 21 be the =et of constants of I. Then
*
the set of constants of Z[ 7= q4u {Qi ] 1 e 1}y {Ph
!

4.2. NOTATION. (i) Instead of PAB we write [A,B]. The subterm B is called
the memory part of [a,B].

(ii) [(A,B,+...:B 1 := [[AaB,,...,B_1,B ]
n+ n n

y +

{iii) If §'= Bl"'T'Bn wa wili sometimes wiite Aﬁ for [A,gj, when it is
typographically more convenient; we will even employ both notations simul-
taneously in one term, as e.g. in [A,Bcj-

{(iwv) If H ¢ Mter (L), then "H e Mter(E[']) is the result of replacing H's

*
head symbol @ by 0.
4.3. INTUTTION. To motiwvate the next definition, consider the
TRS: I = CL, & Pairing, with constants I'K'S'D'DD'Di and rules:

— 21’ Sziz 7., ——> 2123{2223),

Iz — %7, Kzlz 0By

2
Uo(ﬂzlzz) —> Zy. Dl(ﬂzlzz}-—u+ Zz'

. Obviously there is erasure here: in the rules for K and 90,91.

{i} We want to eliminate this erasure in X[ ] by replacing the K-rule by
r
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K2122 — Ezl’K zlzzj,
the DD—rule by
W
'DO(Dlez) — [zl,ﬂo{ﬁzlzz) 1,

etc. I.e. the original redex is repeated as 'memory part', but 'frozen' by
{But note that the redexes possibly occcurring in the subterms substi-
tuted for the meta-variables Zi, e.g. in K*ZIZ2 above, are not affected by
*
.} Obviously, the resulting rules are non-erasing. Even the non-erasing
rules will be transformed In this way, s¢ the I-rule in I becomes in Z[ ]:

r

iz — [z,I*z].

{This is done not only for the sake of an uniform description, but also to

make T increasing; see Prop.4.9 below.}

L.]
(i1} Further, we want to be able to imitate each reduction # in T by the
'same' reduction R' in Z[ ] (necegsary in the proof of Lemma 4.10}; that is,
if in &' the memorized parts are erased, the result is #i. To be able to do

this, we introduce in E[,] the 'shift rule'
—_—
[zl,zgjz2 [2123,22]
+ -+
which gives the reductions Agc — (AC)E: this was also done in I.8.5. How

consider e.g. the following & in E:
Kfjc(DaBy —— vg(ﬂBB) —> A,

Then £ will give rise to the following imitation ®' in Z[ ] {by way of 1l-

lustration we employ the [,1 - as well as the subscript notation) :

KDgC(pBB) —_—
5

[Dg (DaB) K Pgcd = (D ('DAB)}K*DUC —
* * _

LA, D5 CORB) 1, K D0CT = At a0

(PaB) -

*
Note how in the shift step the memorized subterm K DgC, which is affixed

to the head symbol Uy of the redex Dg{UaB), 1s shifted 'out of' that redex.



(1ii) But this is not yet encugh, because memorized parts affixed to

‘deeper' subterms in a redex cannot be shifted out of the redex. For,

order to imitate the following reduction ® in I:-

Py (IKDCaB)

=
Py (KPcaB) ——
Uy (DBB) ~——

A
by the reduction #' in E[ 1¢

Do (IKDCAB) —

*
Do ([K, T KlDcam) HiFE
Dp ([KDcas, 17K3) ~——r

* *
Dy (L{0, K 0claB, T K] W

Do(T1088, K01, T°KD) = Do (DAB) jng . 1o ’

L&, D (Da8)  * ]

0c, 17K
we need the rule (for the last step in #'):

PyPz, 5.} — [7,, 05 (P2, 2, } i
172°2,,2, 1 172'2,.3,

{Note: one should not confuse DU(UBB)E-and (yU(DBB}]E-)

This motivates the next definition:

in
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4.4, DEFINITTION. (i) On Mter(Z[ 7} we define the 'forgetful’ reduction rule
— R +

(as in Def.I.B.6):

= 1
k [31’224 — Z,.

If A,B ¢ Mter{Z X

HI 1

Se e.g. H ,E"“F G,H,I'J,K

]J and A —= B, then A is a 'k-expansion' of B.
(

AD (B C ) is a k-expansion of (AE(BC)H}J, which

is a k-expansion ¢f the k-normal form A(BC). Moreover, we will say that in

H the subterm A is k-expanded, and likewise the subterms B, B_C and

AD,E(BFC)G,H,I'
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(ii) Further, we define on Mter (I } the rule

[.]

Il = a_ 14, —— Zo.4. 1.
shift [zl, 2] 3 [z1 3 2]
So a 'ghift-normal form' H' Mter(Er ]) is a term K in which all the
. |

memery parts are shifted to the right as far as possible. E.g. H in (1} is

i hift-n.f. =z H! ich i 1
not in shift-n.f., but H —EﬁzEzéﬁ {E(BC)F,G,H,I)D,E,J,K : H' which is in
shift-n.£f {if A,B,C are).

4.5. DEFINITION of Red{Z[ ]J.
L)

{i) Let r = Hl ﬁhﬁ-Hz € Red(Z). Then rE ] is the set of rules of the form
. . ¥

*

where Hi is a k-expansion of H1 such that:
(1) Hi ig linear {i.e. no meta-variable occurs twice in Hi)

(2} Hi is in shift-normal form

(3) Hi is not of the form [H,%j, or equivalently, Hi and H have the same
head symbol Q

{4} the meta-variables in Hi are not k-expanded.

Requirements (3) and (4) are merely technical; a motivation will follow
soon {in 4.6.{4)).
{il} Now we can define

Red (L = U ¥

reRed (T)

v {shift}.

7 £,]

4.6. EXAMPLES AND REMARKS.

(1) Let r = H, — &

= Rgz1zz — %4, be a rule in Red(%)}. Then all the

1 2 1

rules
3 k=
" = -5 e
By = R00,2,12 2, >z, ,R10,2,]z, 2,]
-
=1 = ' } . - . -

will be 1in Red(Z[’]), where ZO ZOl"’ZOm {m>0} , Zl’z2 are pairwise dis
tinct,

. (2) Let £ be CL ® Pairing, as in 4.3, Then we have in E[ ] the rules
r

(among others):
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Dy (Dzz") . 0 - Po= [z,DE’(Dzz')Zl,___,Zn}.
P
| N
2 : Z Dy
VRN |
P z
A N P

(3} Let E = Ag{-caleculus). Then (18)[ ] has besides 'shift' as only rule:
*
B[,} = (Ax.Z, (x))Z, — [zlfzg) e x.zl(x})z2j

where Xx.Zl(x) is written for l(ijzlfx)) {In fact thig is not quite trué:
due to our inductive definitionof Ter{I), in this case also * and [x]zi(x}
are subterms of h([szitx)). Hence we should have in CAB)[’] also a rule
r' = h([x]zltlegzz ——r [thzz),...]. But the definition of Ter(I) can be
easily adapted such that it confeorms to the usual one for Af~terms, thus
excluding the unnecegsary rule r',)

{4) Given a rule, say, r = Kzizz "—4-21 in I, there is no need to include
in Red(Z } rules where the meta-variables are expanded:

. L
K{ZI,Z]{ZE,Z'] — [Zl,...] since in E[’] the meta-variables Zl,z2 in
Kzi.zz —_ [Zl’K*ZIZZJ range already over terms of the form [A,gl.
Also there is no need to include the rule EKzlzz,Ej —_— [Zl""]
since the LHS iz merely a context of Kzlz2.
4.7. PROPOSITION. Let I be a regular CRS. Then Red(Z[']) is left-linear

and non-ambiguous;  hence E[ ] is a regular CRS.

F

FPROCF. The left-linearity was explicitly required in the definition. As

to the non-ambiguity, it is not hard to show that a supposed ambiguity in

.Red(Er ]} would yield one in Red(I) after erasing all the memory parts in
- F

the pair of interfering rules.
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{Note that the 'forgetful' rule k ¢ Red(Z[ 1); otherwise we would have am-
r
biguity, since e.g. k and 'shift' interfere.} [

4.8, PROPOSITION. The operations 'addition of underlining': I+ E and

‘addition of memory': I +— E[ ] commute. ¥.e. for every regular-CRS I:
,

E =k .
L3 {.]
PROOF. We will give the proof by considering a typical example. Let E be

AP-calculus + constants (0 (zero}, S (successor) and J {iterator).

S0

(lx.Zl(x}}Zz —_ Zl(Zzl

aJﬂzlzz > B,

k.T(SZO} z,%

Red (I)
2 T2 M2g% 2y
(Ax.7, (%)) 2, ~— 2, (2,)
102,72, — 2z,

i(SzC_}zlz2 — Z,(92,7,2,) .

Red (1)

r ¥

(};.Zlfxllzz S 521(22),(1'x.zl(x)122]
— L2, 1 032,2,1 .

12, — [z, (Jzozlzz),l (Szoizz_izz]

.

Red(fr ¢) = 30227

2
L_J_[(Szollzz

*
J”"-Zﬁ"”zz — Ezl (Z,) 0 (W'%.Z (x})2,]
T3z, 2, — 12,,77022,2,]

o *
J Sz 3,2, — Ezl(Jzozlzzl I (82,122, 2,

Red(L_ .)

L.1

. *
(ax.z, (x1)z, — (2 (z), (A %.2, (x) 12,1

*
) =102z, — 12, 7°052,2,]

Red(E[ ]
f *
— [zl{J’zozlzz] J {Szo)zzlzzl.

R CREX

2

So we have cheated a little bit in the statement of the proposition:.more
precisely, E{ ] and E[ ] are isomerphic, by letting correspond the symbols
r L
Q" in Iy to the symbols 0 in Ip 1 (0=1,D). [0
!

.1

In the sequel, we will refer tc the properties 'increasing! (EF:Incl
. and 'inductive' (EF=Ind}, defined in I1.5.16.

4.9. PROPOSITION. I ; | 1Inec, for all I.
X F
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PROOF. Let [Ml be the Iength of a E[ ]—term. Then obviously
r
M = [u < ]
r

for all r ¢ Red(E[ ]), since the 'ocld® redex R is repeated:
’
M £ ¢lR]

i}

r ¢[[R',*R}] = N. I.e. E iz increasing. [
r [.]
4.10. LEWHA. I F sN = 1 | sN.
B

PROOF. We will not spell out the details, since the situvation is very much
analogous to that of I.8, Sketch of the proof: suppose I F SN, and let
R = MO ——+—M1 —* ... be an infinite reduction in I, Now it is easy to see

that & can be mimicked in the following sense:

In £: &= Mo e %
Cy 1'0 ) rl Q I‘2
k k k
LY b
In T : /o= T
{,] M, ré shift M Ty shift M) ) shift

where r, € Red (I}, ri € (ri][,] < Red(Z[']}, i=0,1,2,... . [
Now we are ready to prove one of the main theorems of this chapter:

4.11. THEOREM {(Generalization of NEDERPELT [73], Thm.3.20).
For all regular CRS's §:

2 Ewe = |k sn.
r,1 .
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PROOF. First proof.

1 E cr (Thm.3.11, Prop.4.7)
r

(Thm.T.5.11.{2))

E[ ] }= UN {Def.I.5.6} E[ ] }= WN (hypothesis)

{Lemma I.5.17.(3))

Z[ 1 |= Tnd fDef.7.5,16) E{ ] ]= Inc (Prop.4.9)

{Lemma I.5.17.(1))

oA E 8N
“ (Lemma 4.10)
Yk osN

Alternative proof.

z I= WCER (Lemma 3.10)

£,1

I 4 k WN (hypothesis) — I, k sN == I E sN.
F -

I.5.19. {1} L {4.10)
E[ 1 1= Inc (Prop.4.9)

0

4,12, REMARK. The main idea in this proof is due to NEDERPELT [73], where
(essentially) the first proof is given for a special case, namely a "typed"

A-calculus which arose from the AUTOMATH~prcject of de Bruijn {Eindhowven).
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The properties Inc, Ind are not explicitly mentioned there. Instead of re-

ductions ] MNederpelt has 'Bi—reduction’ (where 'scars' of esarlier re-—
-7

ductions are retained, as Nederpelt puts it); in our notation (forgetting

Nederpelts types) it would read

Bl = (lx.zl(x)}zz —t (Ax.Zl(Zz}lzz.

Nederpelt's ‘Bz—reduction' corresponds to our k-reduction rule. Where we

use as an increasing norm, B—- |M , the length of the E['j—term M,
Hederpelt defines |M| to be the length of a longest k-reduction path to
the k-normal form {obviously k is a strongly normalizing reduction); in
our notation we could, equivalently, say: |Ml := the number of pairs of
[,1-brackets in M.

We quote from the 'Introduction and summary' of NEDERPELT [731:
"Tn this thesis we shall show that, if in a system all terms are normal-
izable into a unigue normal form, then each term is strongly normalizable.
This will be proved for a certain lambda-calculus called A, the method
can, however, be applied to more systems, and we suggest this as a field
of further investigation." In the present chapter we have endeavoured to

fallow this sugyestion,

4,13. REMARK. There is an obvious resemblance between the method of proof

L,P

in I.8 (where we prove SN for i  , A and A" via an "interpretation’ in

11[ j_calculusj and Nederpelt's method which has led to Theorem 4.11 above.
’
{Note the notational ambiquity: lli ] in the sense of I.8 is not the same

r

as AT in the sense of Section 4 of the present Chapter.) This resem-

L.]
blance can be formulated abstractly as follows.

DEFINITION, Let A = <a, — > and B = <B, > > be ARS's. Let 1t A — B
and k: B —* B be maps such that

(i) ke 1 =1id

; L.e. ¥p,g e A ¥r ¢ B 3s £ B

¥
{r—i-p—-ri——}q = ITS'*"E""‘(]J
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(Reductions in A can be 'lifted’ to B.)

Then B is called an associate of A,

Now, both in I.8 in Theorem 4.11, the idea is to prove A k SN by
finding an associate B of A for which SN is easier to prove; for, cobvicus-—

1y:

PROPOSITION. If A,B are ARS's and B is an assocciate of A, then
BE sy = Ak sn. [

3:

as in Def.X1.8.6; and M ﬂﬁ-—f N iff M —B+ I, re2 N for some L such that N

is the [,]-normal form of L, So we have a situation as in the diagram

In I.8, A,B are )uHW resp, I\II{.IW 1 iz as defined in Def.T.8.11 and k
- P

{where BA,B are as in the defihition above) :

B

hd

Furthermore, SN for the associate }\Ilgw] was easy to prove since RI]EM] |= NE
(non-erasing; see Section I.7 and Sec['.ion 5 helow) . ’

In Theorem 4.11, A and B are regular & resp. E['.I, 1 is the inclusion
map, Kk is as before and M -1-3-7- N iff M R T— I, ez N for some
r ¢ Red(l} and some L such that N is the E,]»norma_]_ form of L. So the sit-

uation is as in the diagram:

r,1

Here SN for the assaciate E[ ] was easy to prove since E[ 1 != Inc.
r ’



161

{In I.8, hl?w] F% Inc; on the other hand EF ] F= NE, as we will see below.)
I —

4.14. REMARK. (i) Nete that in 4.11 we also have proved.
£ W I
(P o= Ty ko

hence for all ZE 1 the equivalence W <« SN holds. Later on {(in Section 5}
!
we will generalize this equivalence to the class of all 'non-erasing' regu-

lar CRS's.

(ii) If I is a regular TRS, it is not hard to prove that
(x) E|=sm=v2[j[=sw.

(Proof sketch: consider an innermost E-reduction # to the normal form. Let
fi' be the corresponding E[ ]—reductibn. Then the memory parts in &' are in
normal form, and hence #' terminates, in just as many steps as #, in a

L. q-normal form. (So & ¢= WN. By (i), also I F SM. )

[.1 L.] L.]
Hence we have for regular 'TRS's I:

{4x) Ik SN e Ir 4 B oWN e Zr g k sn.

For reguiar CRS's I in general, () and (**) require more effort; we
will return to this matter in Remark &.2.5.({ii).
(iii) Note that I | WN #;['] I WN; for otherwise by Theorem 4.11, we would
have I F= WN = I F= SH for all regular CR3's, an obvious contradiction.
_ The simplest example of a I such that I F WN but Ef,] H WN is the
TRS with Red{Z) = {AZ — B, ( —> AC}. Obvicusly every I-term has a

normal form. However, in I ] where

L,

Red Ty 4 = 1Az —» [8,A"z2], € —> [AC,C"])

the term C has no normal form; for, the E[ ]—reduction fl {written in the

subscript notation of 4.2{iii).):
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C— (AC)C* hhﬂ_BA*C,C* — BA*{AC)C*,C* e
BA*B N . o*
AB,x *,C
A BA*B . x C*’C ?
AC, 0

is 'eofinal' in GE (C), the set of Z[ ]—reducts of C as in the figure be-
low; hence every E[']—reduct of  contains a redex C.
r
In the next two figures the reduction graphs GE(C} and GZ[ ](C) are

depictad. In the last reduction graph the abbreviations !

el 1= [Aa, ]

c.,l 3

5 [[B,A"a],C"]

HE

are usged; moreover, 1210 denotes cl[cz[EI[C]]], ete. The beold line corre-
sponds to the ¢ofinal reduction #.

GE{C}:

¢ AC A[AC) JAAGACY

>

RO ]

B - AR A[AB) ;



{

Al

7]
AN

N

\

X\
N

A

We will now state the corollaries of Theorem 4.11.

4.15 THEQOREM (Finite Developments).
For all regular CRS's I: I )= BN.
In other words: L | FD.

PROOF. VE: I |= WN (Corcllary 3.9)
Hence VI: ZE:I i= WN.

Vi E[ ] = E{'] {(Proposition 4.8).

I
‘ ¥i: L WH
Hence I3 |=
Therefore

VZ: I k SN (Theorem 4.11). 0

4.16. COROLLARY {(Church-Rosser Thecrem; Lemma of Parallel Moves}).
For all regular CREB's L:

+
{i) Z |= CR , i.e. every construction of a E~reduction diagram, by

163
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successive addition of elementary diagrams {as in Def.3.5) terminates in
the same 'clogsed! diagram.

(ii}) £ & PM, as in 1.6.12.
PROOF. Entirely analogous to the proofs in I.6.9 and I.6.12. []

‘4.17. NOTATION. As in I.6, ﬂ(ﬁl ,Hg) denotes the reduction diagram deter-—
mined by two coinitial, finite reductions ﬂl'RQ' Likewise we employ the

notation ﬂi/ﬂz, analogous to 1.6,10,
5. NON-ERASING REDUCTIONS

The main properties of CRS's with memory Er 1 are: non-erasure and
- F
Inc. We will now forus attention on these properties, especially the first

one .

5.1. DEFTNITION. E F NE ('L Is non-erasing'} i1ff for all M,N € Ter(I):
M—+ N = FV(M) = FV(N)

where FV(M} is the set of free variables occurring in M.

5.2. PROPOSITION, The following are equivalent;
(i) I # N

{ii) there is a non-trivial context €[ 1 eraging a free variable X:

clx] — M (x4 v (1))

(iii) 3ef 1 3 W ¢fN] — n A B
{iv) there is an elementary diagram of the form : :
(Otherwise said: there is a non-trivial elemen- :ﬁ
tary diagram containing an empty step.) I

c B

5.3. PROPOSITION. The following are equivalent:
i+ t k wE

(11) Ffor all I-terms M and all pairs of distinct redexes &, ,R. < M, con-

1r2
traction of one leaves at least one residual of the other.

(iii}) Let H + H' ¢ Red(E} and let pH — pH" be some instance of this rule.
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et H contain the meta-variable %; then pZ(cpB) has at Ieast one

descendant in pH' (except possibly when pZ € Var).

The routine proofs of these two propasitions will be left to the

reader,

5.4, .EXM-IPZES. {i} CLS,K,I {Combinatory Logic based on the combinators
S5,K, 1, ch.1.2) i=s erasing and so is AB-caloulus.

fii} CLI,J’ the AIl-version ¢f CL with basic combinators I,J and rules

Iz — 1z, _Tzlzzz3z4 — 242,(%,%,%.) is NE; so is AI-calculus.

(1ii} Purther, VE: Ip 5 E wmE.

(iv) I is a non-erasing TRS iff in each rule H — H' the same meta-variables

occur in H and H'.

5.5. PROPOSITION. (i} WF =+ NE (def. WF: X.5.16.(3})
1

-1 -

(ii) FB ~ = NE (Jef.FB ": I.5,.16.(4)}.

PROOF. (i) We will prove the contraposition «NE =+ 1WF. So assume that
L I= MNE. Then by Prop.5.2 for some non-trivial context ¢f ] and term M

we have for all ¥: C[N] — M. In particular:
wern = Cleleln]l] — clelull — ] — 1,

i.e. E [= IWF,

(ii) To prove INE = TFB .. Let ¥ | 7NE, then again by Prop.5.2.{(1ii):

GZI[NO] rr:IZN1 ] c[ng 3

!

M

-1
Hence TFB . [

5.6. DEFTNITION. A CRS I is finitely presented iff I has a finite set §

of constants and a finite set of reduction rules Red(X}.

5.7. REMARK. Almost all well-known CRS's one finitely presented: A8, CL,
TRS's as defined in e.g. HUET [78], RPS's as in I.1.13. A notable excep~-
- tion is A% @ Church's §-rules, see 1.15.(4) and 1.17.
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5.8. TEEOREM. For rinitely presented regular CRS's L the following equiv-
alences held:

(1) NE <= PE "

{il) WF <= Inc.

PROOF. (i} <= is Proposition 5.5.(ii).
=: Let the set of constants of I and Red(I) be finite_ Suppose I F NE.
Let M ¢ Ter(f) and consider H = {N|N — M}. We have to prove that H is
finite; i.e. T | FB ..

Suppose H is infinite. Then, we claim, there must be arbitrarily long
N ¢ #, The claim follows at once from the fact that the N € H are built up
from only finitely many different symbols, namely the I-constants and the
free variables in FV({N} = EE{M] {the last equality by [k F HE)Y .

Now consider a "very long™ N ¢ H, relative to |MIr the length of M,
and to the LHS's of all the closed rules € Red(I). Here a reduction rule
is called 'closed' if its LHS contains no meta-variables (e.g. Church's

d-rules}. If the redex pH contracted in the step
N = €lpf] — €lpH'] = M

is "small™, then M would have the same order of length as N, contradiction.
So our very large N contains a very large r-redex pH, where r = H » H'
cannot be a closed rule since pH is very laxge relative to the LHS's of the
closed rules. Hence H contains meta-variables. MNow for at least cne of the
meta-variables 2 in H, pZ% must be wvery large. (Here we use that Red(I) is
finite; hence the number of meta—variables Z in H is bounded.) By Proposi-
tion 5.3.{iii}), p2 has a descendant in pH', call it (p2}'. Xt is evident
that pr[ = |{pZ}'|, since the only thing that can happen to p% in the
r-reduction step is-that some wvariables in p2 are replaced by some terms.
But then M, containing (p2)*, is very large-contrary to the assumption.

{To make the above estimations numerical, put s = the total number
of symbols in Red{I). Then choose N such that |NE > 2(5+1)[M|; now we
have |pu| = %[N|, because |¥| = |ef 1| + IpH[ and |M| = |&l ]I + |pu"|;
and moreover we have |pH[ < s[pZ‘ + & for some Z in #H, since there are
< g meta-variables Z in H and there are £ s remaining symbols in H.

" Therefore
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| oz *| 2 lez| 2 [eu|/ (s+1) 2 |N[/2(s+1) > |M[,

gcontradieting (pZ)' < M.)

(ii} = is trivial.

=: by Proposition 5.5.(1), WF = NE, so by (i) of this theorem, WF = Fa L.
By Lemma I.6.10.(4), WF & FB“1 = Inc for all Abstract Reduction Systems,

in particular for all CRS's . [

5.8.1. REMARK. (i) By Lemma TI.5.19.(i):
WCR & W & Tnc = SN for ARS's.

Hence, by Theorem 5.8.(ii) and the fact that for all regqular CRS's the
preoperty WCR holds, we have for vegular finitely presented CR3's:

{x) WE & WN =¢ SN.
{ii} Below (in Corcllary 5.9.4) we will strengthen (*) to:
NE & WN = SN, for all regular CRS's.

That this is really a strenghtening of (%) (apart from the fact that it
holds for all regular CRS5's), follows from the fact that WF = NE (Proposi-
tion 5.5), but not conversely {(consider Red(Z) = {IZ — z}}.

{iii}) In advance, let us note the following curious consequence of the

propasition in (ii):

PROPOSITION. Let I ba a regular CRS and Iet N be a normal form in I, Sup-
poge there is an M such that M —» N and M has an infinite reduction

M > M e— MY -,

Then there is an infinite 'ipnverse' reduction

vee == " ——r N' ——> N, as 1in the figure:

=

LW
Fay

M. M.l
Fa

L
Ed
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PROOF. Let [M] = {m' | m* =5 M} and consider the restriction of I to [M];
2all this EM. Then EM ig a regular CRS (being a substructure of one); and
singce [M] (= Terf ) contains a normal form, by the CR theorem: E E own.

By hypothesis ZM # SN, so by the propesition in (ii),= WE, Hence EM |= “IWF
(Proppsition 5.5.%1}). Bo there is an infinite reduction in EM' which by CR

leads to the normal form N. []

{For X,CL thi= proposition 1z trivial: consider the reducticn

va. —+ IIIN — IIN —+ IN —+ N.)}

5.9. The paradigm of a tregular CRS which is non-erasing, is the AiI-calculus,
which was considered in I.7. We have encugh material now (namely FD,CR%, Py
in Theorems 4,15 and 4.16} to prove theorems for non-erasing CRS's in gener-
al, analogous to those in I.7. The proofs will be cmitted as they are en-

tirely analogous to those in I,7.

5.9.1. DEFINITION. We will =mav that ‘the class of infinite I-reductions is
closed under projectiens' (er 'infinite I-reductions are closed under pro-
jections') iff whenever ® is an infinite Z-reduction and &' a finite one,

" then ®/f1' is again infinite.

__ &, infinite

D&k,

/8", infinite

5.3.2. LEMMA. Tet I be a regular CRS and suppose E F: NE. Then infinite

T-reductions are closed under projections. 0

5.9.3. CHURCH's THEOREM for reguiar CRS's.

et I be a non-erasing regular CRS. Then for all M ¢ Ter{I), the fb110wing
are egquivalent:

(1) M iz weakly nbrmalizing {has a normal form)

{(ii) ™ is strongly normzlizing

(1ii) all subterms of M have a normal form. N

'5.9.4. COROLLARY. For regular CRS's: NE = (WN <= SNJ).
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PROOF. The assertiocn is short for:
¥ regular CRS's L, T F NE= (Z £ wN eI | sm.
This is merely the 'global' version of Church's Theorem, trivially implied

by the '"local' version in 5.9.3. T[]

5.9.4.1. REMARK. Let A = <a,»> be an Abstract Reducticn System as in I.5.1.
Let WC!R1 mea =

Ya,b,c € a{b#e} 33 € A

—

4 b
1
1
|
l &
d

C ey

=
fe ~d and b + d exactly one step) and let WCR_l mearn :

VYa,b,c ¢ A{b#c)} Jd = A

a — h
=1
| i
*
[}
©
=1

(¢ »d and b » d consisting of at least one step).

1
Then, as NEWMAN [42] Thm.2 (essentially) remarks, WCR & WH = SN.

=1
QUESTION: does alsoc WCR & WN = BN hold for ARS's? A positive answer would

result in an ‘abstract' proof of NE & WH = 3N for regular CRS's, since
Z
NE <=+ WCR 1.

However, the following ARS answers the question negatively:
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For regular TRS's we can strengthen Theorem 5.9.3 as follows.

5.9.5. DEFINITION. Let I be a regular TRS and r = § — H' a rule in Red(ZI).
Then r is called non-erasing iff both sides H, H' contain the same meta-
variables. -

If r is a non-erasing rule, an r-redex is called a non-erasing redex,

(E.g. in CL the T- and S-reduction rule are non-erasing.)

5.9.6. THEQREM. Let I be a regular TRE. Let 8: M — M' —» ._. be an infinite

L-reduction, and let R & M be a non-erasing redex. Then ®/{R} is agsin in-

finite.

("Infinite reductions are closed under non-erasing projections.”)

PROOF .

MW e eS| (n+i)

M

n.e. R D@, {rh &% a(m

___________ e - /(R

The proof is very similar to the one of Lemma I.7.272. Consider P(R,{R}) as

&} ®/{r} con-

sists of empty steps. By the Parallel Moves Lemma (4.16) the reduction ﬂ{k]

is a complete development of the set.lR{k]I of residuals in M(k)

in the figure. Suppose &/{R} is finite; then after some N

of the
originally contracted redex R. Note that these residuals are again non-
erasing.

{(n} . M(n+1)

Now let for some n z K, M be the first step in & in which

a redex is contracted that is not a residual of any member of ]R(k) . By
Finite Developments kThm.d.lS) there must exist such an n. qtn! is a com-
plete development ofim(n), the set of residuails of R in M(n). Obviously,
every redex contracted in ﬂ(n), is non-erasing, being of the same kind as
R was.

We claim that the projection of this step, i.e. M(n) —+—M(n+1]/ﬁ(n},

cannot be #, however. The proof of the claim is entirely similar to that in

Lemma £,7.2. [
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5.9.6.1. REMARK. For reqular CRS's in general, Theorem 5.9.6 fails, as is
suggested by the above proof and is shown by the following counterexample
from BARENDREGT e.a. [76], Ch,II,5: |

(Ax.K%le {Ax. 1)@ (hg.I)Q . R, infinite
+ K 8l Y 1)
ax|{r}
__________ e ¥ ¥ . R/{R}, finite.
KTI§ I I I

Analogous to the preceding theorem we have

5,9.7, THEQREM, Jet I be a regular TRE, #: M — M' — ... an infinite
redyction, and R © M an Inmnermost redex (i.e. not containing other redexes).
Phen &/{R} is again Infinite,

{"Infinite reductions are closed under innermost projections.")

PROOF. Analogous to the proof of 5,9.6, using the following proposition
which is easily verified:
Let ¥ be a regular TRS, M a I-term containing redexes Ri,Ré.such that

Rl 2 R2 and R2 is an innermost redex. Then:

innermost R

= M, is an innermost re-

{Note that (i) M, — M, is one step and (ii) Ml 3

2 3
duction.} (I

~5.9.8. COROLLARY (O'Donnell).
(L) Iet I be a regular TRS and let there be an innermost reducticn

#: M — ... — N to the normal form HN.
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Then M is ztrongly normalizing.

