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O. A FEW WORDS ON HISTORY

Some historical lines...

Foundations of Logic and Mathematics

1900

Theory of Types

1920

Lampda Calculus, Combinatory Logic

-

Typed Lambda Calculi

SRSs

1930

Turing Machines

/ 1940

Formalisation of Computability:
Recursive Functions, Recursion Theory

/

Algebraic Specifications,
Abstract Data Types

/

Term Rewriting Systems (TRSs) | 1970

Functional Programming

Type Theory,

Theorem Provers,

Proof Assistants

(Automath, Coq,...)
1960-1980

Formalization and Verifi-
cation of Mathematics

2000

1960-1980

[

Higher-order TRSs
1978

Infinite Objects

Communicating Processes,
Process Algebra, CCS, CSP,
ACP, m-calculus, Bigraphs

Coalgebraic Techniques,
Data & Codata,
Recursion & Corecursion

1980

Infinitary TRSs, infinitary Lambda Calculus

1990

Infinite Sequences, Productivity of Streams

1995-2005




Some streets we
want to walk

Higher-order
Rewrite Systems

(CRS, HRS)
Combinatory
Logic (CL)
Typed I
Lambda I Lambda
. Calculus
Calculi

Streams

Orthogonal TRSs

Term Rewriting
Systems (TRS)

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)

Term Graph
Rewriting (TG



capita that we would like to = ]
d ZS CUSS Decreasing Diagrams

SRS, TRS:
WP, CPC, Modularity

termination:
(RPO) ILPO

orthogonal rewriting:
PML, CR, strategies

l

infinitary rewriting:
infinitary lambda calculus

infinitary rewriting:
iTRSs

higher-order rewriting:
CRSs streams:
0110 1001 1001 0110

infinitary higher-order
5 rewriting: iCRSs




The famous Collatz ARS: 3n+1-problem
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1. REWRITING DICTIONARY

normal form

/vb

'ﬂ loop if one step
Yloor's

/
\
/"
\
o \B t1
b o/ \C commuting
o

diamond
/ N\ . property
N

N
W2

sub-commutative

reduction cycle;

N

C

Ny
d

N
Y

WCR, weakly
Church-Rosser

CR, Church-Rosser

equivalent: CR,

¥ \\ Church-Rosser

o/

d

C




XN NFE, normal form property

~
~

SN, strongly

normalizing;terminating; noetherian

b

~-_pwnfb

nfa_ N \4 UN=, unigue normal

~

Il

- - - nf b form property wrt =

8

UN~—, unique
normal form
property wrt —
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CR = WCR, but not WCR = CR

(i)
P
ad€4——D c—»d
O =

b ¢ d
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shortest proof of Newman'’s Lemma:
WCR & SN = CR

WCR & SN = UN— & SN = CR

Call a point bad if it reduces to two
different nf’s.

a
/ \Fig. 3.7: Max Newman, 1897-1984.
A bad point a has a bad one step
d

reduct, b or c.

Y

Hence by SN there are no bad

points, i.e. UN~ holds.
4 ld vy normal forms
np 77é %
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Conception: Alonzo Church 1.1

Supervisor Oswald Veblen

Suggested topic  find an algorithm for the genus
of a manifold {Z€e K™ | p(¥) = 0}
(e.g. K =R, n=3)

cswe

1 2
Church (1903-1995) Church could not do it
Studying mathematics at ~ Started to wonder what computability is after all
Princeton 1922 or 1924 Invented lambda calculus

Formulated Church’s Thesis:
Given a function f: N*—=N
Then f is computable iff f is lambda definable

HB Lambda calculus and its view on infinity St. Andrews, 15.06.2012
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sophisticated multiset proof of Newman’s Lemma:
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elementary diagrams to build reduction diagrams,

given WCR
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completed reduction diagrams

|5
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failed reduction diagrams
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another failure

2 2

|7
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and one more
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speaking for itself

WCR=!

l

CR™ «<—» CR —» NF —» UN —» UN™

\_&

wCR & SN -—-————p WN




a vector addition system: indexed ARS
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strong confluence

(a) (b)

1.2.1. EXAMPLE. 1.2.2. DEFINITION. For an ARS A = (A, —) we define: —
is strongly confluent if

Va,b,cc AddcA(ba—=c=c—»d«=Db)

(See Figure 1.9(a)) (Here «—= is the reflexive closure of «-, so b = d is zero
or one step.)

1.2.3. LEMMA. (Huet [80]). Let A be strongly confluent. Then A is CR.

23




O |

i
@)
O @ -0

e.d. splitting in
both directions

(a)

o

(b)

(@)

Va,b,ce Add,e,fe Alc—a—-b=>c—d— e«
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Question: does CR hold for —=127?
Answer: No; for we may have a situation as in Figure 6.3.3, lower
diagram.

