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1. An inkling of lambda calculus and
combinatory logic

The following is a mini-tutorial on lambda calculus,

possibly to be skipped.



1.1. An easy string rewrite system

the replacement rules

ab — bbba
ba — a
bb — Db

abba — bl

obaba

abba — al

0 d

abba — aba

ab — bbba — ba — a




1.2. A difficult string rewrite system

the replacement rules

HEE — (N
— HR
EE — B

must every play terminate,
or are there infinite plays?

From inaugural lecture Hans Zantema,
‘Op zoek naar bewijs’, TUE, 2008

a play

l

!

!




A-calculus is a rewrite system , or a replacement system

The A-calculus is the simplest possible programming language for information processing - the
‘ur-programming language’. The words in this language are called A-terms. They are step by step
transformed until a A-term is reached representing an “answer’. A single rule giving these transformation
steps suffices, the beta-rule (B-rule). It simply states how we can fill in a woord in a second word in the
indicated places. The word that is filled in is colored red, the world , the word in which we fill in, is blue.
the places where we fill in, are black symbols, officially called variables, and the variable for which

we fill in is right after the A.

Example. Fill in for each letter letter z in the word ziezo the word aap.
Result: aapieaapo. This rewrite step or B-reduction step is in mathematical notation written as

(Az. ziezo) aap — aapieaapo
Another example of a B-reduction step is

(Aa. aap) ziezo — ziezoziezop



1.3. Calculemus!

maal: M = Afgx.f(gx) 2 maal 3 = M23 —

plus: P = Mgxy.fx(gxy) (hgx.2(gx))3 —

1 = Mx.fx Ax.2(3x) —

2 = Mx.f(fx) Axx'.3x(3xx") —

3 = Mx.£(f(fx)) M. (A x(x(x')))(3xx) —
4 = Mx f(f(£(£x))) Axx" x(x(x(3xx"))) —

XX X (X (X (X' x(x(xx")))x"))) —
Axx' x(x(x(x(x(xx'))))) =6

3 maal 2 =M32 —

(Agx.3(gx))2 —

7\,X.3(2X) — 2 plus 3= P23 —
Mxx'.2x(2x(2xx")) — (Agxy.2x(gxy))3 —
Mxx. (A x(xx")(2x(2xx")) — Axy.2x(3xy) —

Mxx' . x(x(2x(2xx'))) — Axy. (A" x(xx'))(Bxy) —

(
Axx x(x((Ax" x(xx'))(2xx"))) — AMxy.x(x(3xy)) —

Aaxx' x(x(x(x(2xx')))) — Xy x(x((Ax' x(x(xx"))y)) —
Axx' x(x(x(x((Ax".x(xx"))x")))) — My x(x(x(x(xy)))) =5

Mxx' . x(x(x(x(x(xx"))))) = 6



3 tot de macht2 = 32 =23

(Mx.f(fx))3 —

Mx.3(3x) = Ix.(MX £(£f(£x")))(Bx) —
Axx".3x(3x(3xx")) —
Mxx'.(Ax" . x(x(xx")))(Bx(3xx")) —

xx' . x(x(x(3x(3xx')))) —

W X(xX(x (W' x(x(xx')))(Bxx")))) —
Axx' . x(x(x(x(x(x(3xx")))))) —

Axx" X(x(x(x(x(x((Ax" x(x(xx")))x")))))) —
Axx" x(x(x(x(x(x(x(x(xx)))))))) =9

Exercise (Barendregt)

The length of a term is its number of symbols tiniloes 0.5 cm. Write down a
A-term of length < 30 cm with normal form > 10 light year.
|Hint. The speed of light is ¢ = 3 x 10'° cm/s.]




We laten de kleuren verder weg.

Een woord (officieel, een A-term) kan ook uit een enkele letter bestaan.
Dus we hebben ook bijvoorbeeld de stappen

(Ax.x)aap — aap

(AX.yxy)z — yzy

Een meer zinvol voorbeeld is het verdubbelen van woorden:

(Ax.xx)aap — aapaap

Dus (Ax.xx) is een woordverdubbelaar, elk woord waarop deze A-term
wordt ‘toegepast’, wordt in één stap verdubbeld. Een woord uitwissen kan
ook:

(Aa.goed)slecht — goed

Want goed bevat geen a!