(i1} For all regular TRS's I:
z |= WIN <= 8M,

where 'WIN' {Weak Innermost Normalization) is the property that every

term has a normel form which can be reached by an immermost reduction

PROOF. (ii) is merely the 'global! version of (i},
(1): Let 8': M — .., be an infinite reduction and f: M —» ,., — N ba an

innermost reduction to the normal form W,

M ’ ', infinite
i.m -
q 1.m AR em
i.m
e RV/R
v

Then by Theorem 5.9.7, ®'/& is infinite, contradigting the fact that W is

a normal form. Hence M ¢ SN. f]

5.9.8.1, REMARK. (i) Corollary 5.9.8 is a consegquence of O'DONNELL [[77]

{(Thm.11 p.53), as is seen by noting that for regular TRS's the residual
concept satisfiles the reguirements stated there (Def.22), and by noting
that regular TRS's fulfill the property "Innermost Preserving" (Def.35)

defined there.

{ii) It is easy to give a counterexample to 5.2.7 and 5.9.8 for regular
CRS's in general, analogous to the counterexample in 5.9.6.1, since e.g.

A-calculus is not "Innermost Preserving™ due to substitution.

5.9.8.2, APPLICATION. (Bar recursive terms)

T .
TAIT [71] considers the TRS I = CL {typed Combinatory Logic) & {R,B,¢,4}
where R is the Recursor having reduction rules as in Example 1.12.(ii),

B is the Bar recursian operator with reduction rules
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82122232411 —_ ..

for each W (short for 4 ).
{The precise form of the RHS is not important for us)

In fact there are constants S,K,R,B for each appropriate type. It is
easy to see that I is a regular TRS; alsc if the types are viewed as "in-
ternal', i.e. as elements of Ter(I).

An extension of I is I' =.I @ constants § for all functicns £: W — N

and rules
(g, ) — t(f,n,0)

where ¢ is a type and t{f,n,o) is some term depending on £,n,c of which the
precise form is not important for us. To write these rules in our notation,

we can adopt a constant C {for 'choice sequence'} and write
Cof — t(f,n,0).

Note that moreover L' Is a regular TRS.
Now TRAIT {71] proves, in our terminology, that both I and I' satisfy WIN.
Hence by Theorem 5.9.8, also I, E! F= SHN.

5.10.Tn the following figure we summarize some fagts tregated in thig sec-
tion, which hold for regular CRS's. Here "f.p" is "finitely presenteg"
{Def 5,6}

Inc = ! WE
f.p |

Fo — NE

!

Infinite reductions are ‘

closed under projections

(5.9.2)

Church's Theorem [5,9.3): ‘

W = SH
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$.11. DISCUSSION, Before we proceed to prove some more theorems about
Strong Normalization of regular CRS's in the next section, let us consider
the posaibility of generalizing some theorems proved in Chapter I for
definable extensions of A-calculus, namely those concernings

{1} Equivalence of reductions

{2) Standardization

{3) Normalization

{4) Cofinality of Knuth-Gross reductions.

Ad(l). The definition of 'Lévy-equivalence' of reductions, and Lévy's
results thereabout, gensralize at once teo the present case of regular

CRS's.

Ad({2). Standardization, however, is much more complicated in the present
case than for definable extensions of A-calculus. This was poitted cut by
Hindley, for the case of A-calculus € recursor R; see some examples in
HINDLEY [78], See also Remark 6.2.8.6.(ii).

For regular TRS's a Standardization theorem is proved by HUET-LEVY
[791. It is remarked there that the theorem scems to extend to 'applicative
rewriting systems with bound variables', i.e. to CRS's.

At the end of this Chapter (see 6.2.8) we will prove the Standardiza-

tion theorem for 'left-normal' regular CRS's.

Ad(3}. The Normalization Thecrem (I.11.2), saying that repeated contraction
of the leftmost redex must Iead to the normal form if it exists, does not
carry over, as observed in HUET-LEVY [797, where thea fellowing example is
given. If Red(I} = {FfGA — B, L — (, ¥ — A} then the term fCP has a
normal form: FCD —— FCA — B, but the leftmost reduction is infinite:

FCD —= FCD —> ... {repeated contraction of the redex Cy.

In 6.2.8 we will prove the Neormalization Theorem for '"left-normal®
regular CRS's, as a corollary of the Standardization Theorem which we just
mentioned.

In HUEP-LEVY [79] the following interesting regular CRS is considered

(the example is basically due to G. Berry) :

Red (I} = {FABz ——= (
FBZA — (
FzAB — C}
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which leads to the question:
does there exist a recursive one step normalizing strategy for every regy-
lar CrS? (or, for every regular TRS?)

We conjecture that the answer is negative; see for a discussion of
the problem HUET-IEVY [79]. (For a precise definition of the concepts in
the questiOn, see BARENDREGT [8071, A likely candidate to establish the

negative answer may be: CL @ the above mentioned L,

Ad({4) . The definition of Knuth-Gross (KG) reduction (see I.12.4} extends
readily to the present case, and so does the theorem (I.12.5} stating that
KG-reductions are cofinal. So KG-reductions are normalizing; and hence we
have & recursive 'many step' normalizing reduction strategy for regular
CRS's.

Also the refinement (I.12.3) stating that secured reductions are co-

final, generalizes without problems to the case of regular CRS's.
6. DECREASING LABELINGS AND STRONG NORMALTIZATTION

In this section we will prove some more theorems from which one can
infer Strong Normalization for regular CRS's, We remark that the proof of
BN, so sbtained, dees not reguire stronger means, metamathematically
speaking, than the proof of WN {(Weak Normalization) for the system under
consideration. To be more specific: where a proof of WN uses transfinite
induction to the ordinal o, the proof of SN as obtained here requires trans-
finite induction to w'. (For 'Gédel's 7', see 6.1.7 below, we have
a =o' = EO.] S0 if a WN-proof can be formalized in Peang's Arithmetic {i.e.

if a < EU}, then the SN-proof can also be formalized in P.A.

6.1. For convenience we will restrict ocurselves in this subsection 6.1 to
regular TRS's; but an extension to regular CRS's does not seem to be essen-

tially problematic. First two preliminary definitions.

&.1.1. DEFINITION, Let I be a reqular 'TRS. Then E'[ 1 is the regular TRS
defined analogously to E[ 1 {(Def.4.5), with the only change that in a re-
r

duction rule only the erased metavariables are repeated ('memorized').

-6.1.1.1, EXAMPLE. Let I be CL @ (J,4,¢}, where CL is Combinatory Logic

based on I,K.8, and where the iterator J has reduction rules as in Example
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1.15.(3}.
Then

Red(Z[ -,) = {Iz — [z,I*2]
Kzz ——+rz Kzz]
‘?.212223—»[52 (z ‘a}Szzzz ]

J'Oezle — £z JE ﬂ+2122]

*
1 T zr
J(az 12%,%, — [zl(Jz zlzz),J (42 )Ezlzzj}.
(Here 2 = 2., ,%.+...,%,_ for some m = O, So the last twoe rules are in fact
01*“02 om °7
schema's for rules; see Def.4.5.).
On the other hand,

Red (L' ={lzg — 7

£, 7
Kz B, [z 'Z, ]

521%223 2123{22.43
J’ﬁzzlz2 [z vZ, B

1 =+
Jiag’ )—52122 — [zluz 2,2,) A

6.1.2,. PROPOSITION. Theorem 4.11 holds with E[ ] replaced by E'[ 1 T.e.
-t '
for all regular CRS's L: E'r 1 F Wi = I F SH.
P

PROOE. I'p k NE, hence: 2 = WN s I - SN, by Coroll.5.3.4. The
r - r
proof of the implication Z‘ [,] F: EN = L E= 5N is analogous to the ome in

Lemma 4.10. T[]

6;1.3._DEFINITION; Let I be a regular TRS and M € Ter (L' Y. Then the

set of occurrences of memorized subterms of M, notation géi[,]‘”" ig de-

fined inductively as follows:

{£) k(M) « Sub['](M). Here x{M) is the k-normal form of M (k is the ’'for-
getful' reduction rule defined in 4.4); so k(M) is the result of eras-
ing all memorized subterms in M.

(11) A, = [a,BI c M= «(B) ¢ Sub (M) .

L,]

"6.1,3.1, NOTATION, Instead of N « Sub{ ](M), we will write also: N St M,
I —— f

1
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&.1.4, EXAMPLE and REMARK, (i) If T = (A
ghift-n,f.

IC' having the

B}
(DE} 5 x.F, GHuy,o

{See Def.d4.4):

T' = {ABC)
D F_,CH I
( E)J,K' L' M, O

then Sub['](T) = Suhi'](T') = {ABC,DE,F,GHI,J,K,L,MN,O}._

{ii) It is easy to see that Sub['T(T) 1s invariant under "shift®,

{iii) Note that Subt'](T} = Ter(Z) (more precisely, the terms having an oc-
currence in Sub['](T) are I-terms).

{iv) = g['] T does not necessarily imply 3 < T; unless S is "innermost

w.r.t, E[ ]". E.g. ABC,GHL ¢ T, but MM =T in {i).

6.1.5. DEFINITION. Let I be a regular TRS.
(i) Let | |: Ter(Z) — ORD be an orﬁinal assignment (or ordinal labeling).
Here CORD is the class of ordinals.

Then I k WNf f ("L is weakly normalizing w.r.t, | |"} iff for all

M e Ter(l) not in normal form, there is a reduction step M —= M' such that
iMl > M},

{(ii} I F: DL ("L has a decreasing labeling") iff there is a labeling | [:
Ter{I) —= ORD éatisfying:

(H  k LT

(2) Mg N = [M] < |N].

{iii) £ = DL' iff there is a lzbeling | ]: Ter({Z) —- ORD satisfving:
(v =k WY

(2) M N = M| < |u]

(3 if R = QAl...An (nz0) is a redex, then IR| > ]Ail {i=1,...,n (I.e.

@ redex'is ‘heavier' than any of its arquments.)

(iv) I | DL" iff there is a labeling | | satisfying:
1y T k= LT
(2y MmN = M| < |N|

[

(3} A redex is heavier than any of its erasable subterms. I,e.: let
¥ = H —* E' be a rule in Red(f}, and let £ be a metavariable ocourring
in HE, but not in H'. Let p be a wvaluation; so pHE 1s a redex containing

the 'erasable' subterm pZ. Then |pH! > [pz].
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6.1.6. THEQOREM, ret F be a regular TRS, Then the following equivalences
hold for I:

DL <« DL' <= DL" <> B5N.

PROOF. DL = DL' = DL" foliows at once from Def.6.1.5, The proof of
SN = DL is 2asy: sSuppose L F= SN and M ¢ Ter(I). Consider the reduction
graph G(M) = {N € Ter(Z) | M —= Nl. Now define | [: Ter(}) — M by

IM| = total numbexr of symbels in G{M), i.e. £(N} where £{N} 1s the

B
MeG (M)
length of N.
{By SN, |M| is indeed defined.) Then it is not hard to verify that I F= Bi..
It remains to prove DL" = SN. Suppose I F= pDL"; let | | be an ordinal
labeling such that the property DL" holds. Now assign to M ¢ Ter(Z'r 1) a
e d

multi-set Ipl {see Def.I.6.4.1 and Prop.I.5.4.2) as follows:
() Il = <inl | w < (M} & N is not a normal form>.
]

CLAIM: there is a Z'r 1~reduction step M ——+ M' such that MMl =0M'l (in
the sense of Proposition I.6.4.2.), unless M is already in EE ]—normal
r

form {equivalently: unless all M 51,7 M are in I-normal form}.

’

If the claim is proved, we are through. For then I'[ % WN, since

[

is a well-ordering by Proposition I.6.4,2; hence I F= SN by Proposition
6.1.2.

PROOF CF THE CLAIM. Select N E{,]M gsatisfying

{a) N is not a E-n.f. and

{b) N is innermost w.r.t. E{}} {see Remark 6.1.4.{iv}))} such that (a) holds,.
By & F: DL", there is a I-reduction step N SN such that N| > |w'l.

Now we copy in Z‘[ ] that reduction step:
r
Mg eN ]~ clnt™] = 1,

where N*, N are such that K(N*) = N and K(N'*) = N', So if Iml =
= <|N],lP|,...>, then either
gt = <|N'],]Q1|,....]Qm];|P],...> if N' is not yet in I-n.f. and for some

m =2 0, subterms Ql""'Qm not in n.f. were erased; or-
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] = <]QII,....|Qm],1PI,...> if N' ig in I-n.E. and the Q, are as above.
In both cases the ordimal |N| in the multiset Ml is replaced by some lesser
ordinals in Iu'l, since |¥]| > IN'] by DL" {1) as noted above, and since

lQif < |Rl = I¥| by DL" (3) resp. DL" (2).

{That the multiset IMl 1= otherwise not affected, i.e. that none of
the |Pl,..., is multiplied, follows because in the step N 2w subterms
which are multiplied, must be in normal form by (b) and hence do not count
in 1u'l, by the restriction in (*}.)

So by Prop.I1,6,4,2 we have indeed IMI > Imrl. [

6.1.7. RPPLICATION. Consider the CRS T = cL' {typed Combinatory Logic) plus
Iterator J and constants # for n ¢ N . For this regular TRS ("GSdel's T™)
scaurTe [77] (§516) proves WN via an argument due to W. Howard. This proof
shows that

(1) M* o= M1 > [M']O

—_—
M leftmost Q

where [ JO: Ter(T) —» €, 15 an ordinal assigmment. Furthermore, an in-

spection of the definition of [ TO and a short c¢alculation show that

(23 weom = [Nj) < [M]g

{3} [KAB]O > EB]U and [JORB.‘JD} EA]O.

Hence (see Def.6.15(iv} we have T F= DL", Hence by the preceding theorem,
T | sn.

6.2. In this subsection we consider again all regqular CRS's. We will prove
ancther theorem (6,2.4) inferring SN from a 'decreasing labeling'; however,
now the labels will not be assigned to all subterms of the terms M in
gquestion as in 6.1, but only to the redexes of M, Cf. the ‘'degrees' of
redexes in A°" and A¥’% in I.3.7.1 and I.3.9. In fact, Theorem 6.2.4 will
generalize Theorem I.5.14 to all regular CRS's I having a certain assignment
of degrees. Analogously to A" and AT e wizl define ©°'F ana ZHW, and
prove SN for those CRS's; an application is the Standardization and Normali-

zion Theorem for a subclass of regular CRS's.

6.2.1. DEFINITION. Let I be a regular CRS,
(i) R (L) E_Ter(z) is the set of redexes of Z. If M € Ter{Z), then IR (M)
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.is the set of redex cccurrences in M.
{1i) Let Mi'Mz € Ter (L), Then M1~.—.—+ M2 1ff there is a L-reduction step

G:[Ml} — C'[sz in which M_ is 2 descendant of M, .

2 1

{iii) Let 1:{1,R2 €, B (L}. Then R1 . R2 iff there is a E—reduc_tion step

G:[Rl] —_ G‘ERZJ in which the redex R, is contracted and ®_ has no

! 2

" ancestor in t[Rl_'}. (“Rl craates Rz")

6.2.2. DEFINYTION. Let I be a regular CRY. Then & ;: DR ('L has a decreas-

ing redex labeling') iff there is a map # : R (E) — ORD satisfying for
all Rl;Rz ¢ R(E):

i S # > #
(1} R1 —+R2 = (Rl) z (Rz)

> #
R, = f(R) > #(RZ).

(i1} B

{(#(R) will be called the degree of R.)
6.2.3. PROPOSITION. For all regular CRS's: DR = WN.

FROOF. Let E be a regular CRE such that I f= DR and let M ¢ Ter(Z). Define
IMl = the multiset <#(R) | R ¢ R (M)>. Now in an innermest reduction step
M ;—P;m-—» ¥ we have Iml > Inl, since R does not multiply already existing

redexes and the possibly in N created redexes have degree <#(R). Therefore

by Proposition I.6.4.2 every innermost reduction must terminate. Hence

rkown., O
6.2.4. THEOREM, For regular CRS's: DR = SN.

FROOF. We claim that I != DR = 2['] ;= DR, for reqular E, For, suppose

% k DR and let #: W (I) — ORD be the given degree assignment of I; we
want to extend ¥ to a degree assignment #[’]: R (E[,]) —*+ ORD with +he
required properties as in Definitlion 6.2.2. To this end, definpe H['](R} =
= #k(R) where « is the memory-parts erasing function from Definiticn

4.4.(1).

. d
NOTATION: If R is a redex and d its degree, we write R,

Now the claim follows, because if in Z[

T

M ——— 1" resp. M LN M

U] W Ul ul
a’ 54 4d°



181

then it is routine to check that k(R)-.-.— K(R") resp. (R} ~—= g(R"}.
50 we have d 2 &' resp. 4@ > 4', which proves the claim.

Hence b DR = I q L DR = I 4 E wN =3I k 8N, where the middle
implication is Justified by Provosition 6.2.3 and the last by Theorem 4.11.
O

6.2.5. REMARK. (i) The converse of this theorem does not hold, as the fol-
lowing simple counterexample shows: congider the fragment I of CL consist-
ing of those terms which contain only K's and the usual rule for K. Then
obvicusly £ | SN since every I-term (e.g. K{KKK]KK) will be shertened in
a reducticn., But I # DR, since R, = KKK e KKK = Ry i.e, the redex
KKK can create itself, as in the step RlKK = KKKKK —» KKK = R,-
(i1} However, it is possible to define a refined wversion DR' of the proper-
ty DR, by specification of the context in which we have R1 ——— R2 resp.
Ry e R, as in Def.6.2.2. The degree assignment ie then to pairs (M,R)
vwhere R ¢ TR (M}. Then one can prove: DR' <= SN. As in the vrooef of Theorem
6.2.4 we have I k DR’ = I 4 Ebr'. soL b sn=1  or =5 E Dr'

= I F SN, which yields a strengthening of Theorem 4,11 to:
L.1

For all regular CRS's, E ]= SN = Z[ ] I= W == ):[ 1 != SH. (See also Re-
r r-
mark 4,14, (ii) .}

6.2.5. EEMABK, Note that Theorem I.8.14, stating that AEW, XT, lL'P

{for
bounded P) }= BN, is a corollary of Theorem 6.2.4, since as remarked in

I.3.7 and I.3,9, these CRS's have the property DR.

6.2.7. Application of Theorem 6.2.4: SN for Lévy-labeled regular CRS's

In I.10 we gave a (seccond} proof of the Standardization Theorem for
AB-calculus in which essential use was made of the fact that lL'P F= SN
(Theorem I.8.14) or equivalently A E sn. Now we wouid like to have
analovgous L-labelings or Hw-labelings for CL and prove CLHT.CLL'P F= SN},
in order to let this proof of the Standardization Theorem carry over to
CL. One method to obtain such & labeling and labeled reduction, is wia
A~calculus, since CL can be defined in i-caleulus, The result is however
a bit cumbersome {our procedure in the sequel will yield a simpler labeled
reduction) and moreover, we would like to have a more systematic way of

-adding Lévy~labels to not cnly CL, but every reqular CRS, We will now
describe how Lévy's labeling (or that of Hyland-Wadsworth) and the
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corregsponding SN theorem can be generalized to regular CRS's E: to each &
we will associate a EL (ar ZHW] and prove as a corollary of Theorem 6.2.4
that I | SN for bounded P (resp. T |k SN). This will be used in turn
to derive the Stqndardization and Normalization Thecrem for a larges class

of recular CRS's.

6.2.7.1. As in I.3.8 the set L of Lévy-labels is defined: there iz a set
of basic symbols L' = {a,b,c,...}, and from these I, is built up by concate-
nation and underlining, e.g. abca ¢ L. The function h denctes the 'height’
of 2 ¢ L {(i.e. the maximm levgﬁfbf underlining of o), e.g.

hiabca) = 2. {See I.3.9.)

In oxdexr to define the concept 'degres of a reédex', analogous to the
one in T1.3.9, and to prove that a redex can only create redexes of lesser

degrae, we need several definitions.

6,2.7.2, RESTRICTION. For technical reasons {see Remark 6.2.7.6) we will
consider in this subsection 6.2.7 only CRS's I without 'singleton redexes',

i.e. if H — H' ¢ Red{E), then H is not a constant ().

6.2.7.3. DEFINITION. Let ¥ be a reqular CRS.

(i) The relaticn < ('sub-metaterm*) is defimed.forlmterfﬁ) as for Ter(Z)
with the extra clause that Hi < Zn(Hl,...,Hn), i=1,...,n, for all
Hi € Mter{I) and n-ary metavariables z".

{(ii) The relaticn E{ ("left subterm') on Ter (X} is defined as Follows:

{1) a Ei(EB) where (AB) is an applicative term,
(2) a SpBpCoa E{+C-+
{Note that A E{ B &= JC AC = B.)

6.2.7.4. DEFINITION. Let I be a regular CRS and ¥ ¢ Mter(Z).

(i) 2 proper indexing (or proper labeling} for H is a map assigning an
L-~label to every subterm of H except H itself and except the meta-
variables 2 in H.

We will use the exponential notation: if B = Sz Z_E then e.qg.

172737

I
is H plus a proper indexing map I.

- a, b ab
H™ 2 ((S z,) ZE)—ZB
(i1} If X i= a proper indexing of H, then (I} will denote the L-label ob-

tained by concatenation of the labels from left to right as they

appear in HI.
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E.g. in the example in (i): (I} = abab. Furthermore (I) is {I) under-
lined; in our example, (I) = abab.

(iii) If o ¢ L, then a % H denotes a labeling of B in which every sub-meta-

term of H bears label o.

E.g. for # as in (i): a x H = (((qazi uzu]uza)a. and if 8 = 2(1,1) for

a binary metavariable Z, then o x H = (Z(T' ,T Nne "3 we will also write
21, 1% .

6.2.7.5. DEFINITION. Let I be a regular CRS. Then EL is the CRS obtained as
follows:

{i) Ter(ZLi
(11) Rea(z™

et | M e Ter(L), T some L-labeling of M}

{HI — (I} x B! I H ~ H!' € Red(Z) & I is some proper I,-
labeling of H}.

L
Tt. i5 routine to check that I is a regular CRS again. (In Remark

L
6.2.7.16 we will mention a more 'economic' variant of I .}

6.2.7.6. EXAMPLE. (i) Let I be {Iz2 — 2z, Uz — %232}: then

EL = {IGZ —_ ZE, 7% —or (ZEZE)E 1 ¢ & L}. An example of reducticn in EL
ﬂa(Ich)d (I Dc da(I Dc da a
| @ Ppt 92
) (ﬂcgﬁ} N R (yubda cbda}a

{ii} {CL @ Pairing)L has the rules:

((S;mzi)rs'zz]l""z3 — (z";‘zg)d(z C;)d where  d = aBy

D:((ﬂBZO)Yzliﬁ h~4-z%gli ’ i = 0,1, for all u,B,y.8 ¢ L.

(1ii) A = {(J."‘x.z.1 (x})Bzz —_— z‘;‘—B (zg—@-) | a,8 € L}. If wa take o empty
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here (since the symbol A iz in "usual® A-calculus not a subterm, it should

L
have no label), we find again A of I.3.9.

6,.2.7.6.1, REMARK. {1} A reason to exclude the outermost label ¢ of a redex
in the definitioﬁ of labeled reduction, is that this allows us to treat the
labels in an associative way, i.e. we can make now the identification

(AG}B = AGB, as in the preceding example. Otherwise labeled reduction would
be ambigucus; consider e.g. the rule PZ — ZZ then we would have as cor-

responding L-reducticons: (9aZ]B‘*—+ ZEEZEE; However, then

(0% By Y — (2B 3B Y

g i

(ﬂaxJBY — A 2B

(ii) For the same reason we have excluded 'singleton redexes'; because there
the outermost label has to be taken.into account if one wants Lemma &.2.7.12.
However, an extension of the results of this subsection to the case where
singleton redexes are present, is possible, at the cost of the associativity
in the manipulation of labels as in (1).

We will now define another kind of term formation tree than used so
far (see Def. 1.7} and which has the advantage -that there iz a hijection:
between the nodes of the tree t'{M} and the occurrences of subterms in the

term M.

6.2.7.7. DEFINITION. The term formation tree T'(M) of M ¢ Ter(I} is induc-
tively defined as follows:

(i} T'{s) = s if s = Z,0,x

(ii) T (AB) = s (iii} =([x1a) = [x]
/\\ 1
TT(a) T (B) )
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EXAMPIE, t'({(Ax.xxzxx)yz) =

v [x]

L -

6.2.7.8. DEFINITION. Let ¥ be an T-labeled CRS, Let H — H' & Red(I} and
I

HI — (I} * H be a rule in EL. ILet R = p{HY be & EL—redex.

Then the degree of R is (I}.

6.2.7.9. EXAMPLE. (i} The degree of (((SUA)BB]YC)S is ¢Bry.

{ii) Ceonsider in (CL & Pairing}L the term M =
08?10 Sk ererh 9 “si)j:k(ﬂgt @ 012y 9y Ty s,

Here the S-redex has degree ack, the K-redex dh, the T-redex e, and the

90—redex fmog. In tree notation:
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6.2.7.10. DEFINITION. Let I be & regular TRS and r = H — H' ¢ Red(I); say
H contains the metavariables Zl,...,Zn. Iet R = pH be an r-redex for some
valuation p. :
(i} Then every subterm 5 ¢ pZi {for some i = 1,..,,n} is called an inter-
nal subterm of R. Notation: S <y R. Bll other subterms S' of R are exter-
nal. Notaticn: S' = R.We will separate internal and external subterms in

7" {R} by a har; e.gl ag in t'(M) above.

LR EO ! 0 A ! =
Another example: if H WO(Q1_220)21(“3(Q42273))Z4, then ' (pH)

= T'(pZi}.}

{(ii) If pH i=s labeled, then the label of an internal {external} subterm
willl be called an intermal (external) label of pH. E.g. in T'{M)}) above,

a,c,k,s are the external labels.

6.2.7.11 PROPOSITION, Let R = pH be & redex. Then;

(i} B Se R ¢ B has a constant occurring in H as head symbol.

-

ii} Ac, B R==A < R.
(11} £ 7 e “e
PROOF. (i) Routine; (ii) immediately from (i}. d

6.2.7.12, LEMMA, (i) Let M, — M2 be a reduction step in EL where T is a

i
regular TRS. Let Ry € M,, R

E_Mz be redexes having dégrees d, resp. d

1 2 1 2°

Then:
(1) R,=.=.~> R, = d1 = dQ {descendants have the same degree)
(2} R1WHVV~+ R, = h(di) < h(dz} {created redexes have lesser degree).

(it} 25 (1), for L = ) ® %', where I' is a regular TRS.
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PROOF. (i) The proof of (1) is routine.

Proef of (2): let RT be the contractum of R, in Mz. We distinguish two
Jases, '

CRSE 1. R‘l’ S R,. Comsider T'(R,) as in the figure. (We will identify t' (M)

and M in the remainder of this proof.)

Here all internal subterms of R2 are below the bar. We claim that RT cannot

be below the bar. For, if it was, then the upper part (above the bar) of R2

would clearly be unaffected by the reduction step M +—M2, so R, would be

1 2
4 descendant of a redex in Ml’ in contradiction with the assumptlion that

R2 was created in the step Ml -+ M2. Hence R? Ee R2 as in the next fiqure:

Now consider the label o of the nop node of R?: this is an external label

of R2' HNow o = (Ej'where (I) is the degree of R,, by Def.6,2,7.5 of labeled

reduction. So the degree of R

17
2 (the concatemation of all exterpal labels
except that of the top nede) contains (I), whence the result follows; except
.possibly in the case that the tops of R2 and RT coincide, i.e. R2 = RT.
Suppose this is the case. By restriction 6.2.7.2, R2 is not a constant
- hence R2 = Rf iz an applicative term AB. By Prapeosition §.2.7.11.{ii),
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A Se R,- The label of A is again (I}, and this is an external label of R2

below the top node. Hence the yxesult follows as abave,

CASE 2. R2 E_RT. Let Rl be an.r—redex where r = H +~ H'; say Rl = pH for a
valuation p. Evi@ently, there is a submetaterm J < H' such that R2 = pd.

I must be applicative; for J = 0 = R2 is impossible by the restriction to
non-singleton redexes, and J £ 2 is impossible since then R2 would not he
a created redex. So J = JIJE; by definition of labeled reduction, le has
label (I) where (I} is the degree of Rl' By Proposition 6.2.7_11_.(i}) this
label is external for R_, and obviously it is not the top label of R.. So

2
contains {I).

2
again the degree of R2
{ii) wWhen A is included, we can distinguish four cases:
1. RI'RE are both B-redexes

2. Rl'RQ are both TRS-redexes

3. only Rl is a fB-redex

4. only R2 is a S—redex.

Case 1 is already considered in Y.3.9; case 2 is considered in (i} and that
the lemma holds for cases 3,4 follews by a reasoning very similar to that
in (1). O

6.2.7.13. Let I be a regular CRS. Then EL'P, where P is a predicate on L,
is defined similar to A"'° in I1.3.9,

Also as in I.3.7 and I1.3.9 we can define EHW, a 'homomorphic image'

b2
of EL' .

HW
E.g. CL has the rules:

+
I IZ

£
1 }

mtl_  k+1 £ E L, _E
({8 ¥ 22) Z3 —* (2123) tZQZ

W

where £ = min(n,m,k}, for all n,mk ¢ .
So for ZHW, Lemma 6,.2.7.12 says that descendants keep the same degree
as their ancestor redex, and c¢reated redexes have a degree less than that

of the creatar redex.

6.2.7.14. EXAMPLE. In (CL @ Pairing)HW, consider the step

D; ((K°D) IaB) -+ D; (0%aB) ,
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where all unmentioned labels are high (>7). Then the redex KDI of degree
min (5,3) has ¢reated the Po—redex of degree min (7,2).

6.2.7.15. COROLLARY. If I Is a regular TRE, or £ = X @ E' where [' is a
. L,p
reguiar TRS, then: I ' (Ffor P bounded) F: SN and ZHW = sN.

PROOF. Immediate by Lemma 6.2.7.12 and Theorem 6.2.4. [

6.2.7.16. REMARK. (i) The preceding corollary can be generallzed to the
class ef all regular CRS's. It is rather tedious to generalize Lemmz
6.2.7.12, however.

{ii) It 1s possible to use a more economic version of ZL and EHW, in which
in a x H not every subterm of H bears the label o, but only the 'initial’
subterms in some sense. We will not elaborate this possibility, but merely
mention this more economic version for CL {(ef.6.2.7.13): (CLHW)' has the
rules

Sn+1 mt+l k+1

z,) 2.} Z3 B ZfZ (zgz where £ = min{n,m,k}

3 3)

Tt is not hard to check Lemma 6.2.7.12 for (cLo)'.

0.2.8. As an application of the preceding corollary, we will derive the
Standardization and Normalization theorem for a restricted class of {i®)

reqular TRE's, which will be defined now.