0 1 10 0 2 0 O 1 O
D ¢ 2 2 1 I
12 2 1
0] 0 o) 0 O O
D Q 0
1
1 2
2 2( 1 o 2 o)
1 D
0 1 @) 0 > O 0 T O
2
2 o) 2 2 1 1
1
! o o 2 O o I ')
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D
o——— 0

l)
o—®0—®O

e.d. splitting in
both directions

O

O

O

@ (b)
0] Q 0] O
T
1
) Yoolp 1
o2
O O 0] O
Do
2
2 T2
1 D
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Is tiling succesful?
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Dick de Bruijn

AUTOMATH
A\ ARCHIVE

Institute in Nijmegen and the Formal Methods section of
Eindhoven University of Technology. Started by prof. H.
Barendregt, in cooperation with Rob Nederpelt, this archive
project was launched to digitize valuable historical articles and
other documentation concerning the Automath project.

Initiated by prof. N.G. de Bruijn, the project Automath (1967
until the early 80’s) aimed at designing a language for
expressing complete mathematical theories in such a way that a
computer can verify the correctness. This project can be seen as
the predecessor of type theoretical proof assistants such as the
well known Nuprl and Coq. 28
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A note on weak diamond properties.

i ,Introduction. Let S be a set with a binary relation >. We assume it

to satisfy x > x for all xe S. We are interested in establishing a
property CR (named after its relevance for the Church-Rosser theorem
of lambda calculus, cf. [1]). We say that x ~y if x » y or y > x. We

say that x ;ky if there is a finite sequence x N with X=x, » x,.>

1 ] z
> eear XSV, and also if x=y. We say that (S,») satisfies CR if for any

SEqUENce X ,...,X with

1

. - * *
there exist an element %X« S with both x] > z and xn =2,

It is usual to say that (S,») has the diamond property (DP) if

for all x,v,z with x > v, x > z there exists 2 w with v > w, z > w.

This is depicted in the following diagram: X

W
where X > y 1s indicated by a line from x downwards to y, etc. The little
circles around y and z illustrate the logical situation: the diagram E}KF
can be closed by AVE .

It i1s not har&wto show that DP implies CR. A simple way to present

a proof is by counting "inversions" in sequences like X| > Xy <Xy < X5

> X, <X, > Xx,3 1f 1 < j and X, <X > X, then we say that the

5 % 7 iv1? ¥j j+1°

pair (i,]) forms an inversion. Applications of DP, like replacing Xy <
&

> X by Ry > X, < X, decrease the number of inversions. Once all in-

versions are gone, we have established CR.

le.}

The following property WDPl is weaker than DP. It says: "if x > vy

and x > z then w exists such that y > w and z >* w". It is very frustrat-

ing inattemps to prove the Church~Rosser theorem for various systems, that
WDP, does not imply CR. A counterexample can be obtained by means of the
following picture {cf. [2] p. 49): 31
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A note on weak diamond properties.

1.Introduction. Let S be a set with a binary relation >. We assume it

to satisfy x > x for all xe S. We are interested in establishing a
property CR (named after its relevance for the Church-Rosser theorem
of lambda calculus, cf. [1]). We say that x ~y 1f x > y or y > x. Ve

* L3 L4 . * -
say that x > y if there is a finite sequence X e X with x=x_ > x>

1’ ] 2
> eea> X =Y, and also if x=y. We say that (S,>) satisfies CR if for any

sequence X, ,...,X with

* - * *
there exist an element Xe¢ S with both x] > 2z and xn >  Z.

It is usual to say that (S,>) has the diamond property (DP) if

for all x,y,z with x > y, x > z there exists a w with y > w, z > w.

This is depicted in the following diagram:

32
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This example also shows that CR neither follows from WDP2 where WDP2
is slightly stronger than WDP] and says:"if x > y and x > z then w exists
such that y >7 w and z >" w and at least one of y > w and z > w'. Stronger

. : . . *
again 1s WDP expressing: '1f x > y and X > z then w exists such that y > w

39

and z > w.'' This WDP does imply CR. Actually WDP3

implies WDPA, which says:
. * * . . * * .
"if x > y and x > z then w exists such that bothi y > w and z > w." This

WDP4 1s the DP for (S, >*), and therefore implies CR for (S,>* ), and that

is the same thing as CR for (S, >). The derivation of WDP4 from WDP3 1s

illustrated by the following picture (ecf. [23 p. 59) which speaks for itself:

X

In this note we go considerably further. Instead of having just one
relation > we consider a set of relations >0 where m is taken from an index
set M. The idea behind this is that in the Church-Rosser theorem the relations
represent lambda calculus reductions; there may be reductions of various types,
and diamond properties may depend on these types. It 1s our purpose to establish
weak diamond properties which guarantee CR (where CR has to be interpreted as in

section 4.