A-termen kunnen ook op zichzelf worden toegepast: zelfapplicatie. Voor de

verdubbelaar levert dit een interessant verschijnsel op:
(AX.XX)(AX.XX) = (AXXX)(AX.XX)



1.4. A swiss pocket knife for lambda calculus > -

Lambda calculus and CL reduction tool by Freek Wiedijk

Freek Wiedijk developed a tool for A- and CL-reduction. It is currently used in the course Term Rewiting Systems at the VU.

e Mac OS X executable file
Instructions for installation on a Mac:
o Transfer the file to your Mac OS X machine as lambdal, in your home directory
o In a terminal, give the command "chmod a+x lambdal”.
o For exccution of the tool type "./lambdal™.
e source code
In the presence of OCAML this source code file can be compiled. under UNIX, for example by the command
o ocamlopt lambdal.ml -0 lambdal

How to use the 2- and CL-tool

After starting, the tool prints

[=\x.x

K=\xy.x
S=\xyz.xz(yz)
B=\xyz.x(yz)
C=\xyz.xzy
W=xy.xyy

1=\xy.Xy
Y=10x1xx)) X (xx)
T=\xy.x

F=\xy.y

D=\x.xx
J=\abcd.ab(adc)
C'=JII

i leftmost innermost
Jo leftmost outermost [default]
.po parallel outermost

L 4



1.5. Combinatory Logic, the twin of lambda calculus

1924. "Uber die Bausteine der mathematischen Logik"

Moses Schonfinkel




1.7. How did we come here?

STUDIES [N LOGIC
As b

-

§ A g A . e
-

The Lambda
Calewlus

e Symtax omd Semantion

Foundations of Logic and Mathematics

crisis in the foundations of

I 1900
Theory of Types
I 1920

Lambda Calculus, Combinatory Logic

mathematics /

Typed Lambda Calculi

String Rewriting
Systems (SRSs)

1930

Turing Machines

1’ 1940

Formalisation of Computability:
Recursive Functions, Recursion Theory

/

Algebraic Specifications,
Abstract Data Types

/

Term Rewriting Systems (TRSs) | 1970

Functional Programming

Type Theory,
Theorem Provers,
De Bruijn 1968... [Proof Assistants

(Automath, Coq,...)

1960-1980
Barendregt 1980,1984
Formalization and Verifi-
Gonthier cation of Mathematics

2000

1960-1980

[

Higher-order TRSs
1978

Infinite Objects

Communicating Processes,
Process Algebra, CCS, CSP,
ACP, m-calculus, Bigraphs

Coalgebraic Techniques,
Data & Codata,
Recursion & Corecursion

1980

Barendregt, Dekkers, Statman 2013

Infinitary TRSs, infinitary Lambda Calculus
|




How did we come here? Zooming out three centuries

Gottfried Leibniz

calculus ratiocinator
Leibniz equality:
in proof checker Coq

X=y
defined as
VP: P(x) <= P(y)

® binary number system, ...

® calculus ratiocinator: general system of a notation in
which all the truths of reason should be reduced to a
calculus. An ‘algebra of thoughts’.

® project proposal "I think that some chosen men
could finish the matter within five years"

® No postdocs - If I had been less busy, or if I were
younger or helped by well-intentioned young people,
I would have hoped to have evolved a characteristic

of this kind




How did we come here? Zooming out two milennia

ApPLOTOTEANO

coming back to
this later

24 logische
syllogismen,
fragment van
predikatenlogica

I. Barbara, Celarent, Darii, Ferio, Barbari, Celaront

II. Cesare, Camestres, Festino, Baroco, Cesaro, Camestros
III. Darapti, Disamis, Datisi, Felapton, Bocardo, Ferison

IV. Bamalip, Calemes, Dimatis, Fesapo, Fresison, Calemos



2. Black holes in the lambda calculus:
Henk’s notion of unsolvables

The straightforward extension of the space-time universe

breaks down in the form of black holes, the astronomical QUESTION:
. . ... . . Are black holes in space also somehow
witnesses of singularities in the mathematical theory of a consequence of space turned i itself?

Is there something like reflection here?

Einstein’s equations, where some terms become infinite.