£.2.8.1., DEFINITION. Iet I bhe a regular CRS and r ¢ Red{E}; r = B =~ H'.
(i} The rule ¥ isg called Ileft-normal iff in H all constants ¢ precede
the metavariables EZ.

{(ii) ¥ is called left-normal iff all its rules are left-normal.

6.2.8.2. EXAMPLE. (i} X, CL and all definable extensions of A are left-
normal.
{ii) A @ Pairing ® Definition by cases ® Iterator as in Example 1.15.(3}
is left-normal.
.(iiil The 'proof-theoretic' reduction rule in Example 1.12.(v) is left-

normal .
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{iv) The rules for the recursor R as in Example 1.12(ii) are not left-normal

However, the (proof-thecretically equivalent) rules for R as follows:

i2
fv) Church's generalized §~rules are left-ncrmal (trivially).

Rz, 2. — ..., R(SZDJZizz —+ ... are left-normal,

(vi} The rules for the combinator F in 5.11. 34(3) are typically non-left-

normal .

Our definition of 'standard reducticon' for a regular CRS is analogous
to the one for A (and definable extensions), see Def,I.9.1. This definition
deviates from the definition of 'standard'® for regqular TRS's in LEVY-HUET
[791, where Standardization is proved for all regular TRS's. Below we will
prove Standardization and Wormalization for (A9} regular left-normal TRS'5¢
and on the intersection of those classes our definition is equivalent with

the one of L&vy and Huet {we will not prove this).

reg., TRS's
regular CRS's

For left-normal CRS's the definition of 'standard’ and of the standardiza-
tion procedure is very simple. Just as in I,10, 2ll we have to do is to

permute adjacent reduction steps which Fform an "anti-standard pair'.

Rd Ry

6.2.8,3. DEFINITION. (i) Let R = M, > M, * ... be a E-reduction,
where T is a regular CRS.
. R,
In the step M, —_— M, (120 as far as defined), attach a

marker * to all the redex-head-symbols ¢ to the left of the head-gymbol
of Ri. These markers are persistent, oncs they are attached (i.e. descen-~
dants kesp the marker) .

Then # is standard, iff no marked redex is contracted.
(ii1) an anti-standard pair of reduction steps is a reduction of twe steps
_which is not standard.
{1ii} If R = MD —_— Ml ——ﬁ-Mz is an anti-standard pair, we define the

"meta-reduction” fl = &' analogous to Def.10.7.1.
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B.g. if & = ‘DO(D(KII)T) — DO(DII) —= 1 {not standard) then
R = B = ﬂO(P(KTT)]) —r K17 — 1 {standard) .

6.2.8.4, REMARK. The difference with (definable extensions of} A is that
now redexes can be created whose head-symbol is te the left of that of the

creator redex; e.g. as in ﬂO(TPAB) — DO(BAB}.

6.2.5.5. LEMMA. Let T be a regular TRS or Iet £ = A @ I' where L' is a
regular TRS. Then the meta-reduction = of I-reductions is a-cyclic and

morecver SH,

PROOF. Analogous to the proofs of Proposition 1.10.2.3 and Theorem
1.10.2.4. (i), using Corollary £.2.7.15. []

6.2.8.6. REMARK. (i) So every I-reduction &, for I as in the lemma, has a

— -normal form; however, ® may have mere than one == -normal form. Example:

e
]

{P5} — 22, R — &, Iz — 2},

and

&
I

PR{ID} -— PR — PSO — S5,
Now # contains two anti-standard palrs, and

& = PRUID) -—+PRQ——»RR-+SR—-+SS=81

& == PR(IQ) —> PS(IQ) ~—r PSO —> SS = &,

where RI'RZ are both = -normal forms.
{ii) Moreover, an == -normal form is not necessarily a standaxd reduction;
e.g. ﬂl is not standard. If the last step of ﬂl is omitted, we have a re-
duction which is not standard and for which there is nc standard reduction
at all. I.e. for regular CRS's in general, the Standardization Theorem
fails. This observation is due to HINDLEY [781, who gives essentially the
same counterexample for i © Recursor ®, where the rules for # are the
non-left-normal ones (see Example 6.2.8.2, (iv}}.

. However:

6,2.8.7. LEMMA. For left-normal regular CRS's I: the I-reduction R is
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standard <= R is a2 = ~normal form.

PROOF. Claim. Let I be a left-normal regular CRS, Then the following can

not happen.

M — N is a L-reduction step, QO Qi € M are redex-head symbols such that

Oﬁ < Ql (QO is to the left of 0_1). After contraction of _Ql {i.e. the redex

%
headed by Q Y, QO is marked as Qﬂ in W (as in Def.6.2.8.3 of 'standard')

Morsover, the ﬂl—contractlon has created z redex headed by 0'_2 such that

0
‘24(“)1?

S50 what we claim is that no redex to the left of a marked redex can
be 'activated' (created). (Note however that in Remark 6.2.8.6 this does

happen, in the step PR{I) —> PR, Here QO ER, 0 =1,0 =P

-1 2

Proof of the claim. Obviously the step M —+ N must have the form

e >
> o (N 0 f o=
M=z { ...(.HDA)...(.LlB).. )

=
1t
I
[

—

. ] -3
n —_—
0 ..-(QOM...(.,GC) vaa)

where

(e (0GR (08 Ly
is an r-redex, such that the LHS of the rule r is (0 ...Z...(Q3§}..
That QOA must be in fact a subterm of pZ, follows From the non-ambiguity
of the rules, in casu r(see also Def.1.14) . However, a left-normal CRS
cannot have a rule r as displayed, since Q3 should precede the meta-
variable Z. This proves the elaim.

Now we can prove the assertion in the lemma, by induction on [®], +the

number of steps in R, Here (=) is trivial. () :

Basis. {®] = 2: trivial,
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Induction step. 3uppose for |R] = n the assertion is proved, Now let

lR=MO_-+"' +1

= -normal form, but pevertheless not stapdard. By induction hypothesis we

— Mn be a reduction of n+l! steps, and suppose R is a

know that M, — ... == M and M —— .., —* M are standard. So #
4] n 1 n+1

must be of the following form:

My = qﬂ Ql
l k 0 ar

Ml = 3 0
| %

M

_ .0
M = -0
n
| %
Mn+1

In M — M
'n n+1

wise MO — .. = Mn was not standard).

The ancestor of this redex must have been marked already by the first step

*
for the first time a marked redex QU is contracted {other-

in fl; otherwise M1 —_— . Hh*'Mn+1 was not standard. So in MO —_— Ml a
0 > i a ., i or
redex 4 QO is contracted, marking “a *Now in M1 —_— M2 a redex Q2 < o
: if 0 3
must have been contracted, for if 2, > QO then Q2 marks QO again and

M1 _— ... Mn+1 would be not standard. Now Q2 must have been created by
Qi' otherwige it was marked by Qi' and MO —_— i, . — Mn was not standard.
But that is the situation which cannhot occur, according to the claim.

Hence ® is standard.and the lemma is proved. []
5¢ by the preceding two lemma's we have now:

6,2.8.8. THEOREM (Standardization for left-normal reqular TRS's).
Let ¥ be a left-normal regular TRS, or let I = L ® ' where E' is a left=

normal regular TR3. Then for every Z-reduction & = MOI—~+ JR— Mn there

1s a standard reduction & =M, — .. —+ M. [
} st 0 n
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We conclude this Chapter with a corollary of the Standardization

Theorem. The proof is entirely analogous to that of Theorem I,11.2:

6.2.8.9. THEOREM (Normalization for leff-pormal regular TRS'e)
Let ¥ be ag in 6.2.8.8. Then repeated contraction of the leftmost redex in

a I~term leads to the normal form, if it exists. [

6.2.8.10. REMARK. (i) It is possible to extend these results to the class
of all regular left-normal CRS's. (Cf. remark 6.2.7.16. (i) .}

{ii) alsc we expect that one can pProve moreover the strong version of the
Standardization Theorem for regular left-normal CRS's, analogous to Theorem
T.10.2.8.¢tiii).



195

CHAPTER III

TRREGULAR COMBINATORY REDUCTION SYSTEMS

After having occupied curselwves in Chapters I and II exlusively with
regular CRS's, where ‘regular' is short for "left-lipear and nop-~ambiguous'
{(Def.Ix.1.11, II.1.14), we will consider some irregular CRS's now. We will
mainly study the effect of drbpping the left-linearity condition; only in
one instance (viz. )} @ Surjective Pairing} an ambiguous CRS will be con-
sidered here. {For results about ambiquous TRS's, see a.g. HUET [78].)

In section 1 we will prove that the CR property fails for some non-
lefi-linear CRS's. In section 2 an ‘intuitive' explanation of this failure
is given, with the aid of 'infinite expansions' of terms (BOhm trees).

Finally some positive results about the CRS's in gquestion are given.
1. COUNTEREXAMPLES TO THE CURCH~RQSSER FROFERTY
1.1. Consider i-calculus @ constants D,ﬂo,ﬂl and reduction rules

Ty UO(ﬂzozlj —_ 7

s Ul(ﬂzozil — 2

0

L
r : L"(ﬂoz) (Dlz) — Z,

The 'meaning' of the constants is that they constitute a Surjective Pair-
ing {(SP): from the pair ﬂzozl one obtains the first resp. second cofrdinate
by applying 00 resp. ﬂl; the third rule gives the surjectivity, in the
sense that w.r.t. the gquality = , genérated by — , every term is a pair:;
A= E(UUA)(FIA).

It was asked by Colin Mann (1972) (see BARENDREGT [74]) whether this
CRS, A @ 5P, has the CR property. Note that A ® SP is non-left-linear (in

rule r) ag well as anmbiguous: there are the interferences r ¢ r,. (see

0O
Daf.II.1.14) as shown by the term 90(9(903)(91A)), likewise r s ¥ and
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Morecver r_,r
a1

§ r as shown by 9(90{9AB))(ﬂ1(DAB]).
These ambiguities, however, do not spoil the property WCR:

D(DG(‘DAB)) {01 {(Pap)) = } PaB
]
o {G
I
|
.
DA('DI (PaB) ) T 27N
ﬁo(ﬂ(ﬂom (Din)} _ : DDA
I
E
ro ;
!
|
I
I?OA DOA

Likewise the lack of left-linearity is nc cbstacle to WCR:

DD el R mli:mn R DD elr D) (O €TRD)
(«) |R
s 9(1?00:[5{' )] (chc[R' h
xr
clr] = iR ]

Here the 'disturbance' of the r-redex by the contraction of redex ® to R'
is compensated by the 'mirrored' contraction of R in the step (x}.

In attempts to prove that A @ SP F= CRy it seems that the essential
" preblem is the nomn-left-linearity, rather than the ambiguity of the rules.

Therefore R, Hindley considered A ® the constant ﬂh with the reduction
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rule
thz — T

and posed the question whether A ® ﬂh F CR holds {cf. the problem list
BARENDREGT [751). A further simplification of the question was made by
STAPLES [75], who considered A & the constant ﬂs with the rule

P2z — F
=

where £ 15 some "inert' constant. In the sequel we will consider yet an-

other variant, namely X ® Dk and the rule
2 — &z
kZZ

with a similar E as before. The CR-problem for this CRS is so to speak in-
termadiate between the last two, and moreover the use of i @ Dk will prove
to have certain technical advantages.

G. Huet and J.J. Devy remarked {persconal communication) that one en-
counters a similar CR-problem when considering Recursive Program Schemes
{see 1.1.13) with the branching operation if P EEEQ A else B' and apart

from the usual rules for this operation also the rule
if P then 2 else Z —* 2,

The same CR-problem was posed in the list of "Purther Research' topics in
O'DONNELL [777].
Finally, we mention that the CR-problem for non-left-linear extensions

of A-calculus is alsc encountered in foundational studies, see FEFERMAN [90].

1.2. Before describing the underlying 'intuitieon' in the next subsection,

we will first prove that CR fails for the CRS's mentioned in 1.1.

1.2.1. As an introductory example, consider the TRS Es consisting of the
constants A,C,US,E and the rules
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Pzg — E
Cz — Dzl
A — CA

{we will drop the subscript in Ds sometimes) .

Now we have the following reductions:
A — CA — DA(CA) — D(CAY(CA) —~ E

C(CA)

!

C(PA(CAN)

}

C(D(CAY (CA))

}

CE

50 in order to have ZS E CR, the terms CE and E must have a common reduct,

First some notation:

1.2.1.1. NOTATION. Let M,N ¢ Ter{l) for scme CRS L. Then M l N will mean:
3L M —% [, «— N,

Now obviously, CE L E iff €€ —» E. However, the only reduction of
CE is:
CE — DE(E) — DE(PE{CE)) — DE(DE(PE(CE))) ——+ ..., hence CE A £,

Therefore Z B cr.

1.2.2. For the TRS Ek consisting of constants A,B,Dk +E and rules
ﬂkzz — F7
(z —— D2 (C2)

A— Ca

¥e have an analogous counterexample to CR:
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A — CA —— PA(CA) —= D(CA) (LA) — E(CA)

L

C(E(CA))

{where the downward reduction is again the horizontal one preceded by ()
and now E(CA).ifC(E(CA)J, as some calculations make plausible and as will

be preved later on.

1.2.3. The counterexamples to CR for the above TRS's ZS,Zk carry over al-—
most immediately to A @ Ds and A ® Dk' as follows.
For A @ Ds resp., A @ Dk' let € be either a new constant or some free

variable, or put E = {Ax.xx) (Ax.xx). Let

¢ = YTAcz.DszEcz) resp. YTAcz.vkz(cz)
B:YTC

where YT ={iab.blaab)) (Aab.b(aab)) is Turing's fixed point combinator as
introduced in I.1.11 (Here we prefer YT to Curry's fixed point combinator
Y = Aa,{(Mp.a{bb)) (Ab.a(bb)) since Y M — M(YTM) for all M but not

Y™ — M(¥YM).)

Now as in 1.2.1 and 1.2.2 we have in both cases:

oM —» Tha(cM)
A —= CA

and hece as above:

A —% CA —% E resp. A —¥ CA — E{CA)
CE c(E{Ca))

1.2.4, Before proving that CE { E resp. C(E(CA)) {'E(CA), i.e, that
re D ¥ CR resp. x @ D ¥ CR, we will state CR-counterexamples for
Ae ‘Dk ZZ * Z and A @ Surjective Pairing. _

Note here that for A & Dh it does nei work to define A,C such that
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cM —= DM{cM)
A —= CA

since now the reductions analogous to the ones above:

a —= CA —» Da(ca) —» P(Ca) (ca) — Ca

}

C(CAa)

do not provide a CR—counterexample.

The follewing heuristic consideration shows how one can procesd. There

are between the CRS's A @ pk'Qs'gh’ 8P 'interdefinabilities' as in the

figure:

A ® Surjective
Pairing

I
ﬁh I:= Axy.ﬂ{DOx)(Dly}

1$thzw—+z

I
2, h= lxy.ﬂhfx}{y>{KE}

;

|

|

|

1

|

|
Axy.E(Uhxy}{ L e

i

|

1

1

|

|

.

P )\aﬂkzz-—»Ez

w

= lxy.E(ﬂ(DOX) (@,¥))

Here we used the notation <M>» = Az.zM (2FFV{M)])} and KM = Az.M.

{Remark: it does not seem possible to reverse any of these —--— > Arrows.)

E.g. in A ® ﬂhZZ — 7 we can define the constant pk as Exy.E(ﬂhxy}; for

then we have for all terms M:

vkma = (lxy.E(ﬂhxy))Ivm e Etvhmm — EmM,
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Now the (claimed) CR-counterexample for X & ﬂk can easily be rewritten, to
yield (claimed) CR-counterexamples for the systems which are higher in the
above Figure. E.g. the terms C,A in b @ 5& such that CcMm —» ﬂkM(CM) and

A — CA as in 1.2.3 can be defined also in i @ ﬂh:

M —= (ny-Efﬂhxy))M(C'M) — E(‘DhM(C'M))

A' —= C'Aa'.
In fact, let us define in X & Dh:
C = YT lcm.E(ﬂhm(Cm))
A = YTC;
then we have {(somevhat more directly than C',a'):

CM —= E(ﬁhM(CM}) for all M

A —& CA
and now

4 —= ChA —» E(Dhmca)) —».E(ﬂhfcm (Cay) —» L{Ca)

|

C{E{CAa))

is again the {(claimed) CR-counterexample for A & Dh'

Similarly we find for 4 & Sp:

CM — E(D(DOM) (Dl {cM) )] for all M

A —= R

and reductions
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B —» CA —» E{D{DOBJ (01 {CA))) — E{“J(DO(CA}} (!71 ca)yy —= E{cal

!

c(ticay).

1.2.5. REMARK. (i} Using the interdefinabilities scheme above, one can find

some alternative CR-counterexamples, e.g. for A & Dh' using the definability
of DS in 2 @ Dh: CH —% Dh<M>~<CM> (KE) and & -—» o©a,

{ii} Qur original construction in KLOP [77] was based on the TRS T consist-—

ing of constants A,B,(,D,E and rules

Pzz —+ E2
Cz — Da(lz)
A — DAR
B — ((DAB)

Using the abbreviaticns & := DAB and o := DA{CA), we have reductions

A
T
o= A — — Doo — Eno
Cﬁ/

D(Eo) (Ca)
D(Ewy (C(Em) )

and now Eb i-p(fﬂ}(C(ED]}, as is made plausible by considering that
(i) Eo 4 P(Eo (C(Emy) = ED + C(Eo}
(ii) C{fm) — D(Ea (C{Ea)).

Thiz TRE can be defined then in A @ Dk by means of the multiple fixed
point theorem in I.1;11 (necessary since A,B are defined in terms of each
other) .

H.P, Barendregt remarked that this construction could be simplified
as in 1.2.2 above, thus requiring for itz definition only a single fixed

peint construction.

We will now prove that the claimed CR-counterexampiles are indeed

counterexamples.
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1.2.6, DEFINITIOM, Let L be A & vk,os,vh or 8P
{1} We will call a finite I-reduction & special if & = ‘RB * -ﬂD where £

i3 a standard B-reduction. and ﬂD is a sedquence of P-steps (i.e. D

B
8'"n’
‘Dk or U,0 ,Dl—steps] . Here * denotes concatenation of reduction se-

guences,
{11) A I-conversion I' iz a finlte sequence I = Mg M, — .. = M {for
some n = 0) where each — 1is either — or +—— . A conversion T which

is not a reductlon, 1s called special if it conﬁists of two converging
special reductions lﬂ:l ,6?2; f.e. T =M ~-—-L--abN¢s—-—-2—- L for some M,N,L and
special &, ,&_,

1772 -1
MNotation: T = Rl * tR2 . .

(tii) |fl] denotes the total number of symbols in the reduction &; 1.e. if

R = e : = n E '
! My - — M then |#] z1=0 ]Mj.l vhere ]Mil is the length of
Mi. "
IfFF =&, « @&

i 5t then |I'| = ]ﬂll + Ilﬁzl.

1.2.7. PROPOSITION,

(1) re (D zz — E) ke PRy 9,

(11) Ao (D22 — E2) [ PPE-T’k

(f.e. the D-steps can be postponed; see Def.1.5.2.(5}.)

PROOF, (i} Let r be the rule U 22 — [, Define ¥ ——+ N iff N ———> M.

1
r
According to Proposition 1,5.5: 1f B commutes with r‘l, then PP r holda.

B,
Now Lt ls saslly checked that

¥A,B,C3D A

No;:e that here B -—-E--* D is one step: hence it follows easily that & and

r are indeed commuting.

(i1) The converse of the rule r = 722 — £Z is £} = Bz —> D22: and
A=1is r-l iy evidently a regular CRS. In fact, A iz a definable extension
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of A-calculus. Therefors, by Corollary I.6.13, B commutes with rql
as in (1), A ® r = PPB,D' [l

. Hence

1.2.8, TEEOREM. % & (D 22 — E) [ ck.

PROCF. Comsider the reductions A —= CA —»= E a3z defined in 1.2.3.

|

cE
We claim that CE-{—E, or equivalently (since T is a normal form), that
ct += E. For, suppose that CcE —= E, then, by Proposition 1.2.7(i) and the
Standardization Theorem for A, there is a special reduction ® from CE to E.
Suppose moreover that ® is a minimal special reduction from CE te E, in the

senge of | |, as in Def,1.2.6,(iii).

Since R is special, it is easy to see that & must be of the form

8: ¢E = YTtlcz.ﬂsz(cz))E'
[£.m

(lb.b(YTb))(XCZ.PSZ(CZ)]E
lﬂ.m

(ACZ.DSZ(GZ])CE
[
[e.m
USE(CE)
Blstandard

0S¢
D _EE

7s]
t

‘ﬂr

{Here 7 + denotes a 'leftmost' reduction step; i.e. the contracted redex

is the leftmost redex of the term.)
HBowever, the reduction ®', indicated ahove, contains in an evident
sense a reduction R": ¢E —» E, which is moreover a special reduction.

. Furthermore [6f"} < |f], contradicting the minimality of &,

Hence CE -4+ E. [
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1.2.9. THEOREM. A ® (0, 23 — E2) [ Cr.

PROOF. Consider the reductions

. A —=» Cca —» E{Ca)

L

c{E(ca))

as defined in 1.2_.3. we claim that EfCA)-dfC(E(CAJ}. Suppose not, Then there

is a conversion I = ﬂl * ﬂ;l as follows:

Eca) c (E/CA} )

standard

for some term L. Here we may suppose that ﬂ1,32 are spec¢ial reductions
(Def.1.2.6), as in the proof of Theorem 1,2.8; so T is a special conversion,
Wow let [ be moreover a minimal {w.r.t, | |, of. Def.1.2.6.(iii)} special

conversion between E{CA) and C(E(CR)). analogous to the proof of 1.2.8,

ﬂz mist bhe of the form

CtEwca))

Bll.m.

D(E(ca)) (c(E(ca))) ]
Blstandard
!

Dk L'

|

kL'

|

L
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But then the above indicated reduction ®' contains clearly a reduction Ri:

E(cal —» L' and a reduction #2: C(E(CA}) -—» I', That is, #' contains a

5
N -1
conversion T'' = ﬂi * ﬂé between the two terms in question. Also it is ob-

vious that [T'] < ]ﬂzl =z IT[ and that I'' is special, contradicting the

ninimality of T. [

1.2.10, “"HEOREM,

i D
(1) A ® (D 2z —z) £ CR
(i1} @ sp B cr.
FROOF, For the present CRE's we do not havea PPB ) {Postponenent of P-steps)
!
as hefore. (E.g. consider DhIII *TT+ IT -B~+ I.) However, locally the =si-

tuation is the same; to be more precise: (FCA) F= PPB,ﬂ' Here CA is the
term defined in 1.2.4 and the ‘reduction graph' G(CA) is the restriction of
the CRS in guestion to the set of reducts of Ca.

For (i) as well as (ii), we will prove that G(CA) F CR using the
previcus theorem and an isomorphism argument,
(1} Let € Py be the terms C,A as defined in 1.2.3 for A @ Dk' and Ch, Ah

k
the terms C,A as defined in 1.2.4 for A @ Dh:

C = YTlcz,Dkz(cz) and Ak = YTCk

Cc = YTJ\CZ.E(th{cz)) and I—\h 5 YTCh'

Note that in G(CkAk) every Dk appears in the form ... [DkPQ)..., and that
in G{ChAh} every Dh appears in the form ...(E(PhPQ}}... . (The proof is a
routine exercise.}

Now define a map £ G(Ckﬂk) —_ G(Chah} as follews: if M e G{CRAR)’
then c{M} = the resuiltof replacing every subterm ﬂkPQ < M by E(ﬂhPQ}.

{Te ba more precise: £ is inductively defined by

Ml
m

efx) = =, E(ﬂk} =P, (b

k!’

e(Ax.a) = Ax.e(a)

E(DkPQ) = E(Dh (P el g

c(AB) = ea(eB) if BB is not of the form 9hPQ.]
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Then one easily verifies that e is an isomorphism between G{CkAk} and
G(Ckﬁk) and G(ChAh} in the sense that
1) E(CkAk) = chAh
2) £ 1s a bijection between Ter G(CkAk] and Ter G(Chah}
[ ] .
3) fgr all M,M' ¢ G(Ckak}.

M—+M += (M) — c(M"}

8 B

M= M e M) - e{M").
k h

Hence the proof in 1.2.9 that G(Ckﬂk} ¥ CR carries over immediately to

G(ea) K cr, via e.

Alternative proof. Since in G(ChAh} every ﬁh oggurs in a context
——vf(DhPQ)———, a ph-reduction step in G(Chﬂh) must have the form
———E(ﬂhPP]H— —+ ~—EP--, This means that Ph—reduction in G(Chﬁh) can be
thought of as the converse of the reduction given by the rule

¢ = Ep —— E{Phpp);

and A ® r 1s cbviously a regular CRS, hence CR. Therefore (as in Prop.

1,2.7} by Corollary I.6.13 and Proposition I.5.5, we have

Gea) F ppﬁ'ph.

The remainder of the proof is then entirely similar to that of the pre-
vious theorem.

{ii) A similar arqument as in (i): let csp'Asp be C,A as defined in 1.2.4
for A @ SP:

1l

YTlcz.E(ﬂ(DDzjlﬂitcz]) and Asp =Y

Csp T sp’

Now L: G(CkAk) LHA;G(CQPASPJ' defined by: T{M} = result of replacing each
subterm PkPQ < M by

E(o:vop} (9191} '

is an isomorphism betweeén the two: reduction graphs, analogous to the case
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in (i}. (Mote that in G(CSPASP) no 00—,ﬂl—steps are possible, only f-,0-
steps.)

Hence the result follows as in (i).

Alternative proof. Analogous to the alternative proof above, we have

G(cspasp} k= PPe D

o
since D-reducticn in G(Cspgsp) is in fact the converse of r -reductiomn,

where
¥ = Ep — E@(DP) (D.P)) .

The remainder of the oroof is then again simllar to the precsdine cases.

1.2.11. Wwe will now prove that theré are similar CR-counterexamples for some

other non-left-linear CRS'g, namely:

(1) For the TRS's Zk'zs as in 1.2,1 and 1,2.2. The proofs that the terms
CA as defined there yield indead CR-counterexamples, are merely sim-
plified versions of the ones for X @ Ds'pk'

(ii} Likewise for the TRE's Eh and Esp corresponding in the same manner to
A o® Uh and A @ SP,

(iiil} For CL & ﬂS.Dk there are CR-counterexamples similar to the ones above,
bearing in mind that €L allows the analogous fixed point cbnstruc—
tions (see 1.2} and that the same necessary theorems (Standardization,
PPCL,U) hold,

{iv) ¥or CL @& Dh, 5P there are also similar counterexamples; but in the
proct that they are indeed so, thexe is a technical obstacle. We will
deal with these TCR-proofs below,

(v} For several other non-left-linear extensicons of ) and CL there are

analogous CR-~counterexamples, We will give three examples:

{1} * & 93 where the constant 93 has the reduction rule 93ZZZ —> 7. Now
9h can be defined in ) ® 93 as lxy.ﬁ3xyy, and a CR-counterexample for
e 93 iz easily found by rewriting the one for 1 @ Dh' (Instead of ﬂhxy
take szxy.}

{2) Let I be the TRS with constants 0,+,- and rules 0 + 2 + %

{z1+221+z3 ——+—Zl+(zz+z3)
{-Z2)+ 2 —=+ 0
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(Instead of + AB we have used the infix-notation A + B.) Then A & & ¥ Cxr.
For, the counterexample for A @ Ds can ke rewritten: take E = { and szy :=
{-8) + v. (Hote, however, that I F= CR by Newman's Lemma.}

(3) Let £ = X ® if = then y else z be } plus a branching operation defined

by= if T then 7%, else z2 - 7,

i Z
if L then Z1 else Zz-—~* 2

if & ‘rhenzl else 21 — Z1

0
Then I # CR. For, writing B{x,y,z) instead of if x then y glse z, we can
define Dh as follows: D = Aab.B(I,a,b).

(Tt should be noted here that it does not matter whether cne extends
A by Efx,v,z) or by B8, the difference heing that B{x,y,s) has always three
argunents, while B can occur 'alone', as e.g. in (dx.x)B.

For CL however, there is a crucial difference: CL & B # CR, analogous
te CL @ 9h F CR {see below), but CL @ B{x,v.z) F= CrR! This will be proved
at the end of this chapter.)

{(vi} For in @ Dh'Ds'pk' SP the CR-counterexamples are the same as for i.
The proof that they 'work' requires several technicalities however;

see 1.3 below.
1.2.12. THEOREM. CL ® D ¥ cr.

PROCF. Translation (by means of T' as in I.2.5.,1) of the CR-counterexanmple

for » @ Dh' vig.

Ch = <Yflcx.E(Dx(ch))(YTc rex E(Dx(cx))) ),

YT
vields: T'(C&) = nny{mn(nny)) where n = t'(Aab.b{azab)} and
y = ' Oex.EDx(ex))) = SKSKE))) (SD .

CLAIM I. In GCL,ﬂ(CA] a subterm DPQ can only occur in a context
fiy .L.E{DPQ) ... or
(ii) ...KEB(PPQ}... for some B.
(If {ii) were not the case, postponement of D-steps in'GCL,ﬂ(CA} would

folleow immediately, by an argument as in Proposition 1.2.7.)
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Proof of the claim

In GCL 3(CA} the symbol P can only occur in the following subterms:
M, = v = SIK(S(KE))) (SDy,

M, = K{S(KEY %2 (SDX), for some X (the head reduct of MJX},

-
il

S{KE) (8Dx%) for some X,

M, = KEY(SDXY¥) for some X,Y (the head reduct of M3Y),

=
I}

= E(80xyy, Mé = KEY (DY (XY)),
M. = E{Dyixy)y.

Therefare claim 1 follows.

CLAIM 2. Let I be CL extended with constants U,F and the reduction rules
Ez — E(Dzz) ('E-reduction'}
' . 1 _ 0 r
KE2122 KEzltﬂzzzz) {'KE-reduction")

{so Z iz ambiguous).
Let ' ({K)E-reduction’ be 'E- or KE-reduction'.
Then (K)E-reduction commutes with CL-reduction (i.e, I-, K-, S-redus-

tion).

Proaf of the claim

That (K1E- and CL-reduction commute weakly, is easily checked; the most

noteworthy case is:

KERAB —xr KEa (PBB)
Kl lf(

EB e E{UBBY

The proof that they alsc commute is not immediately obvious (since (K}E-

reduction is duplicating) and requires some argument, e.g. the following.
Let us introduce underlining of redexes in Z; only the head symbols

of E-, I-, K-, S-redexes may be underlined and of a KE-redex the two head-

symbols may be underlined, The rules for underlined I-reduction are:
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—_
1z —> 2,k2 2, — 2, 3212223 %,24(8,%.)

tz —» EDzz), KE2,2, — KE5, (P2,2,},

K_Ezlzz —_ Ez .'(Eziz2 —_— EEz.1 (132222} .