33




5. The basic diamond properties. If meM, the diamond property D](m) 18

defined by the following diagram.
m m
Dl(m):

m+

m_ [ .
This has to be read as follows (and further diagrams have to be inter-
preted analogously: If x,y,z are such that x >0 Y X > 2, then u,v,w exist

such that

Y P We 2> U> V> W,

(so on the left we have a chain from y to w with all links < m; on the right

we have a chain from z to w with all links < m but with at most one = m).

34
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Dz(m,k):

6. Some auxiliary diamond properties. We intend to show that D](m) and

Dz(m,k) (for all m,k with k <m} lead te CR. In order to achieve this

we formulate a number of diamond properties that will play a r8le in the

proof,
D3(m,k): Da(m,k,l,h);
Ds(m): D6(m): e .
-
m+

3 7
h<k <m, 1 < m. 35

The diagrams D, and D, will play their r3le only if k <m, and D4 only if

35
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— cnN @\
O—>»>0—>0—>0

A 2*

» O
v
O
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<p

39

or < f3

39



n
<n
i
m = |m
!
<n
c') O = O »!

<nor<m

(a) ® 1 ® ® 1 ®
2 1

2 ® °

1 2

[ 1 @ 2 o @ 1 @ 1 ®

not decreasing

(b) e ® o )
2
2 ' 2 2
1
o 1 @ 1 ® o 1 @ 1 ®
decreasing

Explanation: Given two diverging steps a —» b and a —, ¢ with in-

dices n, m there is a common reduct d such that

b—>cn. =5 2<nvem d

and dually

b 7 <m - _>i -7 <nV <m d.

So from b we take some steps with indices < n, followed by 0 or 1 step
with index m, followed by some steps with index < n or < m, with result

d. Dually, from ¢ we have a reduction to d as indicated. ~ 40




o <

o—lb»0—» (

<0 OOor=

<O

a » b

B <
v 4
C o—Ll»0—»

<ﬁ agor= <o

for B <

4]
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1.2.14. THEOREM. (De Bruijn - Van Oostrom) Every ARS with reduction re-
lations indexed by a well-founded partial order I, and satisfying the decreasing
criterion for its e.d.’s, is confluent.

42
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b

¥4 Huet’s Stron
Confluence

Lemma

)

Decreasing Diagrams
de Bruijn-van Oostrom

Request Lemma
Staples

)

Barthes

Hindley-Rosen )

Winkler-Buchberger
extended

7kaler8uchberger)
»»

Newman’s Lemma )

Relative termination
Geser-Klop

.
) C

43



dihedral group Dy

R
R
RRRF32< 21RRF lm
4 1|«-..... D 3 4
...... =

\\F ..... F/, .: 4 3
\X ; A K/ :':
41 R [34
“13 2 >21RR..-’D
4 4
] 1 2 F
R R R R | J
4 3
D v _»
1 2 2 3
FolasTR e
F//’ V k\\F
vv ¥ D ......... " 1 2
4 3 ....... }1 4
e R "2 37" 4 3

FE=4 — is a complete TRS for this equality,

RRRR — A R
FR— rRRF thus solving its word problem

44
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Other presentations of Dy

A~B & A éTietzeB
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Theorem 3.3 (Decreasing Diagrams — De Bruijn). Ler &7 = (A, (—q)qer) be an
ARS with reduction relations indexed by a well-founded total order (I,>). If for
every peak ¢ <—p a —q b there exists an elementary diagram joining this peak of
one of the forms in Figure 3.13, then — is confluent.

a \ » b a \ > b
o <o B <o
vl l» ; v& l» ;
C o oO—» c o oO—»
<o ocor= <o <P cor= <o
for B < «

Fig. 3.13: De Bruijn’s asymmetrical decreasing elementary diagrams.
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Van Oostrom [vO94b, vO94a] presents a novel proof, and derives the follow-
ing symmetrical version of decreasing elementary diagrams that allows for partial
orders >, see Figure 3.14.

Theorem 3.4 (Decreasing Diagrams — Van Qostrom). Let o7 = (A, (— ¢ )acr) be
an ARS with reduction relations indexed by a well-founded partial order (I,>). An

elementary diagram is called decreasing if it is of the form displayed in Figure 3.14.
If for every peak c <—g a — ¢ b there exists a decreasing elementary dzagmm joining

this peak, then — is confluent. a \ \lI
ﬁ — %ﬁ or
»

<oor<p

v /

C O » O

<ﬁ O Or = <O
or < f3

Fig. 3.14: Decreasing elementary diagram.
47
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Definition 3.3. An ARS &/ = (A, —) is said to be decreasing Church-Rosser (DCR),
if there is an indexed ARS % = (A, (— ) aecr) and a well-founded order > on / such
that % has decreasing elementary diagrams with respect to >, and — = J,c; —a-

Theorem 3.5 (van Oostrom [vO94b]). For countable ARSs: DCR < CR.