In the computational universe there are several systems that can

define and compute all computable functions. They are called

Turing complete. They all show singularities where their

‘normal functioning’ breaks down. These singularities emerge

due to self-reference, reflection of the system in itself. For QUESTION.

Turing Machines this is known as the unsolvability of the see Chaitin: is there is a relation
between incompleteness of PA

Halting Problem; no TM can compute whether a TM plus =~ win HP?
input terminates or runs forever.



2.1. Turing complete systems

Conway’s Life
| I'“"I- “: ' I

deterministic

Lambda calculus Turing Machine
non-deterministic (non-)deterministic

Also PA, Post Production systems,
tag systems, Markov systems, and so on.



We have already encountered one black hole in lambda calculus:

(Ax.zx)(Ax.zx) — (Ax.22)(A\2.20)

Another cyclic black hole:

Let A = Aab.baa. Then

AAA — (Ab.bAA)A — AAA

(AX.XX)(AX.XX)

ur-cycle pur e/—/cycle
2



Another black hole, whose reduction graph displays
cycles of every length except 1:

(Az.z(Ay.xy))(Az.x(A\y.xy))

12 22
0 11 21
Ve V. V. ¥
00 10 20 30

(Axx(hy.xy))(Ax.x(Ay.xy))



The unsolvable A-terms M are those for which there is a sequence of
A-terms A4, ...An such that

MAAs ... Ay =5 1

where [ = \x.x

Equivalently, appealing to the Church-Rosser theorem

MAlAQMn 0 1

An equivalent definition was given by Wadsworth:
unsolvable terms are those without head normal form.



2.1. Black holes are hugely complicated

Statman 1978
instead of MA —; N, write M - N

M = N: M is more solvable than N.()

orderoo YK = Axixox4....

order | Ax.Q
order 0 Q

Ayx.yxx

solvable terms

Every countable poset is
embeddable in poset of unsolvables



countable, countably universal poset of unsolvables

/_-— ——
({x.y.2})
e - AN
™~
2 L ™
xy1) (1x.1) (v
Xy} ) w{x.z} ) \1Y.Z
o K "N -
-x {\\\ //, } '{ . /,- } N
I ~. B W I
w3y (wm) (@
x} ) ) ( {z
ez & N P
" T S
‘\__.\. /_/ 3
\7,’@--\( a(b(c(de)))
'.\- 2 J ; / ‘ "

a(b((cd)e))  (ab)(c(de))

isomorphic embedding aubc)(&é” a(cde)

a(((bc}d]e) (ab]((c:d]e)

(a(bc))(de) N abcde

a((bcid)le  ((@b)(cd)e

((ab)ckde)  ((a(bc)d)e

(((ab)cxd)e

identity I, solvable terms
Rick Statman, 1986



2.2. Once upon a time ... Henk lived here (1975)




in the house there were writings on the wall

=558
AAA
AAA
SSSAA
SA(SA)A
AA(SAA)
SSSA(SAA)
SA(SA)(SAA)
A(SAA)(SA(SAA))
SSS(SAA)(SA(SAA))
S(SAA)(S(SAA))(SA(SAA))
SAA(SA(SAA))(S(SAA)(SA(SAA)))

A(SA(SAA))A(SA(SAA)))(S(SAA)(SA(SAA)))
SSS{SA(SAA))(A(SA(SAA)))(S(SAA)(SA(SAA))
S(SA(SAA))(S(SA(SAA)))(A(SA(SAA))(S(SAA)(SA(SAA))
SA(SAA)(A(SA(SAA)))(S(SA(SAA))(A(SA(SAA))))(S(SAA)(SA(SAA)))

A(A(SA(SAA))) (SAA(A(SA(SAA))S(SA(SAA)) (A(SA(SAA))))(S(SAA)(SA(SAA)))
SSS{A(SA(SAA)))(SAA(A(SA(SAA)))) (S(SA(SAA))A(SA(SAA)))) (S(SAA)(SA(SAA))
S(A(SASAA))(S(A(SA(SAA))SAA(A(SA(SAA))))(S(SA(SAA) ) (A(SA(SAA))))(S(SAA)(SA(SAA)))