Now underlined reducticons are also weakly commuting; again the most note-—

worthy case is:

¢ |

Em —F E{Dem)
To prove that [ F SN (i.e. 'Finits developments' for I) we can employ the
method of weights az in I.4.

Every constant (say K} in a I-term will have a weight ({K!) attached
to it; during a I-reduction the descendants of a constant keep the same
weight, with cone exception.

Here the concept of descendant is for the CL- and E-reductions the
usual one {note that CL ® E-reduction is a regular TRS, for which we have
defined a 'canonical' concept of descendant); for KE-reduction it is de-

fined as follows:

If M & Ter{l), a weight assigmment for M is called 'good' iff;
IT! = IKl =1, for all I, K in M;
[T} = 1Kl = 18] = 171 = |E|l = 0, for not underlined constants;

in eact 8aBc c M, [8] » 2 |¢] (where I¢| is the sum of all the weights in
€); in each EB, 1E| > 2 |Bl; in each KEaB or KEaB < M, |K|l = 1 and |E]
2 18], _'

Reduction of T-terms plus weights is as usual [descendants keep their

weight) with the following exception:
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1

K'E* ap — K°E% (pemy

K'E* ap —+ K% (Dmw),

i.e. the £ loses its weight,
{Sevaral other definitions work Just as ﬁell.}

Now it is a matter of simple computations te check that
(a} the weight of a redex > the weight of its contractum,
(b} a 'good' weight assignment remains so during reductiom,
(¢} terms lose weight during reduction,

{d} every I-term can be given initially a 'good' weight assigument.

(Cf. the proof of Theorem 1.4.1.11.}

Hance E_F= SN. Therefore, by the usual arguments, I F= CR, and since
(K} E- and CL-reduction steps 'prépagate' as similar steps, we have proved
that (K}E- and CL-reduction commute. Hence by Proposition I.5,5 the "con-
verse (K)E-steps™, i.e. the P-steps, can be pestponed., So we have
GCL,D(CA) F= PPCL,?' and the remainder of the proof that CA yields s CR-

counterexample is similar to previous cases. [

1.2.13. REMRRK. The proof that CL & &P %ﬁ CR is similar and is left to the

reader.

1.3. In this subsection we want to extend the above negative CR results
from * to An {or ABn-¢aleulus; see Chapter IV). We will do this by showing
that the term CA, as in the CR-counterexamples above, has no n-redexes in
its BP-reduction graph Gsv(CA) {(hence Gsp(CA] = ngﬁ{CA) and we are done) .
To establish this fact requitres some technical consideratioms; as a pre-
paration to the first technical proposition, but alsc for its own sake, we
will describe a method of proving a property P for all B-reducts of sone

term M (i.e. GB{M) F: P, or G (M) F ¥N P{N)). Such a method is desirable,

since often GB(M) is wery comSlicated. One method is mentioned already in
I.12; there a cofinal reduction R in GB(MJ is used. Instead of proving
GB(MJ F F, it suffices to prove P for the terms of R, But this method
works only if the property =P is invariant under B-reduction; the typical
example is: P(NM) <= N contains the free variable x. This 'cofinality method'
is not applicable for ocur purpose below.

We will now describe ancther (somewhat heuristical) method to prove

GB{M} F= P, which is bhased on the Standardization Theorem.
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1.3.1. DEFINITION. (i) M is in head-pormal form (h.n.f.), w.r.t. B-reduc—
> >

tion, if M is not of the form RS for a B-redex R and some § = SI"'Sn (n=0} .
-

R is called the head-redex of RS,

(ii}l Head-reduction is the contraction of the head-redex, if present.
Notation: M —h+ M. .

(iii) Let N = M. N is called a derived subterm of M, notation M “Far N,
iff ¥ is a proper subterm of M, not in h.n.f., which is maximal in that
respect. Otherwise gaid: iff (1) N i M, (2) N not in h.n.f., {3} N' E'N &
N' not in h.n.f, = N' = M, If M —aa;-+ N, then N is said to be obtained by
derivation of M.

{iv) Let Al,...,An (n20) be the derived subterms of M. Then we will write

M = mhthl""'An] where Eh[ re-vs } 1s a n-ary contezt, called the head-

context of M,

1.3.2. DEFINITION. The condensed f-reduction graph of M, notaticns G;(M),
is the least structure containing M and closed under head-reduction and

derivation.

1.3.3. NOTATION. (i) If N © N' ¢ Gp(m, we write N € GD(M). Here

p = B,8n,BnD.

{iii} In the remainder of this subsection, P will stand for ﬂh.

{iv) CA is the term as in the CR-counterexample for A @ 0 , L.e.:
CA = 1y{tfTY)}, where T = YT = (Aab.b(aab)) {Aab.b{zab}}, and

¥ Acx . E{Px({cx)), Furthermore, T' = Ab.b(th), the head-reduct of t.

1|
I

1.3.4. PROPOSITION. (i} If {(Av.P)Q & GB(CA}, then either ©Q is a variable x
or Q is a closed term.

(ii) if TN ¢ Gsﬂ(CA)’ then M = x or M iz a closed term.

PROCY. Define the property P by: P{M} <= every argument B of a f-redex
(Ax.A)B in M is either a variable x or a closed subterm. So we wish to

prove: GB{CA} E e,

catm. Go(ca) kv = Gyloar k.

If the claim is proved, we are done; for, it is easy to check for the finite
G;(CA) (shown on p.215} that P holds for every term. (Remark; the reverse

implication {+) can be easily proved.)
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Preof of the claim. Suppose there ig a reduct M of CA such that TP{M). We

I
have to show that there is some N « GB(CA} such that 72 (M) .

Let & be a standard reduction from CA to such an M; suppose & is of

minimal length, Say § is CA = MO M Mn = M, H starts with
y . i . —_— [ = e
a (maybe empty) head-reduction: MO 5 R @h[Al, ,Ap] for soms

k. Here Ch[ ree-y 1 is the head-context of Mk and A .,.,AP are the derived

1]’
subterms of Mk. Mote that MO""’MR’ Al,...,AP are by definiticn elements

of GZECA). If ¥k = n we are done, therefore, Otherwise: due to the special
nature of P and to the minimality of ®, the remainder of ® will proceed
entirely inside one of the Al,...,hp, S8y Aj. So / will proceed by a (pos-

. _ : ) L = e
sibly empty) head-reducticon of Aj. Aj B e 7;+ F = Ch[Bl,...,Bq], for

some P having BI""'Bq as derived terms., Here we suppress the context

mh[Al,._.,Aj_l,u,nj+1,...,AP]'of the terms Rj,...,P. Again the remainder of

#l proceeds entirely imnside one of the Bl,...,Bq, say Bs. In this way R gives

i — r— —_——— B — e ) i r— -+
rise to a path CA MO 0 R - Ej o

L de U n F der BS
WT& 15;;* Hﬁ$ cee N odim GB(CA} to zome N{C Mn}. By the special nature of the
property P and in view of the head-contexts which have been removed along
this path, it is evident that FP(N) {(after a careful consideration of

Gz (cal}.

(1i) From {i)} we know that avery 'substituted subterm’ in GB(CA} is either
a variable x or a closed term. Hence (ii) follows for GB(CA). For GBD{CA}

the proposition follows easily now, using Postponement of D-steps. 0O
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1.3.5. DEFINITION. AT{-calculus} is the substructure of } where in every

{sub)term *x.A(x) the variable x occurs at least once in A(x). Likewise

AIT is defined: the x in Aix.A(x) occurs at least twice in BA(x).

Obviocusly, Ter(iIl) is closed under B-reducticn,

1.3.6. PROPOSITION. Pxx ¢ GBD(CA)-
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PROOF. Suppose not, and let ® be a minimal special (see Def.!.2.6) BP-re-
duction from CA leading to a subterm Pxx.
So & = CA B, standard " 2

Wow we must have a Dux = M, i.e. by the minimality of #, M —* N is the

N > Pxx.

empty reduction. For, a Uxx can only be created by a P-step as follows:
Dx (Pex) — Dax or P (Pxxix — DPxx. But then we have an 'earlier' Dux; con—
tradiction with the minimality of &.

Hence Pxx = GB(CA). However, this cannot be the case,as an inspection of
GZ[CA} {preceding figure) shows. (Alternetive argument:
Pex e GB{CA} = T = Ix.X € GB(CA}, otherwise x(ox) © CA cannot have Dxx as
descendant. But CA ¢ AII & I, hence GB(CA} © AT @ D; however I § ATL ® D.)

0
1.3.7. LEMMA. Gevfcm = GBT]D(CA).

PROOF. We have to prove that if R = Ax,Mx (x4FV(M)) is an n-redex, then

R # Ggﬂ{CA}' Suppose there is such an R ¢ GB@(CA}' Note that R & AIT & D,
Since CA £ AII € D and AII @ P is closed under B, there must be a D-step
P —— 0@ such that P ¢ MIeDand 9 ¢ AII @ P. Therefore the P-redex con-
tracted in this step, must be of the form PAIX)A(X) ;where x has one free
occurrence in A(x). Bub then by Proposition 1.2.4.(ii), A(xX) = x. However,
this is impossible by Proposition 1.3.&6. []

1.3.8. COROLLARY. in @ 0 # ocr. O

1.3,9. REMARK. In likewise fashion cone can prowve that in @ ﬂk,ﬁs, S.P.

H CR, The proofs are very much similar te the proof of 1.3.8 and will be .

left to the reader,.
2. INTERMEZZO. An intuitive explanation via BOhm trees.w

In order to ‘'explain’ the Failure of CR for the non-left-linear CRS's
which we considered above, it 1s convenient to use the concept of BOhm tree
(BT} of a term M; notatlon BT{M). This BT (M) coincides with what is called
the vaiue of M in e.g. BERRY-LEVY [79]. wWe will not give a precise defini-
tion of BT(M) here; See BARENDREGT [80] for such a definition {for the
case of i-calculus) or the paper just cited [(for RPS's). lLet us merely in-

troduce the goncept by an example. Consider the regqular part of Es as in
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1.2.1, i.e. the TRS with the rules (2 — P2(C2}, A — CA. Then one can
develop an "expansion” (cf. the decimal expansion of numbers) of say the

term CA, in an attempt to find a ncrmal form, as follows:
CA —> DA(CA) — D(CAY (CA} —» D(DA(CA) ) (DA(CA)) — ..

or, ln tree notation, where PQl"'Qn is written as

7\

CA 5 0 — [ _—s — P —_—3 .o
e o
A A K e 4 c
A

In this way we find, as the 'infinite normal form' of CA, the tree

A= {D\‘z

D
0" Ny

"N o7

FANRVATRVATNAY

and this is BT(CA).

The same expansion is possible in A-calculus, CL, or other reqular CRS's,
{Note that we restrict ourselves ta regular CRS's in computing BT's; for
then we are assured of the unicity of the BT, regardless of the partieular
computation. In fact, one can prove the CR theorem for infinitary reduc-
tions of infinitary terms, i.e. trees, if the reduction rules are combina-
tory and regular in the sense of Chapter II apd this Chapter. The BT's are
then the unigue normal forms.)

A. We will now extend the non-left-linear

i

Now consider again BT (CA)
D-reductions to trees (say for DS):

D —— E , for arbitrary trees T.

/N

T T
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E.g. we have the reductions:

[=
l

=
1
™

Tt is still possible now to find a common reduct, namely by "compensating™

the "balance—disturﬁing" P-steps in the vertical reduction:

_— D —> 7 2 E
/D\ N /N N
D D E D E
VRN 7N LN
v E o E
SN 7N
E A E E

However, if we had executed infinitely many P-contracticns In the wertical

reduction, as in the next figure, we would have lost the possibility of

'compensating":
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because here the trees E apd ¢ =

havs obviously_no commorn reduct.

)
/
3 \\e

Now this is precisely what happens in the CR-counterexamples above:

ET(CA) = A& = P - E
W RN
:;—_‘-h.__.__...--?D (7]
N FANIVZAN
DR
t‘*-__h Q /\
T 1)
l 7N
l PP
L {Here the intermittent arrcws
1 suggest where the ! and
ET(CE%;::E ) E/ﬂ\ﬂ gettle down in the BT.}
R
e — SN
~_ =~ D
—- y \D
—s E
AN

That is, the (finite) reduction CA — (L has had the same effect, in the
corresponding BT"s, as the infinite wertical seguence of infinitely many
D-steps.

That it is indeed plausible that E'f’CE follows from the particular
state of their BT's in view of the following facts, which we will not prove
(since this 1s only an intuitive explanation) :

{1) the BT of a term is invariant under E-reductions;
{2) if M —ﬁ—+ N then BT (M} —~%4& BT (N} , where ﬂ%}é& is a possibly infinite

sequence of D-steps

For Dk the BT's corresponding to the terms in the CR-counterexample
in 1.2.2, 1.2.3 are:

Bl

2]
m
Qj L
Bl
<3
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d ] B
and for Dh

BT(CA) = ¢ = E

|
|
l
|

E = BT(E(CA))
B i
7N\ <

BI(C(E(CAY)) = ¢ = :}E = |E
D 1
7N ™
AR
£ D
C 1
D E/ \E
Ef/// “‘aH_E | L
S S RN
20N AN AN ] ]
E E EE T E ‘D
| 1 | I | I FORN
A AR ORRE R R
£ e el AL £ D
1
2R o
n i
FEEEE £ Mg
i [ PN
P DODD -~ E
ANAA |

and the same intuitiwve reasoning applies.

As a final remark to this intuitive intermezze, let us conclude that
the above examples show that also when dealing with infinite "term~treesg"”
énd infinite ‘'‘combinatory' reductions [(of ordinal length) of them, the

left-linearity of the rveduction rules is a necessary condition for the

CR property.
3. ADDITIONAL PROPERTIES OF A(CL)} & Dh,vs,ﬂk,SP

The CR-property failing for the above discussed CRS's
A ofor OL) @ ﬂh,ﬂs,ﬂk,SP, some other questions arise about them: namely
whether they are consistent, whether the property UN (Uniqueness of Normal
forms, see Def.I.5.6) holds, whether the property NF (Def.I.5.6) holds, and

whether these CRS's are conservative extensions of A {or CL). In the
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presence of CR, all these propertles would have been corollaries, as re-
marked in Theorem I.5.11.

In order to answer (most-of) these questions, we will need some pre-
paration: a technical lemma and a thecorem which is of independent interest.
The lemma,‘which follows now, 1s a partial CR result, It says that giwven
a term A and two divergent reductions A —» C, A —» B, a commcn reduct can
still be found, if one of the two reductions is free of Desteps. Mote that
this is conscnant with the above CR-counterexamples, where in both reduc-

tions a U-step oaccurred.

3.1, LEMMA, Let [ be A @ Ps,Ph,ﬂk,SP. Then B-reductions commute with ar-

bitrary reductions, i.e.:

¥a,B,C 3D

{Here & * is a B-step or P-step.)

Simiiar in case L. =I' @ DS,Dh,ﬂk,SP, where I' is a regular TRS.

PROOF, A simple argument shows that the statement in the lemma is equiv-

alent to the case where the reduction A —% C consists of one D-step:

¥Ya,B,C 3D A C

and similarly for I'. Let us first deal with the simpler case of I'; say

E' = CL. So suppose that & —y—+ C and A -5 B; say A = ¢[Ppp] where DpP
is the P-redex contracted in the step A —+ C. [The case of 5P is similar.)
So ¢ 2 ¢LE]1, resp. CLEPT, resp. €[P] depending on which CRS we are con-
sidering; say this is CL & ﬂh. then C = @[P]. (The other cases are simllar.)}

Now underline in #: A &Eff» B the redex PPP in A and all its
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descendants in #. So B contains underlined subterms ﬂolRl""'ﬂQERﬂ for

come £ > 0 ("unbalanced” descendants of the “balanced” D-redex PPP}. Ob-
viously all these underlined subterms are disjoint, since & is a CL-reduc-
tion. .

& can be separated into an "interpal" part and an "external® part
w.r.t. the underlined subterms, by calling a step in ®& internal if it takes

place inside an underlined UpR, external otherwise. Let Rext be the reduc-

tion cbtained from & by replacing every POR in it by some variable x. Let
*

6l T cs ' & i . .
ext C —-— — D' ba ext where x is everywhere replaced by P. So now
we have
B2 -0 Rpm s oo TRy oo
and
D" £ === P ——= .. ~—= P ——= ,

Furthermore, we nokte that the internal reduction part of & consists of

"unbalancing” reductions P —— Qi and P ——3 Ri for i = 1,...,4. Sa by

CL CL
CR for €L, we can find common Cl-reducts Qi —_ Si ELm— Ri (i =1,....80.
Now let
f = e D88 e ... == D5,5, ——
B 515, £f
and
D = —~w S, === ... === 85y o,

then we have

S ,C
) v
CL
o1 ) o'
CL
\ CL . ﬂ i{.
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Likewise for CL @ ﬂS,Uk. Note that we proved more than necessary: instead
B ~——— —x-» D, {Thi i —trivi o
of B oL, D even L 7 {This is only non-trivial for CL Dh

since there PPCL,ﬂ does not hold.}

For A=-calculus instead of CL, the proof is complicated by the fact
that B may contaln nested underlining (i.e. the descendants of UPF c A may
be substituted in each other). The complications can be circumvented, how-
ever, by means of Lemma I.4.3.7, which says that in a B-development no such
nestings can occur, So if A —E%* B iz a development, the DQiRi {1 = 1,...,£)

are disjoint; and then the above proof for CL carries over without change.

I.2., we have

A N c
B
devl B _ Yo
8

Y e »Y

Furthermore, it is not hard to see that here B —= B' and C — D are agaln
developments. Using this, it is routine to prove that a P-step can be
"pushed through” an arbitrary f-reductien, being a sequence of pf-develop-

ments, as suggested by the following figure:

>
D
dew dev
§ LW
a&v )] r
dov dev dew dev
R w ‘?\ 3 LY ! "0.. \h§
dev dev | D dev T
dev dev] devw
i r -—

dev devr
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The closure of this diagram is ensured by the fact that the "aev—steps" Ao

not split, in their propagation te the right. [

The next theorem is a slight generalization of Theorem 1.4 in
MITSCHKE [77]. '

3.2..§EFINITION. Let I be some reduction system, and let P be an n—-ary

predicate on Ter({f). Then

{1} P is closed under (L=} reduction if: whenever Ai — A{ (i =1,...,0),
then P(Bi,...,nn) %-P(Ai,-..,héi-

{ii) P is clozxed under substitution if:
o ol
P{A,ruvesBA) = PlA ,...;B")
| n 1 n
; a . . . .
where Ai denotes Tx = B] Ai, the result of some substitution into Ai.

3.3. THEOREM {G. Mitschke) ('Reduction by cases', first version).
Let 3D {or CLD) be the reduction system obtained by adding to A(CL) a con-

stant U and rules (for n,kzl):

P ...8 — if P (B, seuard )
1 n 171 n

Da, ... : i v
Al Ah —_— Mk if Pk(AI, ,An)

whera the Mi are closed AP (or CLT) -terms and the Pi {t = 1,...,k) are n-
ary predicates on Ter(Al) (resp. Ter(CLP)) satisfying:

{i] tha Pi are pairwise disjoint,

{ii} the Pi are closed under reduction (including P-reduction)

{iii) the Pi are closed under substitution (in case of AU} .

Then AD(cLD) k cr.

PROOF. As in MITSCHKE [77], we can prove by inspection of cases that

2 L |
| |

D Ei o = Si =
b I
= 1 |
YT Y

(1) (2) {3)
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{Here Z s+ is g or 1 step; i.e. the reflexive closure of —+.) Sa U-, &-
reductions are self-commuting and commute with zach other {see Def.I.5.2);

hence by the Lemma of Hindley-Rosen (I.5.7.(4)) CR follows for AD. Likewise
for CLl. [

3.3.1. REMARK. {1} In the formulation of MITSCHEE [77], n = k = 2 and the
conditions on Pi are more raestrictive (the Ai have to be closed).

(1i) For some applications of the theorem, see MITSCHKE [77]. One of them
ig:

A8 DA — [KR if A,8 are closed normal

forms and &2 = B

KI " " and A £B

is CR. This is "Church's d-reduction', ses also 1.15.(4).
(iii} Blse 'Church's generalized &-rules' (as in 1.17) fall under the scope

of this theorem.

We will now give a strengthening of Mitschke's theorem, hoth for use

in the sequel and for its own interest.

3.4. THEQREM, {'Reduction by cases', second version.)
fet AP (or ¢LD} be as in the previous theorem, where Mi is replaced by
Mi (Al....,an}; i.e. the Mi may contain the metavariables E now.

Then ADiCLD) E crt (the CR property in the streong version as e.g.

in Thecrem I1.6.9).

PROOF. The proof of 3.3 does not carry over to the present case, since the
assertions expressed in the diagrams (1), {3) there are no longer true
{{2) and (4) stay true, as we will see), since now also D-reductions may
have multiplicative effect. APMCLY) is not a CRY, but resembles one in the
following sense. Let lﬁ {and likewise CLﬁ; we will refer only to X in the
remainder of this proof) be A-calculus augmented by constants 9.91....p9k

and rules

D a ..An — M1(A1,...,An)

% Al...An — Mk(Al....,An)..

avre
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' is now an inert comstant. Then, obvicusly, kﬁ is a reqular CRS and even a
definable extension of A-calculus. Hence lﬁ F= FD, CR+ as we proved in
Chapter I (Theorems I.4.1.11 and T.6.9) using the method of developments,
decreasing weights, and reduction diagrams.

Now, in order to make the resemblance between AP and hﬁ closer, let us
attaéh a subscript i to P in each subterm 9A1.-.An where P(AI,.-.,AH). Note
that these subscripts are 'persistent' during a reduction, due to the re-
quirements (i}, (ii}, (iii) in the theorem. (The resemblance 1s not com-
plete since in AD we may have e.qd.

(Ax .~ —xR-exB——) D — --DIK*-DEEﬁ- if PI(K) and PQ(E) hold,)

Now the point is that all the definitions (elementary diagram, under-
lining, development, weights}) and theorems there-about used in proving
lﬁ F= FD., CR+, carry over without effort to AP. For, a development in AD
is in fact nothing else than a development in Aﬁ. To be more precise: let
M ¢ Ter{il} and underline some P-redexes and "Di"—redexes. Let £l be some
development of these underlined redexes. Then & is also a development of
M e Ter{kﬁ), but for one thing: in R a P may become a Di {see the example
above) which is of course not possible in the regular CRB hﬁ. In completing
a diagram P these subscripts, which appear cut of the blue, do not bother
us however; ignoring them the whole diagram construction can be thought of
as tazking place in Xﬁ; so it terminates indeed. So now we have CR+.for
AD-developments; to obtain CR+ for arbitrary reducticns is then a small

step. [
Mo D
development

Al P

develdpment

[ —

3.4.1. REMARK. (1) Note that the predicate P{a,B) « A = B is not closed
under reduction. Otherwise the previous theorem would yield that

Le (VaB — A if A = B}, i.e. A avh, was CR.

{(ii) An example: £ = 1 & {DIA —_— R is CR, by the previous theorem
Pxkn — an

where PlfAl,A2} ha—Al = I anpd P2(A1,A2) — nl = K clearly satisfy the three

requirements. However, I is also a regular CRS, so this application is only
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illustrative and not essential.

{iii} The same as in (ii) can be sald for Aczel's 'Definition by cases', as

in Example 1.15.(3).

{(iv} An inspection of the proof shows that instad of L, CL any definable

extension of A-caleulus (or substructure thereof) can be taken. We expect

moreover that the theorem holds for an arbitrary regular CRS E instaead of

A, CL, but did not work out the details. {For regular TRS's I it is easy.)
We will now answer several of the questions posed at the beginning of

this section, in the following table, and give the proofs afterwards. (We

will only mention A, but everything holds for CL as well.}

is- erva—
CR consis c?n§ UN NE
tency tivity

A ® SP - + + ? -
:\aathz—-ﬁz - + + + -
le‘Dszz—+E - + + + -
Aevkzz—-ﬁEz - + + + +

3.5, Conservativity and consistency. The consistency of the CRS's is an

immediate corcllary of the conservativity of thaese extesnsions over A; see
I.5.10.

To establish the conservativity of A @ SP is g difficult matter: this
is done in DE VRTIJER [80). The coneistency alcne can also be proved by
elegant model theoretic means as in DE VRIJER [801, using the Graph Model
Pu; or in SCOTT [77], using an even faster construction.

For the remaining three CRS's the conservativity over A is easily

astablished:
3.5.1. THEOREM. A @ Ds'pk'ﬂh are conservative over A.

*
PROOF. Let U be Ds'vk'ﬂh' and now consider next to A ® U, the cRs A & U,

*
where ¥ is a new constant with the reductilon rule

*
PR — E, resp. 0kziz — B

A
s21%2 2 1r TOSE- Bh%y .

2 1
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*
So & ® U is a regular CRS, hence CR, and hence (see T.5.11) conservative
3 *
over i, That is, given a conversion I'' inm A ® T between r-terms A,B, we

can find a common P-reduct C:

in A @ §*

C

Now if T is a conversion between 1,B ¢ Ter(}) in A ® U, then after re-
®* - & .
placing each ¥ by ¥ we have a conversion I' as above in » @ 7 . Hence the

result follows. []

3.5.1.1. REMARK. The replacement of ¥ by D*, i.e. dropping the non-left-
linearity of the P-rule, vields a reqular CRS in the procf abowve. Such an
attempt to "regularization" fails however for X @ SP = % @ (9,90,01}; for
consider A @ (U*,ﬂo,ﬂl) and rules

Di 0"z

Ozl) — Zi (i =0,1}

*
D (DOZO) (Dlzl) > %,

Then the rules are left-linear indeed, but they remain ambiguous. Moreover

they are inconsistent:
% = Dl(D*Ax) = Dl(v*(ﬂo(ﬂ*nx):(01(ﬁ*3y))) = Dl(ﬂ*By) = y.

This may illustrate the difficulty of the syntactical treatment of A & SP.

3.6. The Normal Form property (NF). The failure of CR for ) ® SP,Dh,DS,ﬂk

entails also the fallure of NF (see Def.1.5.6) for the first three CRS's,

as we shall show; surprisingly, for A & Dk we do have NF.
3.6.1. THEOREM. } ® D_,D, ,sP B wr.

PROOF. For Dh. Let 0,0',0" be the terms Ca, E{Ca}, C(E(CA)) as in the CR-

counterexample in 1.2.4. So 0 — 0',0" and O’ i'u“. Let
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<M> := Az.zM and KM := 3z.M (2dFV(M}). (For CL, <M> := ST{KM] as is seen

using F.2.5.1.) Now consider the reductions:

Uh<m}<n>(KIJ —— <0 (KI) — KIO ——> T.
Dh<u‘>¢n":(31)_

Here the last term cannot reduce to the normal form I = Ax.x singe O° f o",

Hence NF fails.

FPor Ds' Let 0,0";0" be as in the CR-counterexample for X @ Ds in 1.2.3. Can-

sider:

Dsnu — E, a normal form

i

D oo" a D grag” € since o' 4 o',
s and now b ~fL» since f
For SP. Analogous to the case of Dh:

ﬂcﬂocm) (Di<n>) {KI) —» I

|

ﬂ(DO<D'>(ﬂ1<D">{KI}

]
3.6.2. THEOREM. : ® D, |- WF.

PROOF. Let M be a normal form in 2 & Dk and suppose M is convertibie bto N,

NG - N1 —_— . Nm

—— is — or +— . We have to prove M —» N, Suppose M -4 N, and let
~f—+ N. Then we

i)

M where each

So suppose there is a conversion N

M b i 1
e+l e the first term in the conversion such that Nk+1

have the situation
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= —_—N T — - N EM
N= Ny — M D Net . s
M
For, the step Nk —_ Nk+1 in the conversion cannot be Nk +ww-Nk+1 gince then
also Nk+1 —#& N, contrary to the assumption; so Nk — Nk+l' Moreover, this

cannot be a B-step by Lemma 3.1.

Applying Postponement of P-steps in Nk —s= N {Prop.l.2.7) and again

Temma 3.1, we have:

N N
k ) k+1
&
P
w .
L g o) D
D

N in normal form.

Now, since N is a normal form and L —# N consists of Dk—steps, it is =asy

to see that L cannot contain fB-redexes. {Note that for Ds the proof would

break down at this polint; for ﬂh even earlier, since then PPBD fails.)
Hence L = P. Since T-reductions alone are CR (by Hewman's Lemma

T.5.7.(1}: D-reductions have the WCR-property and SN ls obvicus], we have

therefore:
Ny 5 M1
L " 0
7 i
S S
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(the bottom U-reduction being @ because N is a normal form)
But this contradicts our assumption N o #~—» N. Hence No=M—» N,
i.e. NF holds, [] '

3.7. The Unicity of Normal forms (UN, see Def.T.5.6).

That A @ Uk }= UN follows immediately by the previous theorem and the fol-

lowing general fact, whose proof is trivial:
3.7.1. PROPOSITION. For all ARS's: NF = UN. []

For the CRS's A @ ﬂs,vh the property UN turns out to hold also, but
the proof is more complicated. For A @ SP the guestion is open; we conjec-

ture that A @ SP k un,
3.7.2, THEOREM. X @ D_,D_ E ow.

PROOF. The proof is based on an idea of R. de Vrijer and an application of

Theorem 3.4.
Let I be A & thz + Z. (The proef for 99 is similar to the one for Dh'
For ﬂk the proof works also, by the way.) Let ¥ be A @ a constant D and

the rule
D*AB —+ A iff  $(a) =y $(B)

-
where ¢: Ter (el ) — Ter(3@l) is the operation of erasing every *, and
=5 denotes convertibility in I. (E.g.
0¥ (0111 — P11 since D11 = 1
but not

* .
DIK —I since T #Z K.}

To simplify notation, we will suppress ¢ from now on.
*
We claim that the predicate P(A,B) &% A =r B is closed under I -re-—
duction and under substitution. The closure under substitution is trivial.

To check the closure under reduction: let

A,B € Ter{k&ﬁ*), 2 =E B and A —* A",



232

So to prove is A' =E B. The only noteworthy case is that 3 — &' i3 a
® *
U -step: & = ¢[D pol ~5;+ c[F]l = a', where it is given that P =5 Q- (*}

50 we have

N *
A" = €[P1 +——— A = C[TD PO] AAAAAAAAAAAAAAAAAAAA B
9* - conversion in I

and using (%) we can obtain from this:

a' = ¢lr] = e[ UpP] anan & = CIPPOT Anannrs B,
T z

which is a I-conversion between A',B. This proves the claim. Hence by
%
Theorem 3.4, % k cr.