The proof, also present in Bezem, Klop & van Oostrom [BKvO98], employs
the fact mentioned 1n chapter 1: CR < CP for countable ARSs. It seems to be a
difficult exercise to establish the (conjectured) result that the condition ’countable’

1S necessary.
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free idempotent monoid: xx —> x

O NN BN - Y OE -

/ =,

dabcabc <+ (dabca)(dabca)bc = dabcad(abc)(abc) — dabcadabc

by Vincent van Oostrom

[ NN - NN N

[ I N [ IS
i
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Zantema-Geser: does the rule 0011 — 111000 terminate?

the one-rule SRS 0719 — 170’ terminates if and only 1f

(a) p>sorqg>ror
(b) p <s <2pand g < rand g 1s not a divisor of r or
g <r<2qgand p < s and p 1s not a divisor of s.

(so, does it terminate?)

50
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from the Notebook of Gauss

1 |

RY
| /\

Veraindrung der Coordiniz

, \‘
3 | / l"
' \

a 111 1 | 2+4i] 3+i | 242 | 2+2i
b 12| 2 1 1 1 1
4 c 13| 4 4 4 4 3
d 41 3+i 317|242 |3+2i | 4+3i
5
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notation of Braids

A s T

52




braiding problem

Girl with two braids
53
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Artin’s braid equations

54
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braid equations as e.d.’s

1 ] J
| e
: i
i 1 ' 1
! j
_________l 7 - -- L --' T "
J 1 J
i — j| = i — j| > 2

Figure 4: Elementary diagrams (1 <i7,7 < n)
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| I
I

S !

1

@)

1

2

elementary diagrams for confluence problem in braid semi-group
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completed braid reduction diagram

3

412

3

32

4 2 ¥

3

57



aba = bab and the need for signature extension

Kapur-Narendran 1985:

the monoid aba=bab has decidable
equality (word problem), but there is
no complete SRS generating this
equality, like for Da.

Howeuver, with extra symbols
(signature extension) there is.
ab = ¢, ca = bc.

After completion:

ab=c, ca=bc, bcb=cc, ccb=acc.
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Another solution by Burckel-Riviere 2001:
1% = *1,

212* — 12*1

2122 — 1212

1211 — 2121

Remarkably, the word problem for
monoids 1s not dependent on the
actual presentation.

Shown by Tietze transformation
rules.

The same holds for a large class of
Sigma-algebras.

(Pers. comm. by V. van Qostrom, June 2012.
59

London Mathematical Society
Lecture Notes Series
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axioms in Frobenius algebras
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Pachner mouves: for transforming
different triangulations of topological surfaces
into each other

N "
£\ /1N
/ \ £\
/ \ / \
\ 4 \\ J \
\ /‘/ \\ ,'/ \\
/ N 3 \
< 2 / '-\ &> ,.'" \
/ \ / "
/ \ / R \
. / \ / v s S \
\ / \ -~ S\
\ £ \ i =Y
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Het Cola-gen

TAGCTAGCTAGCT
ombouwen tot het cola
CTGACTGACT
Er zijn technieken ter beschikking om
de volgende DNA-substituties — heen
en weer — uit te voeren:

TCAT & T

GAG < AG

CTC & TC

AGTA <A

TAT < CT

to

Kort daarvoor was echter o
de gekke-koeienziekte wo
zaakt door een retro-virus
DNA-volgorde:

but avoid
BSE virus

CTGCTACTGACT
Wat nu, als onbedoeld koeien met dit
virus ontstaan? Volgens de manipuleer- Zorg dat de oplossing uiterlijk 7
ders loopt dit zo’n vaart niet omdat het  januari 2005 bij de
bij al hun experimenten nog nooit Prijsvraagredactie is, NW&T, post-
gebeurd is, maar diverse actiegroepen, bus 256, 1110 AG Diemen, of prijs-
zich beroepend op het voorzorgbegin- vraagi@natutech.nl o.v.v. Prijsvraag
sel, eisen keiharde garanties. januari.
Hoe bewijs je dat dit virus nooit kan De winnaar ontvangt een cadeau-
ontstaan? Het aantal mogelijke combi- bon voor Natuurwetenschap&Tech-
naties van substituties is vrijwel einde- niek-producten van€ 35,-.
loos, dus een slimme redenatie is hier De prijsvraag voor februari staat
nodig. Het maken van het cola-gen vanaf maandag 17 januari al op
vergt wel behoorlijk wat gepuzzel. wrow.natutech.nl.
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Reidemeister moves to transform knots into each other

S
g =L

Reidemeister moves
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