A(SA(SAA)) (SAA(A(SA(SAA)(S(A(SA(SAAN) (SAA(A(SA(SAAN)))(S(SA(SAA)) (A(SA(SAA)))H(S(SAA)(SA(SAA)))
SSS{SA(SAA))(SAA(A(SA(SAA))))(SIA(SA(SAA)))(SAA(A(SA(SAA))))) (S(SA(SAA))(ASA(SAA)))) (S(SAA) SA(SAA)))
S(SA(SAA))(S(SA(SAA)))(SAA(A(SA(SAA))) (S(A(SA(SAA))) (SAA(A(SA(SAA)))))(S(SA(SAA))(A(SA(SAA)))) (S(SAA)(SA(SAA)))
SA(SAA)(SAA(A(SA(SAA))))(S(SA(SAA)) (SAA(A(SA(SAA))))) (S(A(SA(SAA))(SAA(A(SA(SAA)))))(S(SASAA))(A(SA(SAA))))(SSAA) (SA(SAA))
A(SAA(A(SA(SAA))))(SAA(SAA(A(SASAAN))(S(SAGSAA)) (SAA(A(SASAAN(S(A(SA(SAA)) (SAA(A(SASAAN ) (S(SASAA)) (A(SA(SAA))))(S(SAA)(SA(SAA)))



2.3. Black holes can be beautiful
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2.4. Another nice black hole, a pure cycle
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2.5. Let’s have a theorem:
reduction cycles entail black holes

N = C[@® ]

Theorem. Let the A-term M admit a cyclic reduction. Then M is unsolvable,
or else, a subterm of a reduct of M is unsolvable. In fact, even ‘mute’, the
worst kind of unsolvable.



2.6. The threefold path of unsolvables

¢

RS

There is a natural hierarchy of unsolvable lambda terms,

in three families, leading to Bohm Trees (BT), Lévy-Longo Trees
(LLT),and Berarducci Trees (BeT).

They embody different notions of undefined: having
no head normal form, having no weak head normal form,
having no root normal form.

This can be seen as three different semantics for lambda calculus,
with BT-semantics as the coarsest (= most identifying), next LLT-
semantics as intermediate, finally BeT-semantics as the finest

(= most distinguishing)



)

q@@?\lﬁi From eightfold path to threefold path

X
_E_-.%

PPN

Bohm trees provide a semantics of A-calculus where terms without head nor-
mal form are considered meaningless. In fact, this semantical view is one of three
canonical semantical frameworks that arise in a uniform way by considering the
three dimensions d, [, r in which A-terms can grow:

d down, in an abstraction;
[ left in an application;
r right in an application,

d

L ¢ l 6\

’ ‘. e r
A000 Ao01

finitary lambda BT

calculus

£ £
N N
)\101 )\111

LLT BeTl

Suppressed dimensions.



shades of undefinedness

Henk’s unsolvables

undefined

more undefined

most undefined




W . SW
o Black hole,

/ \Z or Ogre [48] Z/.\.
/N » AN

) 2 )

/\ | /
,~. < )\Qfl < .‘.

\ | s

2 2

)\372
BeT g BT LLT BeTl
LLT BeT

Three infinite A-terms. The color flags mention to which families of trees
they belong.



M BT(M) | LLT(M) | BeT(M)
(Az.xx)(Ar.x0) Q2 Q ()
(Azy.xx)(Ary.xx) () o o
(A\z.xxz)(Ar.zrz) () Q “z
(Az.z(zx))(Ax.2(22)) 2% 2% e
Ay.((Azr.xx)(Ax.zx)) () YTRY/ YTRY/
(A\x.xz)(Ar.2T)Yy () Q Qy

BT, LLT, BeT-examples.




pinching the boomerang yields
Henk’s notation

ALY -
/1\\

A pair of socks: building blocks for BTs and LLTs.



root )\yl/ \ o/ \

lazy

head

spine

redex is root = lazy = head = spine

The strategic redexes: root, lazy, head and spine.