Now suppose UN fails for . I,e. there are normal forms Nl' W. such

that Nl # N2 but Nl =5 N2. Suppose Nl’ N2 are morsover chosen suchzthat

|Nl[ + INQ! {the sum of the lengths) is minimal,

{*%) Then Nl' N2 contain no subterm PAB such that A =g B, For, suppose say
N1 contains such a UAB, Then obviously A,B are in normal form (since Nl is},

A $ B (since Ny contains no D-redex} and || + [B] < ]Nl!. This would con-

tradict the minimality of N N

17 27
Since Nl =5 N2- wa have a I-conversion T Nl AANN Ng. After replacing
" + & ox * * *
each ¥ by U7, this yields a I -conversion T : N AAMA N, Now N) and N,

* *
are also I —-normal forms; that there are no P -redexes was remarked in
* *
{#*} . Moreover, Nl * N, sipnce N, # N,-
* *
So I [ UN. But this contradicts our sarlier remark that I F CR

(since CR = UN). Hence I fk uM, []

4. SOME POSITIVE CR-RESULTS FOR NON-LEFT-LINEAR CRS's

If £ is a non-left-linear, but strongly normalizing CRS, then CR holds
{provided T F= WCR) by Nevman's Lemma. Howevey, consider the TRS T with
constants w,U and rules wZ — . 2% and 022 —+ z_. Then I [ SN; e.q. aw or
w(Puw) reduce to themselves. Yet I seems clearly CR; but even for this
simple TRS the wvroof is problematic.

In this subsection we give some positive information on thé CR-property
for non-left-linear CRS's; this will also cast more light on the previous
'CR~ccunterexamples. One of these results t5.6(iii) and 5.7{i}) answers a

guestion {or rather, suggestion} in O'DONKELL [771 ('Further Research'
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p.103, (2){b}.)

4.1. DEFINITION. Let I be a CRS and let M ¢ Ter(I). Then CR(M), "M is CR",
iff ¥a,B3C

{S¢ CR{M) says that the CR-property holds locally, at M.)

4.2. NOTATION. Let &k be the CRS with constantse ‘Dk,E and rules

Dkzz — EZ. Likewise ﬁs has the constants DS,E and the rule ﬂszz — E;
and ﬁh has the constant Uh and the rule thz —* Z. (Sometimes we will
revert to our previous ‘abus de language' of writing I @ pi {i = k,s,h}

whare [ & ﬁi is meant.)

4.3. DEFINITION. Let I be a CRE and consider T @ &i where 1 = h,k,s.
(i) & P-preredex Ry isaIe ﬂi—term of the form of Di AB. A chain of P-

preredexes (of length n)l, or U-chain, in a term ¥ is a sequence

- (n)
MR PR PRI ... 2R

for some n.

(ii} [MID := the maximal length of chains of P-preredexes in M.

"MHD = max{INTD [ M —# Nl; possibly HM“D = o_ Here —* is reduction in
L ® Ai. We call "MED the '"P-norm' of M.

4.3.1. EXAMPIE, In CL & al, let Ml = IMPINH P PIN 1) and M, = CR as in the

CR-counterexample for CL @ ﬁi above.

Then i, 1) =2, Bal =3, Tm)] =1, and Tul = o

4.3.2. REMARK. (i) M —» N = HMHD E HNIID,
. s . |
{ii) If "MUD is finite, then: M —» ¢lUpo] =» "PHD'"Q"D < ﬂM|D.

4.4. THEOREM. ILet I be a regular TRS. Then:
{i} for all M e Ter(i & Ak}, HMHD < w© = CR(M)

{(ii) 1likewise for §¥ # As.
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PROOE. (i} The proof is by induction on "M"D'

The basis step, "M"D = 0 = CR(M}, follows easily from I F= CR.
Induction step. Induction hypothesis: "MﬁD:< n = CR(M).

Now let M bhe a term such that "M"D = ntl.

Let two reductions of M, 31 and 52, be given; see figure.

M M Mn a
1
ﬁ2
1 N'

Suppose we have already found a common reduct N' of M and M*. If the next
step in 31; n' — M", is a I-reduction step, we can find a common reduct
of ¥' and M" by Lemma 3.1.

The other case is as in the next figure: M' “+_M" is a 9k—step. By
Proposition 1.2.7(ii), which evidently holds also with A replaced by I (it

is easy to verify that an analogon of Cor.I.6,13 as used there, holds for

CRS's), we can postpone the P-steps in M' —s N',
Mt = clD, PP] M" = elfpl
[
k
I T
L. ) L! "
%
k
4
)

Now underline the Dk—redex PkPP which is contracted in the step M' — M",
and also the descendants of that redex in the reduction M' —» L —» L',
{Since this is a I-reduction, thiz makes sense: the concept 'descendant’
is defined for regular CRS's. Underline morecver the contractum FP in M"
and all its descendants in M" —* L"; here L' and " are found as in the
proof of Lemma 3.1, So the I-reduction steps in L —= L' take place inside

underlined subterms, and we hawve:
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L = m[Dplgl,...,DPQO1
L' =z ¢[0R. R ,..., PR R ]
11 m m

L" C[ERi,...,ERm]

for some m-ary context €[,...,] and terms as displayed. (An w-ary context
is a context having m 'holes', e.g. 08(IO0) is a ternarv context.)

Now consider in L all D-preredexes {underlined or not) which are going
to be contracted in the reduction L —* N', To be precise: the P-preredexes
having a descendant which is contracted in L. —= N'. (In fact, we have not
defined 'descendants' for irregular CRS's: but we can use for the purpose
of this proof the following definition.

Let ﬁ be the regqular CRS with constants P‘ E and the rule Dkzlzz — EZ
Then for I e Ak descepdants are defined; and now the concept of deseendants
inf e ak is induced in the obvious way.)

We will mark those D-preredexes, which will be contracted in L -2 N',
by an underlining ~ - . Next, consider the underlined D -preredexes (by

as well as -} which are maximal w.r.t. 5. Then

L= m'[Dulvi,...,ﬂuﬂva
for gome l-ary context €'; here ——— is o ~ - or m——
Note that the --- underlined D-preredexes are pairwise disjoint, trivially.
Since L — L' is a I-reduction taking place inside _ -underlined D-prere-
dexes and in L' -—= L" only _ _~underlined P-redexes are contracted, and
since -——— covers __ , the context €'[,...,] remains unchanged in L".

Therefore we can write

L = G'Eﬁ N P where D, = DU_v,
1! £ 3 i3’

L™ = C'[F, ,...sF,]) for some F ,
1 £ j

=
mn

1 1 T L] s =
T [Di""'DKJ for some Dj {5 1,....8).

Hence it is sufficient to prove that D3 i Fj (F=1,...,£1. We may suppose
- that the descendants of the Dj (3 = 1,...,8) are the last ones to be con-

tracted in L. — N'. (The proof is easy: replace if necessary the
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reduction Dj 9UjVj — ﬂijj ——A-ij ~—+-EW5 = Dﬁ by the reduction

Pov, — Dww, — Dw'w' —> EW' = D', etc.) This is not an essential step,
13 11 J ] ] |
however,
Now, according to the relative position in Dj af the and .. un-—

derlining, we distinguish the following cases.

CASE 1. Dj DPij' So the reductions

[ ——

g

e L"

contain the following reductions of Dj:

LoD, = PP,Q. —=» DR.R, 5 IR, = F, ="
-3 JQJ X | 3 i =

n

¥ Lt

Since ”Pj”D £ n by Remark 4.3.2, the induction hypothesis vields a common

reduct of 8 and Rj as follows:

T,
]

Hence also D; = E3 and Fi = ERj have a common reduct.

CASE 2. Dj = 9Pij; Pj and Qj may contain ~—-., How we have the situation:

HI

I 5 D, .o, —= TR R, —3—ﬁ-ER. F, ¢ L"
- 3z 33 3 -

J 1]
lv fil
LI

N o D% = Das!
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Again, since the P-norms of the involved terms are € n, we can construct

by the induction hypothesis a common reduct Tj as folliows:

Henge D' = Dgg* —» Pr.?, — Fr, and F, = ER, —» ET,.
i) i3 3 §| 3 i

CASE 3. Dj = D{ijj; DUjVj is not -underlined, but Uj ,Vj may contain .

P ¥ S W)
(Note that ﬁuivj is not a proper subterm of a ﬂPiQi for some i, by the

maximality condition for the Dj.} S0 we have the following situation:

LD, =R v, — DUiv! = F, c L".
i i3 i3 i

Now we can find again a common reduct Tj:

m Vi
J
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Hence Fj =z FUivi — DTjTj —_ ETj and D; = g —=» ETj_ So in all Ehree
cases we have Fj + D:'I (j = 1!"'l£]; hence L" 4 N'.

{(ii) For ¥ ® ﬂs the proof is entirely eimilar to {(i). []

4.5, REMARK: Note that indeed the terms in the previcus CR~counterexamplesg

have -an infinite D-norm.

1.6, REMARE. In fact we have proved the following stronger proposition, as

follows easily by inspection of the proof of Theorem 4.4:

4.6.1. PROPOSITION. Let T be a reqular TRS and et M e Ter(Z&ﬂi) (i = k,s)

be such that for ail N,A,B: M —» N o DAB implies CR{A),CRI{B). Then CR(M).

4.7. REMARK. (i} Let I be CL extended with Dk’ € and the reduction rule;
ﬂkMM —£M if M is strongly normalizing (SN}, w.r.t. CL - as well as
D-reduction. Then & | CR.

To see this, note that M e 8N = CR{M) by Newman's Lemma; then the
proof of Theorem 4.4 applies without change. Likewisce for ﬂs.
{ii) A similar proposition holds when the restriction in (i) on M is re—
placed by:
"if M does= not contain the constant Uk" (resp. ﬂS). For, then we have CR{M)

at once, since CL F CR,

In order to state the following corollary of Theorem 4,4, first a

definition.

4.8. DEFINITION. (i) If H ¢ Mter(L), then A{H) (the depth of H) is the
maximal length of branches of T{H), the term formaticn tree of H as in 1.7.

{Par abus de langage, we will write 4(H) = d(TH).) E.g.

X = f =
d(Szlzzza} 4 /f\\} i
4y 2y I3
and

6(2123(2223}} = 4f /Z\ 1= 2.

Z z

3 2
I
Z
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{ii) Call a reduction rule H —+ H' diminishing if d(H) = dA{H') and call

the CRS E diminishing if all its reductlon rules are.

4,9, CORQLLARY of Theorem 4.4.
Let T be a-diminishing regular TRS. Then I & ﬁi F= CR (i = k,s).

PROCF. Note that the rules for Di {i = k,s) are diminishing:

at P )y = a( E ) and Af [A yox AlE).
~ K /8
5 [ z g
z

Hence I @ &i (i = k,s) is diminishing. Therefore, noc M £ Ter{I®A. )} can have
i

an infinite P-norm. [

4.10. EXRMPLES. (i} Let f have constants w, U, E and the rules wZ — ZZ
and P22 — EZ. Then T F: CR.,

* ®
{1i) Let CL have constants K, § and rules

3
Kzlz2 —_ z1 and 8 212223 —_— 21232223_
Then cL” ® &, | CR (i = k,s).

* Wk
(iii) Let cL”” have constants K, §, @ and rules

ek
¢]
Kz,z, — 2z, and § (0z,)2.2

3 — 2123(22Z3}.

3
Then L' @ 4, b CR (i = k,5).

4.11. DEFINITION. Let I be a regular TRS. Then L @ ﬁiz) fi = k,s,h) will
denote the substructure of T & ﬁi where every Di is the head of a 3—prere—
dex {i.e. every Di has two arguments).

E.g. if I is CL, then SK{PIT) and P(PIISKIKK are £ @ A(Z)—terms, but
SK(PIY or SKP are not,

(Alternative, inductive definition of T = Ter[EG&i]:

{1} Ter{s) =T, (2) 2,B € T = AB, PaB < T.)

4,12, COROLIARY of Theorem 4.4.

Lek ¥ be a regular TRS. Then I @ ﬁiz} %z CR {i = k,=).
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(2)
i
easily verifies. Hence ]M[D = ”M"D < @, O

PROCF. If M — N for #M,N ¢ Ter{Ish )} {1 = k,s), then IIMIFDI = ]INIID as one

4.13. BREMARK. Consider a regular TRS as in HUET [78], where a TRS is written
in "function.notation'; e.g. instead of our lezz ——4-21 the notation in
BUET [787] would read P(z1,zz) — %,. Now, writing &_ for the TRS having
as only rule Dk(zrz) —+ E{Z) and A, for the TRS with the rule Ds(z,zy+ E,
Corollary 4.12 is eqguivalent to the proposition that for every regular TRS
Ef as in HUET {781, we have Ef 8 &f F= CR (i = kys). (Below we will general—
ize Corollary 4.12 to the case 1 = h.}

This might seem somewhal paradexical in view of e.g. CL & ﬂk H CR;

. . R . f
the explanation is that the 'function-notation' version (CL @ Ak) cannot

. . £ £
be written as a 'direct sum' CL @ &i. See HUET (78], who gives as CL :

A(A(A{S,zln,zgy,ZB} — A(A(zl,za}, A(zz,z3))

A

(A(K,Zli,z2) — Zl
where A stands for application. Now (CL@ﬂk}f would be the TRS having khe
two preceding rules plus A{A{D,2),2) —E(Z},

We will nowgeneralize some of the preceding results o &h and SP. This

will be done via a lemma which may be of independent interest.

5. THE 'BLACK BOX' LEMMA

Consider an extension I of CL by some new constants and some new re-—
duction rules. The rules nesd not to be regular, and may be quite 'patho-
logical'. Now consider a E-term M = e[nl,...,ﬂn] where C[,...,] is an
n-ary CL-ceontext (i.e. a CL-term with n 'holes') and where the Di
(i =1,...,0) are J-terms, possibly containing new constants. Suppose we
are not interested in the precise content of the Ui {(sc they are 'black
boxes'}, but know already that CR(ui) and moreover, suppose that a black
box ¢an only be "opened" {and hence interact with its context) when its
content is a CL-term (not ¢ontaining new constants).

Then, we claim, CR{M} holds.

& refinement, which we will prove and use below, of this claim is
that a black box, when opened, may yield a Cl-context of other black boxes -

but only when the latter are of lesser 'order' (a natural mmber) than the
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former,

5.1. DEFINITION. (i) CLO is an extension of CL with a set of constants
{DE | n,i € W}; here n is called the ‘order' of U? {and i can be thought
of as the 'internal state' of nril) .

{1i) Next to CL-reduction we have the fellewing kinds of reduction:

{a) DE —:r+ D? for some n,m,i,j; it is reguired that n = m.

n 1 T , \ .
(b} o) —- E[Djl,...,ﬂjk] for some n'l’k'ml']l""'mk'jk' Here ©(,...,]

is a3 k-ary CL-context. Tt is required that Myore oyl < n.

A step of kind (a) is called 'internal'; furthermore we say that after
a (b)-step the black box U: is 'opened'. As always, reduction steps of any
kiné may occur in an arbitrary context, i.e., & — B = ¢[a] — €[B].
Sometimes we will cmit the subscript in -

(iii) Reduction of kind {(a), (b) is required to be CR: internal reducticn

1,1
mizt satisfy WCR™' ™, i.e.:

u? {a) DT
i
{a} ta)

R

"l'\
;
1
i
I
1
|
|
|
1

2

[m|

. (al” O
3

.

and furthermore we reguire

!
i {bl

{a) CL (a) (b)
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o, glo,”,...,0.71 =M
* (b) T x
|
'[
(o} i CLla) (b)
E
1
1
|
I
Lia) {b)
D, oo 7 q q
P Em'[Dhl.-..,Dpﬂ] ¢“[DI1;..-.UrSj =0
1 £ 1 s

. U S . . ..
(iv) €A is the restriction of CIO to terms containing only constants DT
0 1
where m < n, S0 CL = CL. If M,N e Ter(CLDIJ and M EETETTE?$ i, we write
M —nf N and call M an —n-" -redex. (Warning: ——j  # — }
—————— n
{(v)] M _H* M = ¢[M] —;+ ¢[N], where ©[ ] is now a CLG-context. (Note that

€[ M] will be in general not an —?r-redex, which is ¢ Ter(CLDn).}

5.2. LEMMA. Let CLO be an extension of CL as in the preceding definition.
Then CLO | CR.

PROOF. We wil]l prove by induction on n that —H*-has the CR-property. Then
obviously arbitrary CL{a) (b)-reduction (= HFIQ—H*) iz alsoc CR.

, . 0
Basis. Follows since CLO™ = CL F CR.

Induction step. Induction hypothesis:

Now consider CLO-terms A,B,C such that E'LFFT*-B A —»;T+ C. These "steps'
consist in fact of CL-steps, —JE—* -steps, and ihliél* -steps {m=n}.

We will now examine the elementary diagramg Wthh arise when these gteps
are 'confronted'. {(We will not explicitly consider the trivial cases in

which the two confronted redexes are disjoint.}

CASE I. A CL-step versus a CL-step. Trivial.
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CASE TIT. An (a) (b)-step versus an {(a}{b}-step. There are three subcases.

n m
{1y (a) vs. {al}: o, o,
il
n
n m =1
} n
D?' n' £n n?“
] J
(2 o {b) WM (3) o (b) M
i i
n
n | (a} n (b) n n
(b} k4 )
| m=n - F = n Q

Here P, Q, M are as in the diagrams in Def,5.1.

CASE I1ITI. An —-ﬁ-r ~ step versus an T - step. This case is covered by the

induction hypothesis: see the diagram there.

CASE TV. An -I—l-F - step versus an —(%1—))—-* -step (m<n}.

(1). If m < n, then the latter step is alsc an —* -~ step and we are in

the preceding case. So we have then

v

{(2). If m = n, these two steps involve disjoint redexes, since an -—1-1* -
redex (a CLDn—term} cannot contain an " —1;1-%' - redex”, (i.e. a constant

n .
Ui) by definition. So we have
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n »
I ol
B
n
{a) (b} . . )
CASE V. A CL-step versus an ﬂ-Er———+ ~ step (m=n}. This case is easily

analyzed; the elementary diagrams which arise are of the Form:

CL

CL

(Here o is an S-,K-, or T-step.}

CaASE VI. A CL-step versus an -E* - step,

Three subcases arise,

{1} RnR' = P: txrivial

ILet R pbe the CL-redex and R' the —H* - redex.

{2) R € R'. Then R is also a e redex. Hence, by the induction hypothesis:

{3) If R 2 R', we distinguish the following sub-subcases.
£ g

(i} R = SaBC,
(i1} "
(1i1) "

{iv)

Rl

R?
Rl
RI
Rt
B!
BT
B!

RI

In oo I InoIn

1N

Sna
Sa
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We consider the two most noteworthy cases: (i) and (v).

(1) {(w)

AC(BC
SaBC; AC(BC) SaBC > B
s s n
11
n 1
n Ta'ciBo) pact (BC)
It
Il
h b [N Tsl
SAIBIO 3 A'C(B'C) Sapc! 3 AC* (BCT)

The other seven cases are even simpler: they involve no splitting of steps.
The conclusion is that the CL-steps (in fact only the S-steps] are the
only ones who have the power to split the other arrow in an elementary
diagram. So by a routine argument and an appeal on the lemma of Hindley-
Rosen {I.5.7), reductions lavolving CL-, —H+ “r {m=n) -steps are CR.

T.e. we have proved

nt+l

Hence CLO F= crR. [1

5.3. REMARK, It is not hard to check that the 'black box" lemma 5.2 alsc

holds far A instead of CL, or for other regular CRS's in general.

5.4. EXAMPLE. (i} 3 simple application of the black box lemma for A is the
well~known result (dbtained by MITSCHKE in an unpublished note and indepen-
dently by us) that A & ({ =+ M) F: CR, where {1 = (Ax.xx)}{(Ax.xx) and M is an
arbitrary fixed term. (Cf. BAETEN-BOERENBOOM [781) (Just put {! in a box,
which can only be opened after its reduction to M; the CR-requirements Efor
the boxes hold trivially.) This example is only meant as an illustration,

since it is easy to give a more straightforward CR-~proof.

Before stating some corcllaries of Lemma 5.2, some notation:
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5.5. HOTATION and DEFINITION. {i) CL @& 1‘1132} is already defined in 4.11. A
notational variant CL & f-'h(,) is obtained by defining the set T of terms
inductively as follows:

(1y I,K,8 7T, (2) a,B € T = BB, Dh(A,B] € "T. Next to Clereduction there
is tha rule U {B,n) >~ A,

fii) A @ 9 is the substructure of % @ ﬂh where in aevery DhAB one requires
A,B to be closed So the set T of terms is dJdefined by

t1) xisT (2} a,B ET==AB, Ax.h e T (3} ABETandclosed#D :AEeT
(Notational variant: ?:J {A B} instead of DC] AB.)

(iii} % @ (if .. then .. else ..}, or its notational variant » & B{ , , ],
and X & B are already defined in 1.2.11.(v} {3). Likewise for CL.

{iv) Analogous to X @ Uﬁl we define ) ® BT
Now we have the following situation:

5.6. THEOREM. (i) CL ® D, ( , } | CR
Gi) re i, F ocr

(iii) cL. @ B( , , ) k cr

v 2 e BN, .3k cr

PROOF. (i) Consider CL #® 'Dh( ; } or its notational equivalent CL @ DE:E) .
Let M <« Ter(CL @ 13;12)) and put the maximal subterms of the form PaR {a
maximal P-preredex) in boxes and let n = IDABID (see Def.4.3) be the order
of such a hex @[n. & box is opened when @.B n @

viously [CID < n, i.e. C is a Cl~context possibly containing boxes of

* ¢, Ob-

order < n. We have to prove the CR-requirements for the boxes, as stated

in Def.5,1.{iii}. "his will be done by induction en the order n,

Basis. n = 1: follows by a simple argument from CL |= CR, since then A,B

in !T_J_gﬂl are CL-terms.

Induction step. Induction hypothesis: the restriction T,n of CL ® Dliz) to
terms M such that M| < n (cf. CLO” in Def.5.1), is CR.

Now let M contain a n‘ Then CR{IaB) by the same argument as used
for the basis step, now using E F= CR and noting t.hat AB € Ter(E ¥,

Hence all the boxes are CR The remainder of the proof follows by
analogy from the proof of the black box lewma.
. (ii) As {(i). That in 9;12-';13 the terms &,B must be closed, is essential

{for this method of proof); otherwise by substitution the Penowm (i.e. the
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order of the 'black boxes') could increase, as is indeed +the case in the
previous CR-counterexamples., (See also Remark 5.7.)

(iii} Mutatis nutandis {e.g. the definition of | |B instead of | |D} the
proof is similar to that of (i). The ambiguity involved in the reductions
B 1L an + A (by two clauses of the definition of the rules For B) is harm-
less,

{iv) as {iii). 1]

5.7. REMARK, (1) Theorem 5.6 holds for any regular CRS instead of A, CL.
(i1} We expect that analogous results can be given for SP instead of D
(iii) Note the correspondence between v( in CL and D el in A, Indeed, if
T (or ') is the translation from XA to CL ag in T.2. then

HDEIAB...) = ——P{ZJ(TA)(TB)-—. This is not the case for D | AB where A,B
are open; cf. our previous CR-counterexample T({CA) for CL & D
(iv] Warning: X} & D cl E CR does not mean that X @ (D BA > A 1f Ais closed)
F CR. For, the previous CRhcounterexample is also a CR-counterexample for
the latter restricted system: the two D-contractions in that counterexample,
Dica) {cay + ca, involved closed terms.
(v} We expect that Theorem 5.6 can be sharpened to vield a result analogous

to Theorem 4.4.

5.8. REMARK. The Fixed Point Theorem {cf.I.1.11) for XA and CI, can be stated
in the following equivalent ways:
(FP) ¥F 32X X —» FX
(Fp'y vl 71 3% X —= ¢lx]
Note that for the extensions of % and CL in Theorem 5.6, (¥P) stays valid,
but (FP') fails. (E.g. in CL & Dh( + ), consider ¢[ ] = thu,:[) and note
that |M|ﬂ cannot increase in a reduction of M.)

In fact, the failure of (FP') is due to the failure of 'Combinatory
Completeness' {cf. f.l.lO and T.2.5.3; this property can be phrased as:
fcey vel ,..., 1 30 ox ceex ¢[x1,...,xn3) since CC = (FB < FP'), as

1
one easily verifiles.

5,9. REMARK. For A= © SP {typed A-calculus plus Surjective Pairing), CR is
proved in POTTINGER [79].
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CHAPTER IV

XBn-CALCULUS

In this chapter we will derive the main syntactical thecrems for ABn-
calculus. As it turns ocut, the addition of the so simple n-reducticn rule
complicates syntactical matters considerably. After the Church-Rosser
theorem, which is easily obtained from that for AR and is presented wvia
fn-reduction disgrams, we introduce A-residuals, which have a more pleasant
behaviour than the cordinary residuals in fn-reductions. For instance, we
will show that the Parallel Moves Lemma fails for residuals, but holds Ffor
A-residuals. We make an essential use of A-residuals and the PM Lemma in
this chapter.

By the same method as used for 3B in Section 1.9, the Standardization
Theorem for hfn is proved. Then the Normalization Theorem and Quasi-normali-
zation Theorem are proved for Afin, These last two theorems require an extra-
cordinary long proof, compared to the AB-case; nevertheless we felt the ef-
fort was worthwhile since firstly the Normalization Theorem is a vary
'natural' theorem, and secondly since some of the lemma's used in the proof,
seem Lo be of independent interest.

This chapter was inspired by work of R. Hindley. It answers some ooen
problems mentioned in HINDLEY [78]1, namely whether the Standardization
Theorem {there called: Strong Standardization] and the (Quasi-) Normaliza-

tion theorem hold for ARn.
1. THE CHURCH-ROSSEE THEOREM FOR ABn-CALCULUS

1.1. DEFINITION. Let the set of A-terms, Ter(i), as in Def. I.1.1. be given.

In addition to R-reduction we define n-reduction, as follows:

a[kx.ax]-—7F+ cla]
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for all & ¢ Ter{X) such that x ¢ FV{a), and all contexts €l J.
A term of the form Ax.Ax where x ¢ FV(A) iz called an n-redex. The
transitive reflexive closure of —H+ is 1?»- By 'Afn-calculus' we mean the

reduction system

ABn = <Ter{(i}, —, "E+ L

B

The union — U _ﬁ+ is written as r or just —.

B

1.2, CONSTRUCTION OF An~REDUCTION DIAGRAMS

Let coinitial fn-reductions ﬁl = B —~, ,— B and ﬂz = A —+..— C be
given. As in I.6.! we will try to find a common Pn-reduct D of B, C by con-
structing the reduction diagram 0{ﬂl,ﬂ2}. In mest cages it is obwvions how

the diagram construction for f-reductions in I.6.1 is to be extended to in—

clude n~reductions. We will mention therefore only the two noteworthy cages:

AR

(1) el (hx.ax)B] > tlaz]

AT { {trivial or 'empty' step)

1
¢[AR]) ~—mmmem———— ¢f2R]
Ay

{11 € ax, (Ay.Aiy) =zl » €lAx.A(x) ]

Axin :

€Ay aly) ] ———— Clax.ai{x)]

Here in (I}, (II) x § FV{R}. In the sequel we will often omit this condition
and assume it tacitly. Note that in (II} we identify the a-equivalent terms
Ay.&(y} and lx.A(x]..

50 in Pn-reduction diagrams we encounter the following types of ele-
mentary diagrams: the ones which are already mentioned for 38 (see I.6.1.1),

plus
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|
b i
n n n n nz1 n i
|
times !
T ________i
n B g
eragure

i
I ' '
1 1
| ' i
m | n (1) i n (IT) !
I i ;
i | i
_____ —h ————— g —_————
S S
h's
coincidence abscrption

Here (I), (IT) in the e.d.'s of the absorption type refer ta (I}, (II) above.
It is now easy to extend the strong version of the Church-Rosser theorem

+
CR {Theorem I.56.9) to the present case:

1.3. THEOREM (Church-Rosser).

Every diagram construction in Afn terminates.

PROOF. Consider a square which is determined by one step in ﬁl resp. 82:

%

a.{ll

Since B-steps propagate as B-steps (or @P-steps) and similarly for n-
steps, ®' consists entirely of B-steps + possibly f—steps, or entirely of
n-steps + possibly @-steps. Similarly for ®".

In all 4 resulting cases it is easy to show that the construction of

P(R'&") terminates, using in onme case the termination of B-diagrams
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(Thm.I.6.9) and in the other 3 cases that n-reductions have no 'splitting
effect':

n 'S
N = 3
¢ B D

I.e. V'A,B,CHD[ATB & A"n—» c==B—nsv D& {CZD v C e B)].

This fact follows at once by inspection of the e.d,'s in 1.2. [

t.3.1. REMARK. Just as for the case of AR, eone can prove that if ®' consists
of B-steps, it is a complete f-development (Def.I.6.6). This is proved in
Propesitions 5.1 and 5.3(i) below.

2., REBIDUALS

2.1. The definition of residuals for AR is as in CURRY-FEYS (58] p.117,118.

We repeat the 'critical cases' of this definition.
Let M —§+-M' whera R ¢ M is a B- or n-redex, and let & £ M be a redex
whose residuals in M' we want to define. It is immediately clear what the

residuals of S in M' should be, except in the following cases.

(Iy 1. R = {Ax.aﬂs, x & FV(a)
35
ii. as i. with R,8 interchanged

{II} i. S = dx.{iv.h}x, x § FV(A)
R

ifi. as i. with R,$ interchanged.

In these four cases contraction of R leaves S without residuals. For most
A,B this definition is clear, bearing in mind that the residuals of a B-
resp. n-redex should be again B-rasp. n-redexes; but it is somewhat sur-
Prising in case (I)1i if A = Ay.A" and in case (IT)i if A = A'ly {yéFV{A')).
Here (I}, (II) refer to (I), (II) in 1.2 abecve.
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Redexes R,S in the positions (I) or (II) are suggestively called in
HINDLEY [77] "too close together",

In the sequel (Lemma 4.9) we will need the following propositicon. The

proof follows immediately by an inspection of the definitions.