For BTs and LLTs, the ‘building blocks’ are as depicted in Figure 16. Note
that in [2] another notation is used, which may be called the hnf-notation; there
a ‘building block’ is obtained by pinching together the boomerang shaped figure
of the form d*I* ending in a variable. (The left sock in Figure 16.) Then we

obtain the building block AZ.y . The building blocks for LLTs are sub-blocks
/T\N\

of those for BTs. And in turn, the building blocks for BeTs are even smaller
sub-blocks, namely application nodes, abstraction nodes Ax, variables, ). So

the composition or decomposition of the building blocks parallels the refinement
order in BT(M) <q LLT(M) <q BeT(M). In a slogan:

The finer the building blocks, the finer the semantics.



Partial order of lambda calculus theories

[Th(A~B Qser)

refining semantics,
seeing sharper
Th(Ap QBeT)] @
adding infinity oo




3. Fixed point combinators

The theory of sage birds (technically called
fixed point combinators) is a fascinating and
basic part of combinatory logic; we have only
scratched the surface.

R. Smullyan, To Mock a Mockingbird, 1985.



Alan Turing
invented this

fixed point combinator

(Aab.b(aab))(Aab.b(aab)) M —
(Ab.b((Aab.b(aab))(Aab.b(aab))b))M—
M((Aab.b(aab))(Aab.b(aab)))M)

& - —-M(H )
= = M(HE)

. is fixed point van M




The owl ¢

Smullyan: An extremely interesting bird is the owl/

0 = Aab.b(ab) =3 SI

» Yisanfpcifandonlyif 0Y =5 Y
» If Y is a reducing fpc, then so is Yo
» There is no fpc Y such that Yé =3 Y (Intrigila 1997)



3.0. Curry’s and Turing’s fixed point combinator

Yo = M. (Ax.f(xx)) (Ax.f(xx)) Curry’s fpc
Y1 = (Aab. b(aab)) (Aab. b(aab)) Turing’s fpc

0 = Axy.y(xy) = SI, Smullyan’s Owl

A =03=38(((0..=Y0

Yo0 =Y,



3.1. The Russell paradox

We form the set X of all sets x that are not member of themselves, 1.e.
—x 3 x, or simply —(xx). So X = Ax.—(xx). We compute:

XX = (Ax.—(xx)) (Ax.—(xx)) = =(Ax.—(xx) ) (Ax.—(xx)) = (X X).

In fact, as we will see later, XX 1s the fixed point, or rather a fixed point, of

negation —:
XX =Y-

where Y 1s Curry’s fixed point combinator

Af(Ax.f(xx))(Ax. f(xx))



3.2. Henk’s Russell-paradox hypnosis experiment
(performed in Logic course 1975)

K

£

n

L can see R through the in-between screen (screen is white, transparent) iff L cannot see R
raising hands. Screen turns black (non-transparent) iff L sees R with raised hands



3.3. The Russell paradox by Dick de Bruijn told on a party

@) @)

/ 1\ / \ / \
o o o o o

(I) / \ \

cl) / \ / \

(l) / \ / \

' / N / \
ordinary: Two ordinary trees (left and right) and a special tree (middle) special: not
not containing itself ordinary

as direct subtree
O/ V

/ 1\ / \

O O O O

\
O

/ \
O O

/ \

o O
/ \
o .

O

-0—-0-0-0
O—-—0—-0-0_

The super-tree with all ordinary trees as direct subtrees

1s ordinary iff it is not ordinary



3.4. The fixed point of negation —: why not

Y= = 2(Y2) = 2(=(Y7) = Y=

( not why not
not not vth\ﬂO;/

HFH N EEEENEMNI]




3.5. The Russell paradox in a comicbook

@' betekent dat X continueert
als Y of Z...

... en zijn waarde 1
behoudt als &f Y éf Z1is, of
beide. Maar X krijgt waarde O
als zowel Y als 2 0 is!

EEN EPISCHE Z0EKT
NAAR DE WAARHEIHI:HT

APOSTOLOS DOXIADIS, CHRISTOS M. pApAp T
x RIOU
ALECOS PAPADATOS & ANNIE p .
| DONNA LE&)
WSKi




BITVOORBEE
LD, EEN
Eagﬁmauwc KAN ANDERE
2 r\/'neuwcsr\s BEVATTEN
ZELFS 2ICHZELF!

HOE
KAN ZIJ
ZICHZELF
BEVATTEN?

... DUS BEVAT ZIJ ZICHZELF
ALS ELEMENT.