2,2. PROPOSITION. Let R = (Ax.R)B and H T Ay.Cy be a B-redex resp. an -

redex in a term M. Than:

(i) R anrd H are "too close together"

i.e. the elementary diagram U({R},{H}) is of the type I- or Il-abscrp-
tion.
(ii} if R and H are not "tooc close together", then {a) R n H = @ or (b)

RcCor (e HcAor (@8 HcB., [

2.3. REMARK. Analogous to AB-caleulus, if

is an elementary diagram, the redexes contracted In B —» D are residuals
of the redex contracted in & — ¢ and likewise for the bottom side. This
could suggest that the Parallel Moves Lemma (I.6.12) for AR carries over to

0
RCM 2 redex (B~ or n- in this case), then the projection {R}/R consists

M. The PM Lemma says that i€ 8 =M —. ., — Mn is a finite reduction,

of contracticons of residuals Ri of R:

M ] M, =Ly
0
ﬁn

r
L,
1

r'
i
P
N




To be more precise, every R is a residual via the reduction

Mg = oo — LO ——r ea. Li; not just via some R' = My = 0 = L, as
in the figura. For A8 this specification is unnecessary, since there in a
diagram descendants and residuals are independent of the reduction path

{see Corollary I.10.2.10) not so for ABn, as the next example shows.

2.3.1. COUNTEREXAMPLE. The Parallel! Moves Lemma fails in ARn for ordinary

residuals (as in Def. 2.1).

A similar counterexample is given independently by R. Hindley in un-—
published notes. See p.255.

In the diagram below the labels 0,1 are introduced to be able to in-
dicate which redexes are contracted, R in MO is an n-redex Ay.zIy. This n-
redex is doubled (ioy and kly) and one of those residuals is substituted in
the other (Aoy in hly). Now loy turns out to ke the head- A of a B-redex
as well, and koy is contracted as B-redex. Thereby the other residual.lly is
destroyed - that is, it ceases to be a residual of the original n-redex.

But precisely that redex A,y is contracted in {R}/®. So the PM Lemma does
not hold for the usual residual concept.

{Note, however, that the final n-redex MEa is a residual of the original

n~redex in MO via MO — Ml — Mi > Mé ——+—M§ e MS.J

Although in a Bn-reduction the notion of a residual is not without
complications, there is nothing problematic about the descendant relation
for symbols. We will use this obvious possibility of 'tracing' symbols in
a fn-reduction to introduce an alternative concept of residual for which

the PM Lemma does hold.

2.4. DEFINITION. Let & = MO —_ MI — ., — Mk —* ... be a Bn-reduction,

o S| : i ] -k
RO a redex in Mo and Rk a redex in Mk such that the head of Rk descends

from that of RO'

Then, regardless whether RO' Rk are fi- or n-redexzes, Rk iz called a

h-residual of RO via f,

Z.4.1. REMARKS AND EXAMPLES.

{i) It is easily checked that in the notation of Def. 2.4:

Rk is residual of RD = Rk is A-rezidual of RO'

But not the econverse; for, consider (on p.256):



255

II

IiI

HmHN.moau

ﬁHN.NDJnH_ﬁHN.N.—Jmu
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[Tz zy]{e(eq qy)ey)

v 1 |
z N, W
] 1
1 _
1 |
| ! &y
_ I
_ U i ks
= vz »ﬂm ma moa
2% | ¢ 2%y g 2%
u u
£
= N hﬁm mE MOK
Nda d Nﬁd ) Nﬁx
U u
= Nz ha« m.nE Mc«
ay| d qy| g qy
u u
T
= N aly W £y
2y} ¥ BY
=0 F Ay

& = ATz*&'y

Ty = Aarr-A0y -&ly

a = &1[ (A12- A0y 20y 3-&Ty
N = [ thrz+A%) 2% J[ (hrz &P zleg
b= rarerElohai Bz 800 2% e au
Oy = [ A1z LY)Zy (e (eq-qy) ey}
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Rq

(Az.=zN) (Ax. (Ay.M)x —%-?——-*
/

!

¢ Az
{hz.zN} (hy.M) ~—B———>

N

OF.mN = Ry

and now Rk is a A-residual, but not an ordinary residual, of RO. Likewise
in the following example:

RO = Ax.{Ay.KIyyix —}LBY—+
1
i

Ax, KIxx T&:-
1
i

¥
Ax,Tx = Pk'

This example shows an undesirable characteristic of the ordinary concept of

residuals: by an intermal reduction an n-redex can stop being one and a

moment. later reappear as "the same" n-redex; but the latter is not a resi-

dual of the former. It is however a A-residual of the former.

(ii) For Ahf-calculus the two residual notions coincide.

(iii) Note that in the Counterexample 2.3.1 the final n-redex is a i-resi-
dual of the original one.

(iv} The theorem of Finite Developments does not held for i-residuals:

(E]3

MO {lox.xx)(llz.(lzy.yy}z) “ia—*

- - ‘_'_'_'_'_-__}-
(112 (lzy.nyz}(llz (lzy.nyz) ToFe ll

'(lzy.yy}(klz.(hzy.yy)z) _— —

2

(lQY-YYJ(llz.(lzy.yy}zJ e

an infinite reduction in which all the contracted redexes ars -

residuals of redexes in MO.

On the other hand, FD does hold for ordinary residuals; see
BARENDREGT, BERGETRA, KLOP, VOLKEN [76], Ch.II. The proof there usss the
method of decreasing weights as in I.4.
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3. TRACING IN DIAGRAMS

To keep track of events in a reducticn diagram, we will stick labels
on the A's and follow them by means of these labels, In the B-caze this
vorks very well, but in the Bn-case there is a complication, since in the

type IT e.d.'s (see 1.2) there is sometimes a "confusion™ of A's'-:

Ay y e
q:[lox. (lly.A)x] s C[lox.hfy.—x]]

Ax n

U —

C[lly.A] B ——— -+ CEI?Y.A]

(Note that the two terms on the right are syntactically egqual modulo o-
equivalence, renaming of bound variables.,)
Now it is not clear whether the labkel? in C[lﬁy.n] should be 0 or 1. There-

fore we put ? = {0,1}. In general:

3.1. DEFINITION. Let us admit as labels for A's (not only redex-A*s} in a
Bn-reduction diagram finite sets of natural numbers, denoted by uo,al,...
In every e.d. except type TI1 it is clear how to carry along these
labels. For a type IT e.d. the labels are carried along as indicated in the

(%, and ? =@ U oo, .

figure above, where 0,1 are replaced by o 1 0 1

0

we write A and

NOTATION. Instead of l{n} we write An; instead of A{O,l} o1

for lg Just A,

3.2. As we said before, we can visualize reduction steps in a diagram as
objects moving to the right or downwards, thereby possibly splitting or
becoming trivial (empty}. This gives rise to what we will call propagation
paths, indicated by ~me~rrrws, gee the figure below. They should be dis—
tinguished from the reducticn paths in the diagram, which are ordinary re-
duction sequences of terms - except that enpty steps may occur in them,
Thirdly, we will distinguish fn a reduction path the paths which we get by
tracing a single symbol, in case a 3. These are A-paths,
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LY

reduction path

\ / e propagdaticon path
N

The notion of 'ki-path' seems sufficiently clear to make Further illu-

stration of it superflucus.

Note that if A,B are terms on a reductlon path and 10 is in B, then
AO can be traced te a unigue 'father' X in A. Ewen in the fn-case there is

no ambigulty. Now note the difference between B-diagrams U, and fn-diagrams

g
DB”: if A,B are terms in 98, B 'later' then A ({see next figure) then a AO

in B traces back to a unique M in &, regardless of the reduction path be-
tween A and B which one chooses to trace back. But in (2

3
of lo in B depends on the chosen reduction path. This 1s caused by the con-

n the father in &

fusion of A's which we observed earlier and which caused us to introduce

growing labels @, = 9.
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DB(nl

Aa
3.3. DEFINITION. Let M —— N be a -B— or n-reduction step, where lu is

the head-A of the contracted redex. Par abus de langage, la will be called
‘the contracted redex-A' of this step.

Before formulating the properties of the labels o, which make them

useful, we will give an example illustrating these properties.,

3.4. EXAMPLE.

(}L&X. U\ﬁy.yy}x) T

A (h x.xx)1 A
(A Oy (A 222l BT Ay e Py o 1T
. i 1 p —
B B | {s |
| 4 |
* |
{
lu Ti ku n : ! :
[ |
. AY.YVIT Yia v vt |
(J\By‘{}. z.22)v}I }l'y' {_B_:_[_Y_Y _______ I ouﬁy L ITT
Y r N Tl
B | | o B ,
3 1 |
A ! | !
T
t A 1
_L ________ 1 o Buy l 11
("J\Yz I 7=5 = S . .
”‘BU z,22)1 (ﬂC‘UBUTY ¥¥)
L e ——————— LA M e — e —
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Note that in a propagation path X ~ X ~~~~> , . azs well as in a A~path

A —-.—. X -.-.=> .., the labels can increase.

3.5. LEMMA. Let

M ﬁi
1 p |8

®

ﬁlf 2

be a completed fn-diagram.

Let all the X's in M have a label and carry along these labels throughout T,
Let Ind{ﬂl) be Lhe union of labels of *'s contracted in ﬁi, and simiiarly
for the reductions 82, ﬂlfﬂz and ﬂzﬂﬂl. Then the following holds:

i) Iind(ﬁiflfi'.E) u Ind{ﬂzfﬁl) £ Ind(tﬂi) U J:nd(ﬂg}

(i1) the label of a * is weakly monotonically increasing along a A-path in

P, i.e. if Ra—.ﬁ.eb A then a = B,

B
{i1i) similarly for the label of the contracted ) alongy a propagation path

in D, i.e. if la e lB then o C B.

Before giving the actual proof, let us make the following remark.

That the lemma is not entirely trivial is due to the fact that in Ri,
ﬁz labels of A's occur which are not < Ind(ﬂl] u Ind(ﬁz}. What we have to
prove is that those labels do not play a role, as label of a contracted A,

further in the diagram.

PROOF. Let a labeling of all the A's in M be given such that the i-th oc-
currence of A in M has label a, - It is not reguired that @y #aj for 1 # j;
the ai are entirely arbitrary. Without loss of generallty we may suppose
a, = {il ;7 replacing afterwards {1} by arbitrary a;r (1), (14}, (1ii) ob-

viously remain wvalid.

Now we will prove (i), {ii), {iii} simultaneocusiy by induction on a
construction of .

Suppose that in our inductive preof a construction stage D' of P is
reached:
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————— :
#
2‘;5_% new elementary square to be adjoined

and assume the following induction hypothesis:
{a) if a contracted A in D' has label o then @ £ Ind{ﬂl) u Ind{ﬁzj
(b} if a A in P' has a non-singleton label a, then o ¢ Ind (Rl) u Ind (Hz}.

The induction hypothesis is clearly fulfilled in stage O of the construec-
tion.

The remainder of the proof consists of checking the e.d.'s plus what
happens in them with the labels. Without comment we will only mention the
eritical cases. Note that the label of a X in a A~path can only increase in
a trivial step, and that the label of the contracted X in a propagation

path can only increase in the first e.d, below:

A e

;K <
R 2
i | : | | :i [
. ! L | i
i : | I L ;
. ! P i !
A J ST ¢ b -, 4
GUB )t e e — Y

o AGUY ActuBuY A

ouB

It is only a matter of patience to verify that (a) and (b) again heold
far D' + [0. We will omit this verification here. If the diagram is completed,
then {a) of the ind.hyp. entails {i) of the Lemma. Part (b) of the ind.hyp.

serves to prove (a) in the case of adjunction of the first e.d. above. (1

3.6. COROLLARY. Let R C M be a redex of which no A-residual is contracted

in Rl nor in Rz (see figure). Let 8 © N be a A-residual of R.
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Then no h-residual of § is contracted in ﬁl/ﬂz.

M &

ﬂz D
o

N /%5

PROOF. Let the A of R have label 0, all other A's label 1, Then by the hy-
pothesis of the corollary, 0 4 Ind(ﬂl) u Ind{ﬂz). Hence by (i) of the pre-
vious lamma, 0 ¢ Ind(ﬂljﬂz). O

3.7. PARALLEL MOVES LEMMA, for ABn w.r.t. A-residuals. Let

f=m —— .. —>M_and let R be a redex in M. Then in D(&®,{R}) the pro-

jection {R}/®R consists gf contractions of A-residuals of R, wia the reduc-
ig
tion MO — L. —F Mn — ...

In other words: the A's of the redexes contracted in {R}/R can be

traced hack via Mn to the A of R.

MO M
n
{R}| %, Ay (IR
}‘j'_l

PROOF. The following argument is typical for the notions of diagram con-
struction and tracing of A's by means of growing labels.

Label the A of R with 0, all cother A's in MD with 1., So the lij in

{R}/8# have label O or 01 by Lemma 3.5.(i{}. If a i;, has label 0 we are decne,
13

0 by TLemma 3.5.{iii). But if it

has label 01, it might be the case that such a A traces back wvia Mn to a A

for such Aij can only be traced back to A

1

in MO, what we don't want.

Let us suppose this is the case {*). First we note that in Mn no mual-
tiple labels (01) can ogcour, since in a A-path the label can only lncrease
after an empty step (see the se.d.'s in the proof of 3.5) and # does not con-
_ 1 in MU,
this trace must be via a 11 in Mn. This implies that in {R}/R a F-step must

tain @ steps. Hence, if a Agq im {r}/8® traces back via Motoal

ooour, in which this label ! grows to Ol:
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{R}/R

Let us call such a situation a 'vertimal 1-adjunction’,
Now consider an arbitrary construction of the diagram P{{R},R) and in this
construction the first addition of an e.d. in which a vertieal l-adjunction

ovcurs. This e.d. must have one of the two following forms:

7Y S e
a1 > A oM M
| 1 Fal i IUl X —
! 0 o g ot
i . . | P
r 1 . P o
. I | [ 1 | i
! b ' [
! Lo ! P
! b ! L
¥ o Y N
Vo T 2ot Ao o N ;
e > WL ———mmee sy 01

However, in both cases we have a vertical Ai—contraction, in contradiction
with Lemma 3.5.(ii} which states that for every vertical Au-COntraction we
must have @ € u {since we started with a vertical lo—contraction].

50 we have proved that (*) is not the case, i.e. also the Ayy in {rR}/®

trace back to AO in MO. (1

4. STANDARDIZATION OF An-REDUCTIONS

As in I.9 for 13, we Will employ a marker to help us remember which
{residuals of) redexes are not allowed to be contracted in a standard re-

duction., In fact we need two markers: % _ and *n, for B- resp. n-redexes.

B

4.1. DEFINITION. Every time when in a reduction a #- or n-redex with head-i

{say) A, is contracted, we attach to all the B-redex-A's < 10 a marker *

0
{if not already present] and to all the n-redex-A's < 3

B

a marker * {if
0 o

not alreaay present) . Note that it may happen that one X bears both markers:

Y 2 . :
A B n. These markers are carried along in a reduction as follows:
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1) ail the residuals of (3*Px.A)B will be marked by *g
*
2)  all the residuals of A"'x.Ax (xéFV(A)) will be marked by 'n.

Now a standard frn-reduction is a reduction in which no redex is can-

tracted whose head-i is marked.

4.2, REMARK. This definition is equivalent with the definition of strongly
standard fn-reduction in HIMDLEY [787.

It turns out to be convenient for the proof below to work with a
stronger notion of standardness, which is alsc easier to Formulate {with

the terminology of markers).

4.3, DEFINITION.

i) Every time when a f- or n-redex with head-} (say) A is contracted,

we mark all the redex-A's {f~- or n=) to the left ofol0 with #, 1f not
et marked,

(1i} These markers are carried aleng in the reduction as follows. All the
Ms which descend from a R*, will also be marked - regardless whether
they are redex-A's or not.

{i11) Wow a A-standard Bn-reduction is one in which no redex Is contracted

whose X is marked.

4.4. REMARK.
(i} i-standard = standard w.r.t. A-residuals.
(ii) ® is a A-standard fn-reduction = & is & standard Bn-reduction.

CEf, 2.4.1.(i). Here also, the converse does not hold.

4.5. THE STANDARDIZATION FROCEDURE FOR Afn

First we will extend the realtion "<" {to the left of) for A's in a

term to redegxes.

4.5.1. DEFINITION, Let M be a A-term and R,S two redexes in M. Then

R < 8§ &= qu}‘S or S ¢ R.

Here RR, AS are the head-X\'s of R,S,
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4.5.Z. REMARK. So if R,S5 are in position (I) (Def.2.1}, R = (Ax.AX)B = 8B,
then the f-redex R is to the left of the n-redex 2.

4.5.3. DEFINITION. Let & = M, —> M, —> ... be a (finite or infinite} re-

1
duction.
(1) In M, we select a redex, called lmc(fl), as follows. lmc(®) := the lefi-

most redex in MO of which a A-residual is contracted in #.

(ii} As in I.7 for \B, define

() = &/{lmc(®R)}.

4.5.4. DEFINITION OF THE STANDARDIZATION PROCEDURE FOR ARn

Let # = MO — Ml —% .., be given. Then the (possibly infinite) re-
duetion ﬁs is obtained as follows:
1me (H) Imc (pfl) lmc(pzﬂ)
® =M - M! + M) ¥ ..
S 0 1 2

Cf. I.9.3; see also the figure there,

Before we prove that Rs is A-standard, hence standard, and that if &
and ﬂé end in the same term, we will give =some examples and state some tech-

nical lempas.

4.6. EXAMPLES, Example 1 shows why we intzroduced A-residuals in the defini-
tion of the standardization procedure. For, the straightforward generaliza-
tion of the method for Af-calculus would have used *S' *n {see 4,1}, i.e.
standardness w.r.t. the usual residual concept, and as lmc{H] we would have
taken: the leftmost redex in MO which has & residual (in the usual sense)
centracted in K.

But this generalization fails: as this example shows the result of the
procedure need not be standard. (This was pointed out to me by Gerd Mitschke,)

As usual, the dotited lines in the reduction diagram below denote empty

steps.
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it
(Ox. (Ay.vR) (Ix))X Ix (Ax. (Av.yRix) X {(Ay . yRIX %R xR
B n [ B { £ )
i |
|
A r |
¥ B | | !
i i i
| | |
{hx. IxR) X (A%, xR} X Plhx.xR) X | XR fxr!
B ) B ! B ‘|
I
}
ix B =3 l
3
_ |
LXR XR iR lxr ixR"
o ___l
i ! ! b
| | i
8 {
|
XRp . __ ¥R ___lxm___ _ xp . XR!
B
I
B B B 8 |
R R % RBR XR!

Example 2 shows how application of the A-standardization method does produce
a A-standard (and hence standard) reduction for ®, the same reduction as in
Example 1.

In the diagram below, the A's of redexes which have a A-residual con—
tracted in ® are indicated by +. Similarly for p(fl}, pzfﬁ},_..

Note that ® contains an n-step while ﬂs does not. This is because in
the definition of 'lmc' we have built in a preference for B-steps aver
n=steps: if a } is a B-redex A as well as an n-redex A, the B-redex is to
the left of the n-redex (Def. 4.5,1)
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+ + +. 4 {Ax. (Av.yRIZ) X {(Ay.vRIX R XR!'

B n J B [ i

|
| , ]
x| B B | I
i i l
| I |

(Ay.¥R) {IX (hy.yR) X i\[ly.yR}X bxw I xr?

L N A R, f [
B & | ;

|
@ I i
s Av | B B f ! l
f I
} i

IXR %R [
+of 3 [T T T T T i
i ' | '
| ' ' |
B I ! i |

| i
| t
I

: 1 i [
R . |
* I
8 |
|
|
|
wml I S R | o

EXAMPLE 3. In the reduction diagram belew, the upper reduction # contains

a B-step (iy), which is in a remarkable way transformed by the standardi-

zation procedure into an n-step (Ay) in ﬂs.
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Az, (Ay.KIvy)x

AXK.ETxX Ax,.Ix I
LS Y .
Briy I g, K T fi |
| !
| | |
| 1 o
] | l i
i { 1
| i l
Av.KIvy | Av.KIyy | Ay Iy I
_______ I
t B.K ! n z
( i
i i
K |8 1 1
1 f
1
I |
. LAy,
w.Iy o L _Xy_ Iz o __)\Y Iy |I
+ n :
|
n n n I
|
I I l T
_____ B S b f

EXaMPLE 4. Here, as in example 2, an n-step in ® is transformed into a B-
step in #® .
p in &

(Az,=zN) (Ax, (Ay.M)x) (hz,=N] { v, M) {Ay.MIN M (N}
4+ + + 1 {
l B | [ 1
! l
P B | |
]
! |
Ox. (Ay-M) 0 N Oy.on _E(Ry-mu | M)
|
l | 1
| |
B L [ |
| i
| | |
(Ay.M}IN | - e ]
+ B |.
]
4 B 8 :
!
)
M(N) L _______ |

L . e e e e —_———
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EXAMPLE G.
{(Ax.w{Ix}IM {Ax. wx)M ’ wM MM
o4 4 ; . t 3 ;
(w=Ay.yy) A ls e ! :
i
1
@ (IM) wt | oM :
s | T B p MM
f
B8 8 B |
|
MM MM M '
TM{ IM) —— e e o b e e | MM
e B B_: ! ,
!
) i | ! I
| : \ ! I
| |
M{IM) __'____IM(IMJ I|£~11:1___ _ ll\'ﬂ\'! |MM
* B I T [
‘ ] |
B B i !
| | r
i 1 |
e | f b ____ b
MM MM MM MM

4.6.1. REMARX. Without the triwvial steps the diagrams would be much simpler;

in example 5 we would have

Ax. M MM
(A w(IK) M o (x.ux)4 7 —

M(IM}

{IM} (IM)

But in this way we loose all intuition for the standardization procedure.
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In & standard reduction in AB-calculus the 'action' is literally going
from left to right in a term. In a standard frn-reduction this is not S0
éometimes there is a leftward jump, as in the following examples:
Ak, (ady.xy) H7T+ AX.ax _7T+ a
or

Ax.al(Ix) — AX.ax —r a

or

F Ax.ax —> a .

Ax. (Az.a)xx
B n

It is clear that such a leftward jump in a fn-standard reduction occurs on-
ly to contract an n-redex. (We will not prove this fact,) The next lemma
states that cur standard reduction in spe, ﬂs, indeed satisfies this require-

ment. Then we prove, using this property, that Rs ig A-standard.

4.7. LEMMA. If in ﬂs a k ig contracted to the left of a A*, then this must
be an n-contraction. And hence, by the definition of £me (with its built—in
preference for B-reductions if there is choice) it 15 a contraction of a
passive n-redex.

PROOF, Suppose the lemma is false: let M£+m+1 {see figure) be the first
term in ﬁs in which a A(say AO) as f-redex is going to be contracted with

a l* {cay A:) to its right. Let M; be the term in which this A; got its
marker. By X is meant the A which is going to be contracted, by h? that
this A possgbly bears a marker # (in the sitwation above this is in Ffact
not possible).

How 1t is not hard to see that A _,2
01 ntm+!

M& in the same position 10 < 11. {(#*) . This i= so because every A in
,1;

in ™' trace back to AO'Al in

M;,...,M; such that 2 < ln,kl is an n-redex-i by our hypothesis.
+ /

+m

Moreover, by the same hypothesis, A, is in Mﬁ already a B-redex-}.

0]
Eere we use also the following fact:
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M &
1mc (&)
ﬂs Mi p&
lme (R}
I
|
? * = 1 b
Y Ay Ag EM p &
! f
bt Lme {p"8)
by
T Jg é & n+m
A Al A . 1o
3. %0 1L P
x | I n+m
!
| !
l
lg ¢; n+m+1ﬂ
O “"1 = MI
T ndmet
+

if a A 1s not a f-redex-\, then the same is true after an n-reduction.
(Another formulation of this fact is:

n~reductions do not create new B-redexes w.r.t. A-residuals, |

Note that this is not true w.r.t, ordinary residuals; cf.:
Fiz. (y .My xIH —7T+ Ay M) N,

where [(Ay.MIN is a newly created g-redex.}

*
Now iz in MA is to the right of ll, because Al was marked for the

first time in Mﬁ. Therefore (by (*)) also 12 = LO in M;. By the definition
+

p in Mﬁ has no contracted A-residual in pnﬂ.

Also AO in M; has no contracted A-residuzl in the reduction

M; —* .. F_ﬁ'Mé+m+1' Here we use that AU is not multiplied in this reduc-

tion (this could only be done by a B-redex to the left of 10 and hence of

*
AI: but according to the hypothesis such redexes cannot be contracted in

of lme, this means that 3
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this yeduction.,)

Hence, by Corall. 3.6, lD in M£+m+1 has no contracted A-residual in
Rxicu !
B &. But then, contrary to what we supposed, in Mﬁ+m+1:
+m+1
XO # lmc(p’ " ®). Contradiction. [

It is now easy to prove:
4.8. LEMMA. ﬁs is a h-standard reducticn sequence.

PROOF. Consider the following enlargement of the above figure:

p &

|- -SSR S——— ) o

pn+m{R

1
=

+m

.

Let us first note as an immediate consequence of the preceeding lemma,
that no A" in ®_ can be maltiplied.

Now suppose that ﬁs is not A-standard. Then there is a AO in Mé which
gets a % there Ffor the first time, and descending to a A-residual in say

-+
M;+m which is lmc(pn ") . The (redex whose head-i is) 10 in MA has no A-
residual contracted in pnﬁ, otherwise the Al {displayed there) would not

*
nave been Ymc(p'®). And since i, in Mﬁ is neot multiplied in the reduction

¢

&
M e - M B AO has no A-residual contracted im that reduction.

1
s am ey

Hence, by Corellary 3.6, A . in Mﬂ+m has no A-residual contracted in

a
+m
p" . Contradiction. [

4.9. LEMMA, Let R = MO - Ml —* ... be an infinite Bn-reduction seguence

and H ¢ MO an n-redex. Then the projection of | by H is again infinite.



PROOF. Suppose not. Then every step after say Mn hag an empty projection

the following figure, in particular eve
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in

ry B-step after Mn'

0 1 2 n n+l
Hn il n n n
2 F
M! M! ’E[' 1 = 1 =
(o} 1 2 Mr n+l "

We will now see how such a fB-step,

some projecting n-reduction, looks like

possible for an infinite reduction sequence, in casu Mn —* Mn

to contain next to n-steps only f-steps

— M1

0 B 0
empty, as in the next figure. Note that

B0 let the projection of N

prepagation, until it vanishes (becomes

{ix.A, )B, (0<i=k). From
14

Write R,
i

ly that the n-reduction

which has an empty projection for
; and then conclude that it isg im-

+1

of that kind.

0
the B-step does not split in its

by the n-reduction K 7;5 Nm be

e -
#) after some step say N, N

Proposition 2.2 it follows immediate—

N

cr_'O[ (lx.AO)BO] - u:‘k[ (?\x_Ak)Bk]

is 'separable' as follows:

(a,b}cot 1 71—» u:k[ ]

(%) {c)

—
AO n

{d) B

0o 7 By

corresponding to {al, (b), ().,

(d) in Prop. 2.2(ii).

{Remark ad (a): in fact n-reduction is not defined for contexts ¢ J; but

‘considering a context as a term in which some speclal free variable O may

ccour once, it is clear what n-reducticn of contexts is. E.g. Ax.y0zx is
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a context n-redex.}

B
NU' = @O[ROJ . - N NO = CO[RDJ
Hy (m m
= ¢ [r, ] Rl ! = &, [Rr']
Ny = 4Ry N 1= MRy
B
H,|n
Rk by
N, = Ek[Rk] g ﬁ
[
n |
e !
1
!
W oo __ _
E
|
L
|
]
|
Ne Voo __._

n
Now there are two cases; Rk and Hk I-absorb or IT-absorkb each other.

So RO —— ¢ and the f-redex Rk and the n-redex Hk are "tco close together".

CASE (1). Rk is II-absorbed by Hk (see 1.2},

Then N = Ck[Rk] = mk[(kx.ﬂk)Bk] = tﬁ[ly.(lx.nk)y] z tﬁ[nk], i.e,
H = }Ly..Rk and B = y and y ¢ FV{A }. So by (+),

RO = (;\x.AO} Y

~

where we have used the notation M for an n-expansion of M., (I.e. M j?b M)
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CasE (ii). Rk is I-absorbed by Hk

Then Moo= ck[ng = q [{lx.AkJB 1= T, [ (Ax. Hkx)B T where x ¢ FV(Ak),
= Ax-Aﬁx. '

So AU —?r» Ri %, hence AU = Rﬁx.

So )

R, = (lx.Akx)Bo, x ¢ FV(A k)

Now we have proved that the Infinfte reducticn Mn — Mn+1 — ..
contains only
{a} n-steps
(b) RA-steps of type (i)

{e) P-steps of type (ii}.

However, this is impossible: such a reduction cannct be infinite. For let
m(M) be the number of multiglying A's in M (not only redex-i's) where X in
Ax.A is called multiplying iff x occurs more than once as a free variable

in A. Now type (a) and {c} steps diminish the length £{M) of a term M, while
keeping m(M} constant, and type (b) steps may increase £(M} but only at the
cost of diminishing m(M). Hence the ordinal number <m(M),L(M}> = wem{M)+L{M)}

-

decreases in a strictly monotonic way along the reduction Mn — Mﬂ+1 —_—

Contradiction. [

4.10. PROPOSITION.

1lme ()

S -

o

_____ _
ﬂ|

In PR, {mc(f) }) the reduction step lmc(R) propagates to the right, without

S —
'D———

splitting, until it vanishes (in the indicated square) by 'coincidence’ or

'I- or Il-absorption' (not erasure) .

PROCEF. Let 10 be the head-} of fmc(fl). Using the same kind of argument as
in the proof that ﬂs ig J-standard, one shows easily that if somewhere in
_ﬂ a } is contracted to the left of (a descendant of) AO, then this A mast
be an n-redex-i(x), in fact even a passive n-redex.

From this it follows directly that fmc{®) does not split and that g
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is not maltiplied in &,
From this last fact it is clear that if fmc(®) propagates until the
{unique} step in ® in which AO is contracted, then the indicated square

must be of one of the following forms:

kO 10 p"OI PlO
B n } g __{ noo
i
*o I Ag|m o Pofn LA !
1 t | |
| —_———k e d e
coincidence I-absorption

Otherwise the £mc(f) contraction had alrveady vaniched before it reach-
ed the lo—contraction in ®; and this can only have happened by II-absorp-

tion {(not erasure, by (+).} [

4.1t. PROPOSITION. Let &, A, be as in the preceding proposition. Let the
step in ® in which AO is contracted, be a f~step. Then fmc(R) iz a f-redex

(and {fmc{R)} a BR-step.)

PROCF. {NMote that the analogue for n doesg not hold; see PR and fmc{pfl) in
Example 4.6.4.) Suppose the proposition is false. Then fmc(R) is a passive
n-redex. But since to the left of 10 in # only n-reductions take place
{see proof of preceding proposition), this passive N-redex cannot be acti-

vated, in contradiction with the fact that AO in & was a B-redex L. [
Finally we can combine all these lemmas and propositions:

4.12., THECREM. ﬁs is a h-standard (hence standard) reduction sequence for

&,

PROOF.
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MO Me+1 Mn

=]

b — — i — — — ey W W WS S b — T M W N S e e e ki)

In 4.8 it is proved that Rs is h-standard. Proposition 4.10 states
that the right side of Ds is f.

Now suppose, for a proof by contradiction, that ﬁs is Infinite. Then
there is a k such that RS/MO —_— L. — Ek is infinite and
RS/MO —_ . = Mk+1 is finite (i.e. contains after some B only @-steps.)

Let D' be the subdiagram as in the figure ahove.

From Lemma 4.9 we know that the “critical™ step Mk h—e-Mk+1 cannct be
an n-step (otherwise ﬂs/MO —_— ., - Mk+1 was still infinite.} Bence ﬂz
is a B-reduction, since f-steps propagate as B-steps or @-steps. (In fact
ﬂz is a complete B-development, as is proved in Preopeositions 5.1 and S5.3(i).)

Now let us look at the "critical™ subdiagram 0'. By Prop. 4.11 all the
non-empty steps in ﬂl and B-steps, .

By exactly the same argument as in 1.2.6, using the Hyland-Wadsworth
labels (I.3.7) and SN for labeled reduction (I.8), it is clear that ﬁl must

be finite. Contradiction, hence RS i= finite.
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It remains to prove that the lower side of Ds' i.e. ﬁ/ﬂs, is empty.
This is trivial, for if not, then Rs would have continued.

Hence # and ﬂs end in the same term Mn. |

4.12.1. REMARK. Using the fact that 82 is a f-development, once can replace
,the use of 8N for HW-labeled terms by the use of FD for AR.

4.13. PEMARK. There are two well-known technical lemmas concerning the re-

lation hetween f- and n-reductions:

4.13.1, LEMMA. (Postponement of n-reductions)

TE M o N then SLMT»L—-H—#N.

4,13.2. LEMMA, M has a Brn-normal form < M has a B-normal form.

It is interesting to note that these lemmas {(and in fact, a strengthensd .

version of the first) follow easily using the method of the preceding proof.

PROOF of 4.13.1. Note that Prop. 4.10 remains valid when instead of fmc(R)
we take Ech[ﬂ}, that is: the leftmost B-redex in MO having a l-residual
contracted in 1,

New define {instead of ﬂsl the reduction RB - by revlacing in the de~

finition of ﬂs, fme by Emcs.

Checking the proofs above, we see that also ig finite, in exactly
4

the same way as for ﬂs.

After ﬂs s has stopped (that is, after we have "exhausted' the fch—
r

steps) the following situation has arisen:

M § N
' |
. ’D i
i
ﬁB,s B !ﬁ
i
|
[
L N
]

{For, if L —» N was not yet an n-reduction, would have continued.}

14
B,e
Thie proves lemma 4.13.1. Now it can be easily checked that something

more is proved: all the n-reductions in L —» N are passive {an n-reduction
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Afigﬁé.ﬁ is passive when Ax.Cx is a passive subterm of &, i.e. not occur-
ing in {{ix.Cx)D} for =ome B.)

For 1f not, would hawve gone further due teo its definition and the

R
B:s
definition of A-residual. T}

PROOF of 4.13.2. += is almost trivial.
=: By Lemma 4.13,1 the n-steps in & can be postponed, so we have a reduction
M-—€ﬁ>I.—E%$ W. Now L has a f-normal form; for suppose not, then there is

an infinite g-reduction 8' = L — L¥ —> L' —> So by Lemma 4.9 the

projection |7 = &' /L —ﬁﬁa N must be infinite:

contradicting the fact that N is a Bn—normal form. [
5. THE NORMALIZATION THECQREM FOR ABn-CALCULUS

In this section we will generalize the Normalization Theorém (T.11,2})
and the Quasi-normalization Theorem (I.11.8) (in other words: “(eventually)
leftmost reductions are normalizing") from AB to Afn.

In Af the adjectives 'normal’ and 'leftmost' for redexes and reductions
were used as synonyme. In Afn the leftmost redex-3 may belong to two redexes,
e.g. in the term (Ax.axlb; in such a case Definition 4.5.1 says that the

RB-redex iz the leftmost redex.

DEFINITION.,

{i}) Let R € M be a B~ or n-redex such that R's head-A is the leftmost

redex=}. Then R is called a normal redex of M.



280

(ii} A normal reduction is a reduction in which only normal redexes are

contracted. Likewise for the leftmogst reduction.

Sc e.g., the term M = {Ax.ax)b has twe normal redexes, Ax.ax and M.
Note that there ils now no unigque normal reduction, though the difference
between two coinitial normal reductions is inessential. The leftmost reduc-
tion is unigue; it is that normal reduction having the most f-steps in it.
In Af there is only one standard reduction from a given term M to its
normal form, namely the leftmost (or: normal) reduction. This is no longer
true in the Afn-caleulus. There a h-standard reduction ending in a fn-normal

form may by-pass the normal redex{es}:

EXAMPLE 1. Let w 5 Ay.vy.

ﬁl = Xx.Iwx —;-—r A wx —EL-) Ax.xx.

ﬂz = Ax.Twx -7;+ Tuw 77 o

EXAMPLE_"E_-

Ri = Ax.w(Ix) —%—+ A, wx -?rw-w.

8 = hx.w(Ix) o> Ax,Ix(IX) — AX.X(IX) ——> Ax.%x.

2 B £ B

In all thrae cases, both ﬁl and ﬂz are X-standard while ﬂz is moreavexr
a leftmost reduction.

We will now proceed to the Normalizaticn thecrem for Afn-caleulus. As
observed in the preceding remark, the proof of I.11.2 does not carry aver
te Afn, since A-standard reductions may by-pass the normal redex(es) and
still reach a Bn-normal form.

We have tried to construct a proof as follows: consider an arbitrary
A-standard reduction to the fn-normal form, and try to amend this into a
nermal reduction - but this seemed too messy. Therefore we will follaw
ancther proof strategy, in which no use is made of the A-standardization
theoremnm.

Since the proof involves some technical lemmas and a lot of details,
we will begin by exhibiting the dependence of the elements of the proof
in the fellowing figure.
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7 5.8
AORMALIZATICV
// THEOREM . FOR

[~ ABT-CALCULUS
/ -~

/5.5 & 5.6 Infinite R-normal reduct%pns are
[~ closed under projections.f;f/
K >
5.6 //
¢ /5.5/;,’
] g L~
4.97 7 av
g £ o R
S A / L3 o
e -l
oo G T
te = = CI/
v R =V ™ 3
o (o "~
g r71 [ Py
@ gg /J' 1 ,'_| %’:
88U Plasdl ) : 5 85
B Uy ;;are closedjunder pro-—-I o uﬁ
228l [T section” // 5 88

o7

5.0. Preliminaries

Here the following terminology is used. If A and B are two classes of re-
ductions, B containing only finite reductions, we will say: A is closed

under B-projections iff for all &, R':
®ec A f ¢B, & and &' coinitial = &/ ¢ A,

E.g. if A is the class of complete B-developments, B the class of all
finite n-reductions, we will say for short: "complete B-developments are
closed under n-projections." When B is the class of all finite fn-reductions,

we will just say that "complete f-developments are closed under projections'.
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5.0. PRELIMINARIES

5.0.1. Let M be a \—term and R a set of B-redexes in M. Ag is wall-known,
all complete f-developments "relative to R "™ end in the came result (FD!) .
Tnstead of R we will employ a different but aquivalent terminclogy, see

also BARENDREGT g.a. [761 Ch.II; instead of the pair (M,R) we take M plus

an underlining of every X im M which iz the X of a redex in R ; example:
[iz.z((x.yra.a)z) Ip.

Such an enriched M will be written as (M,v); sometimes we will identify M
and (M,v) if it is clear what v ls meant. v can be seen as a set of B-redex-
A's in M,

Reduction relative to IR is now called underlined B-reduction, or B-reduc-

ticn:

(B, v} —> (MU' ,v"}.

B
NOQTATION. if v, v' are underlinings of M, guch that v 2 v', we write

(M,v)] 3 (M,v').

5.0.2. DEFINITION. By (FD), we can define a norm I (M;8)1 as the length

{i.e. number of steps) of the longest B-reduction f starting from (M,v).

Minimal underlining corresponding to a ¢omplete f-development R

A complete B-development f1 does not determine uniquely a corresponding
underlining, since we work in AK-calculus, But 8 = M — M' — ... does
determine unigquely a minimal underlining “min' corresponding to it; namely,
the set of all A's of B-redexes in M of which a residual is contracted in
|,

5.0.3. DEFINITION. Now we define for a complete f-development

R=M—> M —> ...:

sl = "(M'Umin)"'
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In the sequel we will need the following obvious facts:

5.0.4. PROPQSITION. _
(i) IFf (M, - (' ,v'), then Tim vl » 0y, uryll,
(11) If (M,v} 2 (M,v'}, then lu, vl = Dgg, vyl ]

5.0.5. Eﬂ—terms and their reductions. We borrow a method from BARENDREGT

e.a. [76] Ch.II: Introduce two formal symbols — and ~, to be placed under

the 4 of a B-redex resp. of an n-redex:
{Ax.A)B resp. Ax.Cx.

RESTRICTION: coincidence of -, ~ is not allowed, so (AX.Bx)B is not a well-—

A

formed term in our system.
The symbols -, ~ are introduced to formalize the usual concept of PBn-resi-
dual. Reduction for such Eﬂ—terms is defined as follgwe:

{1} only underlined redexes, i.e. {Ax.RA)B or Aix.Ax, may be contracted,

(2} all residuals (in the usual sense) of (Ax.A)B begin again with A simi-

larly for AX.Ax. Residuals of non-underlined terms are again non-under-

lipea,
EXAMPLE.
A
(Ax. (Ay.ay)x)B g (Av.Ay)B
A
" —5 (Ax.x)B

A
{(Ax. (Av.Ay)x)B —ﬁ—* {Ay.R¥)B

)
— (AX.AX)B

B
New it is a routine matter to verify that the construction of diagrams im-
mediately extends to the present case. (This is verified in BARENDREGT e,a.
A
[76] ch.1I, however without @-steps.) Here it is essential that = cannot oc-

cur. For cotherwise we are in trouble-
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g
(é;.{iy.By)x)C “i—é'(}f-EX)C

n|Ay

and now it is not clear whether ? should begim with A, 2, L. (Remark: it is
wpossible to find a remedy such that A is allowed while we retain the "weak
CR~-property" (i.e. CR for the elementary diagrams) and evenr (FD) - but at

the cost of scme complications.)
5.1. BROPOSITION. Complete f-develepments are closed under B-projections.

PROOF. Let R = Mg —> M, —* .. —> M be a complete B-development and

R c M, & B~redex. We must prove that ' = &/{f} is again a complete 2-devel-

opment,
My ] R M
ﬂ 1
BIR I {r}/&
|
" & = ®/{r} "n

Take the v . corresponding with & and label the A's « u . with 0.
min min
By the usual argument (tracing of labels in R-diagrams) we see that

every step in #' is also a lo-step; moreover all A in Mﬁ have digappeared

0
since Mn containsg no lo.

Hence #' is a complete B-development, namely of the set of R-redexes
in Mé with AO as head-i. []

5.2. PROPOSITION. Let, as in the abova proor, & = My —> M — ... = M

be a complete B—deveiopmenr, R c M. be a g-redex and &' = R/{R]l. Suppose

moreover that ’
(i) R is the leftmost R-redex, and
(i1} {r}i/f = @,

Then: (&I = &0,

PROOF. Let Umin be as above. Since R is the leftmost B-redex, it is clear
‘that

{R}/® = ¢ ¢=» the head-A of R is c v . .
min
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Hence the head-% of R is underlined. Hence we have
(M v, ) R (Mr,ut)
0" 'min" B o
and therefére by Prop. 5.04(1):

I®r = IR, 0

5.3. PROPOSITION. Let ® be a complete B-development and R' a cne-step n-pro-
jection of ®, Then:

{i) ®' js again a complete B-development, and

(i1} I®F = ldrh,

PROGE .
M & N
n|Ax,Ax D
Lt
M’ H1 ’i N!

Let (M,u} be the minimal underlining of M corresponding to fi. we dis—

tinguish 2 cases:

CASE 1. The head-% of Mx.Ax is in u.
Label all the A's in v with O, except the A of Jx.Ax (which is also a f-
redex-A); this A gets label 01. The remaining X's get label 2.

So every step in the reducticns {ix.Ax}, & is a contraction of a AO or
101. The same is therefore true in #', by Lemma 3,5,

Furthermore: every ceontracted A in fi' gan be traced back to a2 A in M',
which must have label 0. This follows from the preceding remark plus Lemma
3.5 and the fact that 1 does no longer cccur in labels in M7, '

(¥} Now it is easily checked that every 10 in M' is a B-redex-i, since

Ax.B% is active in the present case, (The critical case to check is:

...((loix.(l:y.B}x}Cl...

A n A

M' = ...((koy.ﬂ}c]... -
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Farther we note that ®' is a f-reduction, since # is so and B-steps
propagate as B-steps or f-steps.

Sc the situation is that some B-redex—i's in M' have label 0, the other
A's in M have label 2, and that in ' only B-steps occur with label con-
taining 0. Therefore R* is a P-development.

To see that &' is complete, note that there can only be fusion of AD
and &01 {not of 10 and hz, or AOI and 12) (*+) This follows from the proof
of Lemma 3.5: in a diagram, Au and lB can only fuse to RaUB if 'before' this
fusion we have a ha— and a lB—contraction in the diagram.

Furthermore, since & is complsate, only 12‘5 oecur in N. Hence, since
by (#%) the label 2 camnnot grow, only 12'9 ocowr in M'., Hence R' is a com-

plete B-reduction of all the R-redexes in M' starting with AO.

It remains to be shown that Il = &', Let us again consider two

cases: there is a second A ¢ v such that this A and the n-redex A X.Ax

are "too close together", or not. (The first A ¢ U is the head-A 2; 101x.Ax
itself.)
(a) M = ...(lgix.(loy.B}X}C...
M' = ...(loy.B)C...
{b) M= .. (g XARIC, . (A F ¥ -B)

M' = .., AC ...

Let U, v' be the set of AO, kOl in M resp. M'. Then for both cases

fa), (b} we hawve

(M,u) —— (M',u').

8

Hence by Prop.5.0.4(i):
(1) e, udl > Hemr,un) kb,

Maybe u' is not the minimal underlining U&in corresponding to &', but that

does not matter, since we have
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fM",u'] > (M 'Uulnin]'

hence by Prop.5.0.4{ii):

(2} emr oy lo= D, o, gl
min

Combining (1) and (2} we hawve

&y = & f,

This proves the proposition for case 1.

CASE 2. The head-A of Ax.Ax is not in U, Now the proof above breaks down at

at point (*}, see p.285.

Wie will use the method of Bn-terms. So let us underline in M the A's
in v as A, and the X of Ax.Ax as A. Result; a Bn-term M*. Extend the under-
lining to V. Result: a Bn-diagram D*.

Tt is clear that &' is a complete B-development, since every step inh
in it is a A-contraction (for this is so in ﬁ*, and )\-steps propagate as
A-steps or @-steps), and since no A oceours in N (becavse no A occurs in

N

Morecver, it iz readily seen that we are in one of the two following
cases (this is a similar &istintion of cases as above; but here it is more

essentiall :
*

(a) M = ... Ax.(Ay.B)x ..,
M'* T ... Ay.B ...
w
(b} M S ... Ax,Au ..,
(B 2 Ay.B; it is allowed that A = Ay.B)
m* s ... a ..
The difference between (a) and (b) is that in (a) one symkol ""is

® *
lost. Let (M,u} and {M',u') be M resp. M' , where ~ is erased.

Then in casge {a):

Ay
{1, 0) -*q§-+ {M',0"), due to g-conversicon.
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5o by the same argument as in case 1,
el » &l

In case {(b), we claim: 0 (M, 0}l = bem, 00 f.

Hence
Ui, o3l = Bemr ot 30, i.e. RE = 1&1,
min

Proof of the claim. The set of B-reductions of (M,v) is trivially seen to

be "isomorphic™" to that of (M',u'}. Namely, underline ix.Ax in M and re—
Flace all cccurrences of Ax.A'x in a gfreduction of {M,uv} by A'; result:

a B-reduction of (M',v'). And so cn.
This proves the proposition for casze 2, ]

Before stating Prop. 5.5 and combining Prop. 5.2, 5.3 into proposition

2.6 we need a definition.

5.4, DEFINITION. Let # = M_ —- M, —= ... be a finite or infinite Bn-ve-

o] 1
duction. & is called. f-normal if in every @f-step M —E§—+ Mo in §, ﬂn is

the leftmost B-redex in Mn'

5.4.1. REMARK. Obviously, if & is normal, then it is B-normal. The reason
to introduce this weaker property 'B-normal' is that B-normal reductions
are closed under projections (prop.5.5), while normal reductions are not,

as the following example shows:

(% = (Ay.yy) (Av.yy) ).

R M= Ax.0[ (aa.I)x]lx g - M

lalﬁ lalB laIB

2
. = . M = " PR
M Ax. RTx g g [4] 3

fl is normal, but &' not, since it should start with the contraction of

the n-redex M*.
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5.5. PROPOSITION. f-normal reductions are closed under projections.
PROQF. Consider the elementary diagram:

A leftmost B8
B

n or B

c D

One easily checks that C — D is an empty step, or again a leftmost R—con-
traction. (Since a B- or n—step cannot create B-redexes to 'its' left.)
From this it follows immediately that if ® is B-normal and &' is a

projection, then every f-step in H' is a leftmost f-contraction, i.e. &

ig B-normal, [}

5.6. PROPOSITION. One step projections of infinite f-normal reductions are

infinite,

FROOF. Let & be B-normal and infinite. We have to prove
(i) one step n-projections of & are infinite, and

{i1) one step B-projections of # are infinite.

{i) is Lemma 4.9 (we do not need 'B-normality’ here.)

Proof of (ii}. #, B-normal and infinite
N S Tn % Moo
& it f

8 0 1 %n N1 ﬁn+2
A

MI DI\:-d._l-n—l--——— —-g—-—-—-———-——-—&‘)
n

RI

Suppose (ii) does not hold: then let ®' be @ after say Mﬁ. By Prop.

5.1 and 5.3(i), the reducticns ﬂo, ﬂl, ﬁz"" are complete B-developments,
P4 & F =1& I = = ... > is >
By 5.2 and 5.3{(ii), we have A _ "ﬂn+2 where > is
every time that Mn —~ﬁ-Mn+1 is a B-step,

But since R is= infinite, it contains infinitely many B-steps. Contra-

diction. T[]
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5.7. COROLLARY. Infinite B-normal reductions are closed under projections.
PROCF. Immediate, by 5.5 and 5.6. [}

5.8. THEQREM (Normalization for ifn-calculus).

Normal reductions are normalizing.

PROOF. Let M have the fn-normal form N, and let ® be a reduction from M to

N.

it
M n s m
R
N,Bn—n. T, VI .

Suppose that ﬂn' A maximal normal reduction starting with M, is in-
finite. Then {since ﬂn ig also B-normal) by the previous Corollary, the
projection of ﬂn by & is still infinite. )

But since N is a Bn-normal form, this projection is empty. Contradic-
tion, hence ﬁn ig finite. Hence by definition of ﬂnr it ends in a fn-n.f.

which must be ¥ by CR. []

Now we come to the Quasi-normalization Theorem for ABN. First we need

a definition, analogous to Def, T.i1.4:

5.9. DEFINITION. Let R = MO T M, —> ... be & finite or infinite Bn-re-
duction and R ¢ M some redex in &,
R is called (i~} secured in & iff eventually there are no {A-} residuals

of R left, i.e. 3m ¥m' = n Mm containg no (A-) residuals of R.

The proof of thé Quasi-normalization theorem is a generalization of
that for A8 (I.11.6)}, but not entirely straightforward. Far, the analogue
of Lemma I.11.5 (with 'secured' replaced by 'A-secured") does not hold for

48n, as the following example shows.

5.10. EXAMPIE. Let D = Azxy. zezyx [See also Example 6.2.) Let
MO = R = lox.DDyx. ﬁqn is the reduction in which each time the leftmost B-
redex is contracted (so in AR, ﬁqn is the normal reduction); it is a quasi-

normal reduction in ABn.
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However, the normal n-redex R € MO is not A-secured in an, for ?LD
stays alive. Yet, our requirement for the proof of the Quasi-normalization
theorem is fulfilled: 3n {R}/n(ﬁqnj = f. (nﬂ denotes the initial segment of

length n of #; see Notation I,11.1)

kox DDy
MO = R = lox.DDyx
D B
ADX.(klx‘y'.DDy'x')yx (Xlx‘y'.DDy'x')y
Alx' g
] L] L] 1
lox.{lgy .Dhy'yix ; lzy Dby 'y
by 1 1
2 !
I
ROK.DDXY A kozx.Dny
D
&

gn

Therefore we have to make the following distinction betwesen two con-

cepts, which are identical in A8, but separaie in ABn. One is "R ¢ MO is

A-secured in ® = MO -—* ...". The cther is giwven by the
5.11. DEFINITION. The redex R £ MO is absorbed in & = MO — ... 1if
In {R}/nﬁ = B,

Mo R 8

Ml .

#1
a A /{Rr}
S p
n {r}/ G-

Note that in the example above the normal redex R, although not A-

secured in # _, is absorbed by ® . So we have in ARn:
oqn qn

R A-secured in # = R absorbed in 6.

*?‘

{Proof of =: immediately by the PM Lemma 3.7.)
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Now the analogue of Lemma T.11.5 becomes:

5.12. LEMMA. Let ﬂqn = MO — Ml — ... be a gquasi-normal reduction in }fn

and R MD a2 normal (B- or n.} redex. Then:
R iz absorbed in & .
Tl

PROOF. CASE 1. R is a B-redex. Let AO be the head-) of R.

During the reduction ﬁQﬁ' new n-redexes can be created whose A's are
< XO’ by erasure of "eobstructing variables", i.e. variable cccurrences
¥ € FV(A} in H T Ax.Ax, cobstructing H to be an n-redex. Note that it is im-
possible that new B-redexes are created whose i's are < AO'

in aqn there can only be finitely many steps in which such a newly
created n-redex is contracted, since there are only finitely many symbols
< 10 and contraction of an A-redex < R diminishes their number.

These n-steps may demolish the B-redex R, by erasure of the argument

©f R, essentially as in the following example:

-y
I
an = Xz.(lox.(hy.ljz)z {"obstructing variable"}
~ —
RYlB R
fniewly created n- AoElg OX.I)Z
redex-4 to the left
£ ) Azln
ot o
le.I

As goon ag this happens {(x}, we are through by the PM Lemma for A-
residuals {3.7}; for, taking the projection of {R} the PM Lemma savs that
this projection must consist of B-steps whose A's trace back to AO' But as
therae are no lo's in B- redex-position at moment (%), this projection must
be empty. I.e. R is absorbed in ﬂqn'

If this demclition of R does not happen, then after finitely many nor—
mal stepg Iin aqn it will be again R's turn to be a normal redex and to be

contracted in the next normal step.

CASE 2. R is an n-redex. A similar arqument as for case 1. [J
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5.13. COROLLARY (Quasi-normalization theorem for hfn}.

Quasi-normal reductions are normalizing.

PROOF, Analegous to the proof for A8. {1
6. COFINAL Bn-REDUCTIONS

"6.1. DEFINITION. Let ® be a finite or infinite fn-reduction. Then & is

called (A-)secured iff every redex in ® is (A-)secured (Def.5.9).
6.2. REMARK. # is A-secured = f1 is secured; but not conversely:

EXAMPLE. (1} Let D = izxy.zzyx and C = DD (see Example 5.10).

Then f o= x.Cyx hgw
AR, Cxy -g»
Ax.Cyx hg*

ig secured but not A-secured because the n-redex ix.Cyx is not A-secured in
R, Note the flip-flop effect: off-and-on the term appears and disappears as

n—redeax.

EXAMPLE, (ii} A more subtle example of a secured but not A-secured reduction
is given in 6.4; there the A-redex stays an n-redex, but looses again and

again its guality as residudl,

6.3. THEOREM. Let o be a reduction path in G{M), the reduction graph of M.
Thern:

¢ is A-sacured == o is cofinal.

PROOF. Analogous to the proof of Theorem I,12.3 for the B-case, now using

the Parallel Moves Lemma 3.7 for i-rasiduals. ]

Evean though the PM Lemma fails for ordinary residuals, one could hope
to prove the stronger thecrem "secured = oofinal" in a different way. But
also here residuals behave badly: we will now give an example of a secured
but nat cofinal reduction. It is similar to the counterexample 2.3.1 to the

PM lemma, but itervated by means of a fixed point construction.
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6.4. EXAMPLE of a secured but not cofinal reduction.

Let D = Axy.xx{iz.y(yz)}) and E = DD.
{4 = iab.ab {Church's numeral.)
Now consider the infinite R-reduction o

El = E()a.)b.ab)

S
.,
S

[iy.E( z.y({yz)}]{a.)Xb.ab) _AY
P .
-
~ _ .
£ :
E[Az. (Aa.Ab.ab) {{da. b.ab)z) ] rxghts a
]
Y
EfAz. {Aa.Ab.ab) {}b.zb) ] left BJ\a
7 - ’
/
. ! 1 Ab?
ELAz.Ab. (Ab".zb")b] ——

i
EfAz.Ab.zb] —-—B—-> --- etc.

The Intuition behind this example is the same as for the counterex—
ample to the PM lemma; only, here it is arranged so that we get an infinite
reduction (which is necessary if one wants a non-cofinal reduction; a
finite, maximal reduction is cofinal by CR.} The crucial step is B, de-
stroying the n-residual Ab.(ib'.zb'}b of Ab.ab. The -.-. trace shows that
o is not A-secured.

It is easily checked that o is secured. However, o is nof cofinal in
G(ef }. For, 1 = )a.ib.ab - *a.,a T I, and now consider Ef —H—+ EI. We
claim that no Bn-reduct of EI contains 1 as subterm. From this claim it

follows that o cannot be cofinal in G(E1), because | keeps occurring in o.

PROOF of the claim. The proof consists of an application of the standardi-

zatlicn theorem for Bn-reductions, and an amusing ad hoc arqument.

Abbreviations: (1) 2eB = Az.A(Bz)

(i1) B9 =g
1
glotl) o )ly_E(n){YW)I
(SoE—r*E(“ —+E(2] )
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{iii} IEO] = I
I[n+1] - I[n} . I[n1.

Wow suppose EI e ¢[4], for some context ¢f ]. By the Standardiza-

tion theorem, we may suppose that this reducticn is standard. Hence it

proceeds as follows:

(n)

where the latter reductien ———% does not affect (operate in} E

B ()

cause the whole reduction is standard; and because E

; be-
contains no 1 as

subterm f(as can easily be checked}, we can write

cr11 = e Mert.

ol 5 o131, (%)

gn

This is however impossible. To show this, we need first a

So we mast have I

DEFINITION. M is simple iff
YoM FV(N) has at most one element.

Now 1 = Jzx.zx is not simple, whereas for all m, I[m:I is simple.
Further it is a matter of routine to prove that the set of simple terms is
closed under Bn-reductions.

Hence (x) is impossible. This proves the claim. [

6.4.1. REMBRK. The use of the Standardizaticn theorem is not essential here;
it could be replaced by ‘Postponement of n-reductions' (Lemma 4.12.1) and

Standardization for AB.
5.5, KNUTH-GROSS-REDUCTIONS IN ABn—CALCULUS?

wWhile the definition of Knuth-Gross reduction in Af-calculus (in T.12)
is perfectly natural, it is no longer sc in Afn-caleulus. For consider the
following naive definition:

"Let #/ = MO — Ml-""+ . —rﬂ-Mn be a reduction such that

{i) in every step a residual (in the usual sense) of a R-or n-redex in MD

is contracted, and

tii) R is maximal with this property, i.e. Mn contains ne residual of a
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redex R 1n MO.

Then we say M —E——+ N, in words:

En
N is the Kmuth-Gross reduct of M.™

However, N is not uniguely determined now. Example:

ﬁj = Ax. (Ay.ay)x —%§—+ Ax,ax —é?w+ a
. Ay,
ﬁz = Ax. (Ay.ay)x —7:—+ Ax_ax,

Both &a.ﬁz are complete Bn-develcpments of the total set of redexes of
. (Ay.ay)x.

It is pessible, using Bn-terms (see 5.05), to define Knuth-Gross-re-
duetion for Afn-calculus with the required properties. But the definition
ig not entirely straightforwsrd; it is not immediately clear what, in that
treatment, the 'total set of redexes of MO‘ (= "total Bp-underlining of
My} is. This is worked out in BARENDREGT, BERGSTRA, KLOP, VOLXEN [76]

Chapter II.

Turning to A-residuals does not help here, since FD fails for them,
as shown in 2.4.1, {iv)}.

Therefore we will not consider Enuth-Gross-reducticns in ABn-calculus
here. We will however consider an alterpative concept, which might be just

as useful.

6.5.1. DEFINITICHN,

{i) M-ﬁz;-+ N iff N is the Knuth-Gross reduct (w.r.t. Ag) of M,
g
{ii) M-—?;—+ N iff N is the n-normal form of M.
n -
{iii) M — N iff 3L M —— I, — N.
Gﬂn GS !

FEMARK. In (ii), N is uniquely determined, hy CR for n-reductions.

Now we will prove the following theorem; before giving the proof an

immediate Corollary is mentioned,

€.5.2. THEOREM, Let ® be an Infinite Brn-reduction in which infinitely many
——— -1steps' occur and fnfinitely many »E;—e-—'steps'._

B Then & is cofinal. "
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. g =
6.5.2, CORCLLARY. (i) Let MO S 4—M1 5 M2 3

Then f is cofinal. Bn Bn Bn

(ii} Quasi-G

gn

steps occur, are cofinal.

reductions, i.e. reductions in which infinitely many G

Br

PROOF of theorem 6.5.2. Let ® be as in the theorem. Note that replacing an

initial segment of ® by an arbiltrary reduction, yvields a similar reduction.
(%)

et R © Mﬂ be a B- or n-redex. We claim that R is absorbed in R (see
def. 5.11, or the figure.}

M R
B v
]
mle 8a 8
g
| S
Mn+k 22

DR & - . Let M ——* = M = . —

ChSE 1. R is a f-redex e h G Mn+k Mn g Mn+1 B 5 Mn+k
be the first GB—’step‘ in ®. Then Rl = {R}/MO T .. R M is a complete
B-development, by Propositions 5.1 and 5.3.(i); and it is a well-known fact

, L.e. that

& . 1 L] ———
that therefore iz 'abscrbed' by Mn GB-+ Mn+k

1
L7 —_— = #.
1M e Mk~ P
{For a pé%of of this fact see BARENDREGT, BERGSTRA, KLOP, VOLKEN [761],

Chapter II.)

CASE 2. R is an n-redex. Replace f by n in the figure above, Now ﬂ2 = @
hecause Mn+k is an n-normal form by definition of —7;;+ .

This proves the c¢laim.

The remainder of the proof follcws.from {#) and is similar to the
-proof of Theorem I.12.3.

O
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LIST OF NOTATICHS

The list of netations is divided in

(1) Abbreviations

(2) Notations CORGEAIING - Tefims

{2.1}
(2.2}

(2.3}
(2.4)

(2.5

(2.6}
(2.7}
(2.8}
(2.9}

{(2.10)

Variables and mefavariables
Conatants

Frequently occurnrning constfants
Simbols

Tekins

Frequently ocowring ferms
Contexts

Subfeims

Redexes

Labels

Trees

"Nesuns !

(3} Notatlions concerning redudtions

(3.1}

{3.2)

Reductions
Reduction arrows
Reduction aystems
nelated £o % and CL
related fo CRS's

(1)} Abbreviations

ARS
CL
cp, Cp!
CR

+
CR

CRS
bL, DL',
‘DP
DR

Abstract Reduction Systems
Combinatory Loglc

Cofinality property

Church-Rosser property (or Theorem]

strong version of CR

Combinatory Reduction Systems

oL" Decreasing labels {and versions}

Disjointness property

Decreasing redexes

44

11

51

45,150
63,68,163,225,
251

120

177

38

180



FB
FD
f.p.
Inc

Ind

n.t.

PM

PP
a,B

SN

HWCR
+

WCR
1

WCR

=1
WCR

=1
WCR
WCR
n,n
WIN
W

W

Finitely branching

(Theorem of}) Finite Developments
finitely presented

Increasing

Inductive

Non-erasing

Mormsl Form property

Sat of normal forms

normal form

{Lemma of} Parallel Moves
Postponement of B-steps after o—steps
Recursive Program Schemes

Strong Normalization

Term Rewriting System

Unicity of Normal forms

Weak Church-Rosser property

strong version of WCR

restricted wvariant of WCR
restricted wvariant of WCR
Subcomutative

restricted variant of WCR
Well-foundedness property
Weak Innermost Normalization
weak Normalization

Weak Normalization w.r.t. ||

(2y Notations conceAning Letms

(2.1)

Variables and melavarinbles

V, ;RDrCr. s r Ry ¥ .8 variables
1 -

var

set of wvariables

A,B,C, ... M N, uusy {informal) metavariables, ranging

X,Y,%
z
1

Mvar
[x]
Fv{M)

over set of terms

formal metavariables

gset of metavariables

abstraction of variable x

set of occurrences of free variables of

M

305

52
36,32,37,38,144
165

52

52

164,170

47

6

6,46
69,163,254,262
45

11

6,46
121,131,133
46

45

142

169

169

a5

a7

52

172

6,46

178

1,121

121
121
121

164
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[x := K]
H,H',Hl,...

2.2y Consfants
A,B,C,D,...;P,Pi,

0,8,

substitution of N for x

vary over meta-terms

constants

Frequently cccwviing constants:

R TR T
i S
[

— N'la

[
-
7]

L T

ﬂher'Us
0,8,,0,)

E

if .. then ,.
B

BrB(”r”!h)

k*

(2.3) Symbols
s €M

Symb (M)

s,t

§ —.—.r &

s <t

r 1

constants in definable extensions of A
basic combinators in CL

pairing constant

pairing operation

constants in CRS's

recursor

iterator

ZErD, SUCCessor

Church's d-rules

used for non-laft-linear rules
versions of non-left-linear constants
{Surjective} Pairing

inert ceonstant

else ,.branching operation

Bar recursion operator
branching operation

head-A of frozen redex
head-constant of frozen redex
H with marked head-constant

marker denoting f£rozen redex

" symbol s occurs in term M

set of symbols occurring in M
vary over symbol occurrences
descendant relation for symbols
s is to the left of &

abstraction brackets

123

4,10

12

79
T1,79,151
121

126

130

126,130
131,132

197

197
127,130,195
igs
131,197,210,248
172

209,248

84

151

151

264

3
18

19

19
88,113,264
121



[2.4) Tetms
Ter (i) ,Fer (AT}
Ter (L}

Miter (I)

Frequently oceuwiing

EWH:JEHMid

<M
<M, N>

(2.5) Condfexis
el ]
elm]

")

Clranay J
ch[ pener ]

t2.6) Subterms
M = M

Hc H

= 2 =T E &
1
=

set of A-terms, AI-terms
set of I~terms

set of meta-terms of T
MN,,.N {n times N)

-
M Nm {for ¥ = N

l;"
[x,8]

term M plus labeling I

M has an infinite reduction

M is CR

Loams

Curry's fixed point combinator

Turing's fixed point combinator
AX .. XX

W

Ay, x

hwy.x

Ay.M {ydFV (M)

AX.¥M (xdFV (M)

Ax XM (XdFV (MN) )

context having one 'hole’ ﬁ

result of substituting M in O
trivial context

n-ary context {i.e, having n holes}

the head—context of a term

"M is a3 subterm of N

H is a submetaterm of H'
Mis a proper subterm of N
(i.e. Mc N & M Z N}
syntactical equality

M occurs at place ¢ in W

M e Sub[,I(N}

M is a left subterm of N

M iz an exterior subterm of N

121
123
106

151
18

10&
233

= B = & T = L B o L BN B |

200

3

3

2
213,240
213

182
213

128
176
182
186

307
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Mo N

Hl = H2

Sub (M)
Sub[’ij]
Sl —-.=.r 8

S1 < SZ

2

M e GB(N)

(2.7) Redexes
R!R'lRl;.-.pS
R
—
Arg (R}
R, IR (M
1me (/)
1me , (6)

B
p (H)

R-.-.>R'

R""""""‘"‘)'R'

(2.8) Labels
MI
<BlreeesB

RI

A

#
(1)

o ® H

A (gem)
a

Ind (f)

(2,9} Thees
(M)

'T(M)! " (M)

M is an interior subterm of W
H1 interferes with H2
set of subterm ocourrences i M

set of memerized subterms of M
descendant relation for subterms

the headsymbol of S, is to the left of

1

that of 82

M is a subterm of a fB-reduct of B

redexes

contraction of redex R

argument of redex R

set of redex occurrences {in M)
leftmost contracted redex in R
leftmost contracted P-redex in #

.r-redex, if r = H + H' and p is some

valuation
descendant relation for redexes
{(R'" is a residual of R}

R' is created by the contraction of R

term M plus labeling I
multiset of ordinals
labeled reduction.MI F e
well-ordering of multisets
ordinal labeling

concatenation of all labels in T

" {degres of redex p(HI)}

E in which every subterm has label ©
labeled X in Bn-diagram

union of lakels of A's contracted in R

term formation tree of M
alternative term formation trees of M
(not to be confused with the T~(or T'-}

translation of M)

186
130
18
176
18
113

213

4, 252

59
66,

179

85, 265

278
126

180

iao0

i@
63
99
178
180
183

183
257
260

78
123,

184



BT (M)

(2.10} 'Nomms'

BOhm Tree of M

= P
ﬂ// \\ﬁ

I.MT weight of M £ Ter (E w,
ordinal assigned to M
length of M
Il multiset assigned to M
L) length of M
IR total number of symbols in &
it total number of symbols in T
fMIU max. length of P-chains in M
Mol . P-norm of M
d(H) depth of K
&l

(3} Notfations concerning reductions
{3.1) Reductions

# reduction (i.e. finite or infinite

sagquence of reduction steps)

[t} empty reduction

) reduction diagram

U(G’fl A0 reduction diagram determined by
tﬁl "RZ

ot 1 # 612 concatenation of (appropriate) reduc—
tions

RL/EFEZ projection of -ﬂl by \ﬂz

{r} reduction consisting of the contraction
" of redex R

Gs'ﬁst standard reduction for &

o (8 &/{1loc (@) }

Rl t:L &12 aﬂl,Rz are Lévy-eguivalent

G?.l ~ 32 Rl r'ﬂz have the same first and last term

ﬂl £ 622 Rl ,{th are permutation eguivalent

~ar" s "R M other equivalences between reductions

RED (M) set of finite reductions starting

with M

216

34

177
203
178
179
203
203
233
233
238
282

61
58
63

69

69

85, 265
85, 265
89

93

93
93,94
92
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T [AAAAAA)
K{m)
n(ﬁ)
{§2)
Tl

Red (I}
xr
A
x
.1

-1
r
Gea)
G{3 (M}
Gz (M)

GE{M)

Reduction ariows

———
a3

[
i
g

"B
——n
_= .
R
—_—

—_—
CL
Mﬂ+ ’

ey
T T
T{M}, ©'{M)

'meta~reduction' of reductions
{6 /R e /Y

I
labeled reduction M = ..

conversion

n-th term in &

initial segment (of length n} of &

- ()
n

set of reduction rules of I

reduction rule

labeled wersicns of r

mderlined wversion of ¢

r plus memory

converse of r
reduction graph of a
B~reduction graph of M
L-reduction graph of M

condensed B-reduction graph of M

g—reduction

syntactical egquality

f-reduction

R-convertibility

transitive reflexive closre of —
reflexive closure of ——
contraction of redex R

reduetion in CI,

translation from A to CL

T-, T'-translation of M)
descendant relation
labeled B-reduction
underlined R-reduction

Hyland-Wadsworth labeled B-reduction

L&vy-labeled B-reduction

n-ary B-reduction ('fast' B~reduction}

- T=, T'-normal form of M {i.e.

93, 190
107

99
102,203,232
113

113

113

120

126

138

139

154

203
50,115
115
162
213

19,139,180
19
23
24

28
37
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o———

Z.m.+

-
KG

i.m.

M+N

—_————
der

E—
shift

-

Gﬂn

converse of ~*:;~+

in a diagram: existential meaning
empty step in'a diagram
k-reduction ('forgetful' reduction)
k-normal form of M

shift reduction

meta-reduction

leftmost reduction
Knuth-Gross reduction

creation of redexes

innermost reduction
M,N have a common reduct

head reduction

derivation
raeductions in CLO
n-reduction

fn-reduction
propagation of reduction steps in a
diagram

¥nuth-Gross reductions in ARn

(3.2) Reduction systems

A, B
AcB

nelated £o » and CL

A, AB
AT
AP
CL
A
Ae AB

abstract Reduction Systems

A is a substructure of B

A- {or AB-} calculus

" AI-calculus

definable extension of A
Combinatory Logic
indexed (or labeled} A-calcoulus
underlined A-calculus
underlined AP-calculus
Hyland-Wadsworth A-calculus
Lévy's l-caloulus

typed ji-calculus

restricted lL

44

45

61

79,153
79,176
79,152,154
93,190
113,204

117

180
180

198

213
213

241,242
249

249
257

296

44
50

0
11
18
23
23
24
27
27
29
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Mg
cLt -
Lo

An, Afn
A8

related £o crs's

TP

ém L]

Lo S o SN s B e B o}
Fhbn 3= = ke
@ In
e S |
B3 b

fast AB-calculus

underlined version of RSm
definable extension of AT
A-calculus plus pairing
AI-calculus plus pairing

typed CL

CL plus black boxes

An- (or ABn-) caleculus

double underlined wersion of ARm

I has the property P

(P is true in k)

underlined version of L

&L plus underlining and weights
Combinatory Reduction System
El is a substructure of 22

direct sum of CRS's I %

1772

labeled version of I

I where substitution is 'frozen'
version of I iIn function notation
Ef plus fast B-reduction

I plus memory

variant of E[']

Gadel's T

non-left-linear CRS's

binary versions of &i (i = k,=,h)

37
38
72
79
81
172
241
250
283

25

32,139
33
120
121
134
138
142
240
142
151
175
179
233

239



tbsorbed 291

absorption 251

Abstract Reduction System (ARS) 44
abstraction (A-} 1
abstractor 23

adequate labeling 99
alphabet of CRS 121
g-conversion 3

ancestor 19, 139

anti standard pair 96, 190
g-reduction 3

application 1, 121
argument 5

arity 10, 120, 121
associate 160

agsocliation to the left 1

Bar recursion operator 172
bar recursive terms 172
BA—reduction 19
BHW—reduction 24
BL—reduction 28

B-normal 288

branching operation 197, 209, 246
f-redex 3

B-reduction 3

black beox 240

BShm tree 216

bound 2

boundled predicate P (for XL) 29

Church-Rossey property 45

Church-Rosser Theorem 57, 68, 150,
163, 224, 225, 251

' Church-Rosser, weakly (WCR} 45

INDEX
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closed
diagram 164
meta-term 123
rule 166
term 2
under projections 168, 281
under reduction, substitution 224
cofinal 51, 293
cofinality property (CP} 51
colncidence 251
color degree 39
coloxrs 39
Combinatorial Completeness {CC)
7, 16, 247
combinators 11
Combinatory Logic {CL) 11
Combinatory Reduction Systems {CRS)
ii9, 120, 121
comnutes 45
commutes weakly 44
complete development [(c. dev.)
66, 140, 252
concatenation 69
condensed reduction graph 213, 215
contflnent 46
conservative extension 50, 220
consistent 50
constants 1, 126
construction of reduction diagrams 58
context 2
contracted in & 84
contraction 4
contractum 4

centraction scheme 126, 131, 132
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convertibility 4 extension 50
conversion 102, 203 external label 186
{a-) 3 external subterm 1B&

creation of redexes 25, 140
Fast development 38

Finite Developments 30, 37, 39, 163, 256
finitely branching (FB) 52

creator redex 188, 191

Curry's fixed point combinator (¥) 7

D-chain 233 finitely presented (f.p.} 165
decreasing labeling (DL) 177 fixed points 7
decreasing redex labeling (DR} 180 fixed point combinator

definable extensicons ¢ Curry's 7
definable extension of AT 72 Turing's 7
definition by cases 130 with parameters 8
degree 180, 185 Fixed Point Theorem 7, 224
of EHW—redex 24 multiple 9
of ﬂL—redex 28 flat combinator 12
d-rules of Church 131, 132 forgetful reduction rule 153
depth 238 formation tree 78
derived terms 213 t{M) 78
descendant 19, 139 TiM) 123
developments T (M) 184
complete 66 free wvariables 2
fast 37 frozen 81, 152
Finite 30, 37, 39, 163, 256 function notation 122, 240
in CRS 140 function part 5
in A, aP Fy{M} 2
diminishing 239 "EE(M} 164

direct sum ¢ 134
P-norm 233
P-preredex 233

Godel's T 75, 179

goed 34

graph, reduction - 50
Elementary diagram (e.d.} 59

empty step 59 ' Head normal form (h.n.f.) 213
head reduction 16, 213

height of Lévy-ilabel 29

equivalence of reductions 82, 23

erasing step 107

erasure 72. 251 Hindley-Rosen Lerma 47
r

1.
‘expansion 274 homomorphisms from A 29



Increasing {Inc) 52
index{ing) 13

induced concept of descendant 22
inductive {Ind) 52

inert 10

infinite term 107

initiel labeling 15, 138
innermost redex 76
inside-out reduction 88
interdefinabilities 200
interference 129, 130
internal label 186
internal labeling 140, 141
internal subterm 186
Iterator {(J} 130, 179

k~expansion 153
k-normal form 79
Knuth-Gross reduction 117, 295

k-reduction 79

lebeling 18

adeguate 99

initial 138

strengly adequate 108
labeled B-reduction 18
labeled CRS 137
labels 18

Hyland-Wadsworth (HW) 24

Lévy- 27, 182

multiple 24
left-linear 119, 126
leftmost redex 16, 113 °
left-normal 189
Lévy—equivalent B89
leftmost contracted redex

(Ime} 85, 265
Lévy'a'lncalculusQ(ﬁL) 27

L-labeled CRS 183
lmc(®) 85, 265

A—abstraction 1

Af{a)-reductions 131, 132, 133, 136

A-{or AB-)} calculus &
A={or AB-} calculus 23
AXI-calculus 215
AI-terms 1

lL-calculus 27

A-path 257, 258
AP-calculus 10

‘AP-calculus 23

A-residnpalgs 254
A-gecured 290
A-standard 264

1T—calculus 27

Marker = 84

memory part 151
meta-metavariables 123
meta-reduction 96, 190
meta-terms 123

metavariables 12, 120
miltiple fixed point theorem 92
maltiplicity 33

maltiset 63

Nederpelt's Lemma 47
Newman's Lemma 47
noetherian 46
non—ambiquous 119, 130
non-erasing 164, 170

normal form (n.f.) &

normal form property {NF) 220, 228

normal redex 113, 279

normal reduction 113, 280

Normalization Theorem 114, 194, 280

normalizing

315




316

weakly 6, 46 reduction
strongly 6, 46 o- 3
- 3
Pairing 130 . - 23
Surjectiwe 127, 133, 185
BA— 19
Parallel Moves Lemma (PM) 69, 163 8 - 24
for ABn 254, 262 W
BL - 28

tatis j .
permatation equivalence 96 equivalence of 89

eventually leftmost 113
Postponement of B after u(PPu,BJ 45 head 16

Pi—redexes 10

P- £
normal form 78 inside—out 58

Postponement of n-reductions 278 ke 79

projection &2
Proof Theory 127, 133

Enuth-Gross 117
labeled B- 18

propagation 61, 257 leftmost 16

proper indexing 182 imal 143
proper rule 2] novmal 113
Quasi-Knuth-Gross reduction 118 quasi-normal 113

quasi-normal reduction 113 secured 115

Quasi-normalization Theorem (AR} special 108

2973 standard 84
reduction by cases 224, 225

Recursive Program Schemes (RPS) reduction diagram 58

11, 133 veduction graph 50
recursor (R} 75, 122, 126, 133 reduction relation 126
redex reduction rule 120, 126

B- 3 regular 129, 131, 133,

contracted in & 84 replacement system 44

creation of 25 ) residuals 19, 139

frozen 91 for 2Bn 252

head 213 A- 254

I-, K-, S- 12

leftmost 113 Safe B-redex 4

normal 113 safe

P.- 10 redex 14

s;fe 14 reduction 14
secured

secured 114



redex 114, 290
reduction 115, 290
shift normal form 154
shift rule 152
simultanecus substitution 3
singleton redex 182
special 203
special reduction 108
standard reduction 84, 190, 264

standardization diagram 35
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trivial e.d. 62

trivial step 59

Turing's fixed point conbinator (YT)
7

typed A-calculus 27

tracing subterms 18, 257

Underlined reduction system 32
Underlining 22
reduced 23

Standardization Thecrem 87, 90, 101,UniCity of normal forms {UN) 46,

103, 193, 276
strongly normalizing (SH) 6
subcommtative (WCRili 45
Sub (M} 18
Sub['](M} 176
submetaterm 182
substitution operator 2
substructure 50
subterm 3
subword 34
Surjective Pairing (SP) 127, 133,
195
syntactical accident 92

syntactical egquality 4

Term formation tree t{M) 78
T{M) 123
T'(M) 184

231, 220

Variables 1
Valuation 125

Weak Innermost Normalization
(WIn} 172
weakly Church-Rosser (WCR} 45

‘weakly normalizing (WN) &

weakly normalizing w.r.t. []
{WNTF] 177
weight 33

Term Rewriting Systems (TRS) 121, 131,

133
"too close together"™ 253
tracing in diagrams 258
tracing subterms 18, 257
transfinite induction 62
tran%lation T, T" i3
tree 78, 184, 123, 216

trivial context 3
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SBEMENVATTTNG

In de volgende bladzi-iden wil ik proberen de achtergrond en de inhoud wvan
dit proefschrift te schetsen; daarbij richt ik me vooral tot degenen die
niet bekend zijn met het onderwerp, {(Een nauwkeuriger beeld wordt gegeven
in de 'Introduction and Sumpary',)

Er zijn ruwweg twee ingangesn tot het onderwerp, de eerste wvan filoso-
fische aard ('Grondslagen van de Wiskunde'] en de tweede van praktisch-toe-
gepaste aard {('Computer Science').

Laten we beginnen met het grondslagen-aspect. Zoals bekend, kan de he—
le wiskunde (in zekere zin) beschreven worden d.m.v. de Verzamelingentheo—
rie (bijvoorbeeld het systeem ZF van Zermelo en Fraenkel), onder het motko
'alles 1s een verzameling'. Een concurrerende visie {qua aantal aanhangers
veruit in de minderheid) propageert als fundamenteel begrip mniet 'verzame-
ling', maar 'functie', Hen voorbeeld: de functie f: N -+ W met flx) =
= (x2+l)x wordt gencteexrd als Ax. (22+1)x, waarmee dus
£(3}) = (O, (x2+1)x}3 = (32+1]3 {het argument 3 wordt voor alle x-en gesub-
stitueerd), In de "pure" i-calculus komen in eerste instantie geen natuur—
1ijke getallen of cperaties als 'kwadraat' voor; de enige objecten in kwes-
tie zijn de functies zelf, en de enige wvperatie is applicatie wan een func-
tie f op zijn argument x; rasultaat fX. Daarbii zijn we zeer liberaal: het
domein van zo'n functie is 'alles' en zelf-applicatie wordt dus niet ge=
schuwd, 20 is er bijv. een functie F = lxy.yxz die zijn twee argumenten om-
keert: Fab = {Axy.yx)ab = ba. Merk cp dat we zuinig zijn met haakjes en
niet Fla,b) schrijven; n-aire functies worden namelijk teruggebracht tot
unalre functies, via een simpele identificatie. (Bijv. de binaire functie
+ = AK, ¥, X+¥ ¢ (WNXK) > N kan geidentificeerd worden met de unaire
functie £ = Jx. (Ay.xty), afgekort tot Axy.xty, d.w.z. de functie
fe M + (N+W) met £(x) = dAy.x+y ¢ W + IN, Hierbij staat A - B voor de
verzameling functies van A naar B.)

Een ander voorbeeld is de functie D = )x.xx die zijn argument verdub-
belt: Pa = {(Aix.xx)a = aa, Dit leidt tot een merkwaardig object, namelijk
DD; bij 'uitrekenen® komen we in een cykel: DD = {ix.xx)D = DD. Natuurlijk
hebben we ook de ‘gewona' compositie C wvan functies £, g; in plaats wvan
fog schrijven we Cfg. In feite is dus © = Axyz. x{yz}; want dan inderdaad
Cigx (= (feglx) = £{gx).

Een van de opmerkelijkste feiten bij dit rekenen met fl-termen' is dat
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elke functie F een vast punt p heeft, dus Fp = p., Namelijk, neem bij gegeven
F senvoudig p = D(FeD). Dan immers p = D(FeD) = (F<D) (FeD) = F(D{FeD)} = Fp:
Deze zo eenvoudig af te leiden Fixed Point stelling in de A-calculus hangt
samen met G3del's Onvolledigheidsstelling en met een Fundamentele stelling
in de Recursietheorie.

Bij de gencemde voorbeelden is het duidelijk dat er een zekere asym-—
metrie zit in de gelijkheid (=); er is sprake wan uitrekenen, reduceren ge-—
naamd. Bijvoorbeeld, Da wordt gereduceerd tot aa; notatie: Da -+ aa. Meestal
bavat een A-term M verschillende onderdelen die gereduceerd kunnen worden
(zoals bijvoorbeeld ook de berekening van (3+2}.(5+7) op verschillende ma-
nieren begonnen kan worden) en we kumnen de term M dus op verschillende ma-
nieren uitrekenen, A priori is het mogelijk dat er dan cok verschillende
*uitkomsten' gevenden worden, waarbij een 'uitkomst' {officieel: normaal-
vorm) een term iz die niet verder gereduceerd kan worden. Dat zou, intui-
tief gesproken, niet in de haak zijn, Gelukkig zegt een fundamentele stel-
ling (van Church en Rosser} dat wanneer een term M op twee manieren een
aantal stappen gereduceerd wordt, zZeg tot A en B, er verdere reducties zijn
die tot een gemeenschappelijk reduct C van A, B leiden:

M

[
En deze stelling garandeert (na nog een kort argument} de uniciteit wvan de

uitkomsat, als die er tenminste is, {Bijv. de berekening wvan DD leidt niet
tot een uitkomst: DD +~ DD =+ ...}

Het probleem bij het bewijzen van deze Church-Rosser eigenschap is als
volgt. Als elk tweetal reductiestappen#//\&aangevuld zou kunnen worden tot

een 'tegel' ; zou et niet moeilijk zijn het gemeenschappeliik

reduct C te vinden; in bovenstaande figuur door 12 tegels te leggen. Helaas

zijn de tegels meestal van de vorm <:::> of <::>3 , bijvoorbeeld;

en dan kan het plaveien om C te vinden gemakkelijk uit de hand lopen:

™
i F
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Deze 'Church-Rosser' problematiek, en het al of niet eindigen ('norma-
liseren') wan reducties, hangen nauw met elkaar samen en vormen het centra-
le thema van dit proefschrift.

De A-calculus werd in de dertiger Jjaren ontwikkeld. Er is een verwant
systeen, génaamd Combinatorische TLogica (in 1924 ontdekt), dat even sterk
is als de A-calculus; de twee systemen ziin in zekere zin vertalingen wvan
@lkaar, Alles wat A-calculus kan, voor de Grondslagen van de Wiskunde, kan
CL ock. Bovendien heeft CL het voordeel dat er geen gebonden variabelen
zijn (zoals de x in Ax.xx); filosofisch prettig want het is problematisch
wat gebonden variabelen eigenlijk 'betekenen’, In CL zijn er drie basis

combinatoren [, K, S met als regels voor reductie:

Ix ~ x
Kxy -+ x
Sxyz ~» (xz) {yz).

Dus | is de Identicke 'functie', K is de functie die Konstante functies
'maakt' {immers Kx is een functie met ¥ P x voor all vy}, en 8§ doet iets dat
in feite op hetzelfde blijkt neer te komen als Substitutie in de i-calculus.
Substitutie in A-calculus wordt a.h.w. geélimineerd ten gqunste van conca-
tenatie (simpelweg achter elkaar zetten} in €L, en het laatste is natuarlijk
een eenvoudiger operatie.

Een voorbeeld. De 'combinator® 811 doet hetzelfde als de verdubbelaar

D boven:

SITx + (Ix)(Tx) > =(Ix} - =x.

' CL heeft ook weer ziin nadelen: de beschrijving door een A-term van een
'rekenproces' is veel directer; de corresponderende combinator is veel in-
gewikkelder. Een voorbeeld van een typisch verschil in syntactisch gedrag:
het is niet moeilijk A-termen M te vinden zodat M met al ziin 'reducten'
precies een reductie-"loop' wvormb: M
(DDii)was al ze'n loop.)

In CT, daarentegen genersert de aan—
wezigheid van sen cyclische reductie er meteen oneindig veel in de reductie-
graph, (Dit is goed te zien bij de Cl—vertaling (SI7) (STI) van DD.)

We zouden kunnen zeggen dat CL en A-calculus een analyse geven van

rekenprocessen., Een CL— of A-term is eigenliik een 'programma', maar dan
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é&n in pure wvorm, ontdaan van alle 'syntactic sugar' waaronder de essentie
van echte programma's soms schuil gaat., De hd-caleulus (of CL) is te zien
als een 'ocer-programmeertaal', waarin veel van de essentig8le aspecten wan
echte programmeertalen in pure vorm bestudeerd kunnen worden. (Ze bezien is
zelf-applicatie {FF) niet vreemd: een pregramma kan zichzelf als input heb-
ben.} Reductie-stappen 2ijn atomaire kberekeningen, zoals in Turing machines
“het opschuiven van de band, het veranderen van inwendige toestand, het druk-
ken van een symbool, etc., de atomaire handelingen zijn. {Alles wat een
Turing machine kan, kan CL of A-calculus ook.)

Hiermee zijn we terecht gekomen wan het Grondslagenaspect op dat wvan
de Computer Science, Het reductiesysteem CL is een wvoorbeeld van sen Term
Reductie Systeem (TRS}, TRS'en komen al in elementaire wiskunde voor, bij-

voorbeeld

®x+0 =+ x
x+{y+l) - (x+y)+1l
x,0 » 0

X {y+l) = x oy,

de definitie 'wvergelijkingen' wvoor + en . , vormen een TRS. Gegeven de term
{2+3).(5+7) dan kan deze, op verschillende manieren, m.b.v, de reductie-
regels uitgerekend worden. Cok hier dus de 'Church-Rosser problematiek' en
de vraag of de berekening eindigt. Voor deze TRS zijn die vragen niet zo
moeilijk positief te heantwoorden; de regels vertonen de prettige omstan-
digheid (net als die woor CL boven), dat de variabelen x,y,z aan de linker-
kant wan de regels paarsgewiis werschillend zijn {rechts niet). Zulke TRS-en
heten lineair. Een simpel voorbeeld van een niet-~lineaire TRS krijgen we door
aan bovenstaande regels de volgende reductie-regel voor de inverse toe te
voegen:

st (-x) > 0.

Het dubbel wvoorkomen van de ¥ aan de linkKerkant is lastig om de volgende

reden, Stel x > x', en beschouw de 'divergente' bereken-ctappen

x + (%} — 0

|

x4 {=x])
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dan moeten we om een gemeenschappelijk redust fe vinden eerst de verstoring

van de a.h.w. in evenwicht verkerende term x+{—x) Compenseran:

X+ (—~3) + 0

}

X'+ {=x) » x"+{-x") > 0O

Het hoofdresultaat van dit proefschrift is nu, dat door die non-lineariteit
van reductie-regels de Church-Rosser eigenschap (CR) beslissend verstoord
wordt, als het reductie-systeem in kwestie tenminste 'sterk genoeqg’ is. Voor
de eenvoudige niet-lineaire TRS I wvan bowven geldt CR nog wel. Maar als we
een 'mixture' zouden bekijken wvan A-calculus plus I {met termen zoals

Az, ((xy.=+(-y)+2)), dan geldt CR niet langer!

Overigens: het falen van CR impliceert nog niet dat een term dan tot
verschillende uitkomsten gereduceerd kan worden. Inderdaad blijkt in de on-
derzochte systemen dat daar de unicifeit van normaalvormen blijft gelden,
ook al geldt CR niet.

Zulke non-linealre systemen komen in verschillende gebieden tevoor-
sc¢hijn; behalve in 'pure' A-calculus en als TRS-en die samenhangen met al-
gebralsche structuren (zoals het voorheeld boven), ook in de EBewlistheorie

en in de Theoretische Informatica, bi3j een stel regels als:

{if true then x else y) —+ x

(if falgse then % else v) + v

(if =z then x else x) + X (%)

waar het venijn van de niet-lineariteit in regel (%) =zit.

Uit bovenstaande zal het duidelijk ziin dat al deze problemen een
'syntactisch karakter' hebben., Dit proefschrift beperkt zich tot die kant
van de zaak; semantische aspecten {'wat betekent een A-term? Is er een model

voor de A-calculus?') komen hier niet aan bod.
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