HMAM... EEN INTERESSANTE
TWEEDELING: DE VERZAMELING
VERZAMELINGEN DIE ZICHZELF

\ BEVATTEN...

-
... ENDE VERZAMELING
VERZAMELINGEN DIE DAT
NIET DOEN.




3.6. Circularity in alchemy

L

b
X
|2
—

Engraving by Lucas Jennis, in alchemical tract titled De Lapide Philosophico.. Around 1600.


https://en.wikipedia.org/wiki/Lucas_Jennis
https://en.wikipedia.org/wiki/Alchemical

3.7. Circularity on the dining table




3.8. Circularity in Escher’s art







3.9. Self-referentiality pun in my library

REVISED AND EXPANDED (AGAIN) g
{ 4

There
Are Two
5 smullyan:
EI'I'()I'S 11 the What is the name of this book?

the Title of
This Book™

A SOURCEBOOK of PHILOSOPHICAL PUZZLES, PROBLEMS, and PARADOXES

ROBERT M. MARTIN




3.10. Self-referentiality in streams
(infinite sequences of natural numbers)

Naming sequence:
Kolakoski sequence, equal to the sequence of its own run lengths

Thue-Morse sequence; morphic sequences

Toeplitz sequence

self-similarity;
fixed point construction,
fractals



3.9. Circularity, self-referentiality in logic

symbolization

mathematical logical
statements statements
: Yy Noson Yanowsky 2013:
arzthn?etz;atzon The outer limits of reason -
godelization what science, mathematics,
coding and logic cannottell us

Emil Post (1897-1954):
Symbolic Logic may be said to be Mathematics become self-conscious.



57

PA, Peano’s Arithmetic

Peano's nine axioms, rephrased in contemporary notation, are:

1 1 is a natural number.
2 Every natural number is equal to itself (equality is reflexive).
3 For all natural numbers a and b, a=b if and only if b=a (equality is

symmetric).

4  For all natural numbers a, b, and ¢, if a=b and b=c then a=c (equality is
transitive).

5 |If a=band bis a natural number then a is a natural number.

6 If ais a natural number then Sa is a natural number.

7 If aand b are natural numbers then a=b if and only if Sa =Sb.

8 If ais a natural number then Sais not equal to 1.

9 Foreveryset K, if 1isin Kand for every natural number xin K, Sxis also

in K, then every natural number is in K. (It makes no difference here whether
all elements of K are natural numbers.)


http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Symmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation

Godel’s inzicht:
reflectie - het systeem (PA)
over zichzelf laten praten




3.10. Reflection in the lambda calculus:
an inner model of the lambda calculus

coding | |
q Tl 0T

h codes

enumerator
(evaluator) E

lambda terms lambda terms

E|M| = g M
Conj by Barendregt,
E [ M ] —5 M roved by Statman for enumerators

Also for this evaluator?

K = Aab.a
Stephen Cole Kleene E — <<I(7 S, C>> S = )\CLbC.GJC(bC)

1909-1994
C' = \abc.ach



DEFINITION. (Mogensen) Define for a lambda term M its code "M

as follows.
X7 = Ae.elUdxe = Frx;
"MN7T = Ae.eU3S'™M T N7e = FprMNT
"AMT = AeelUi(Ax."MMe = F(M"MT).

The trick here is to code the lambda with lambda itself, one may speak of an

inner model of the lambda calculus in itself. Putting the ideas of Mogensen

[1992] and Bohm et al. [1994] together, as done by Berarducci and Bohm

[1993], one obtains a very smooth way to create the mechanism of reflection
in the lambda calculus. The result was already proved in Kleene [1936]°.

THEOREM. There is a lambda term E (evaluator or self-interpreter) such
that

Erx' = x;
ETMN' = ETMTY(E"N);
ETAx.M" = Ax.(ETMT).

It follows that for all lambda terms M one has
ETMT =M.

COROLLARY. The term ((K,S, C)) is a self-interpreter for the lambda cal-
culus with the coding as above.



3.11. Lego blocks for fixed point combinators

Y= Y8 (5=S5I) (Béhm)
Y = Y(SS)S-n| (Scott)

Y = Y(AAA)A=II (A = BS)

Yo 8 (SS)SI [8/(AAAYAAAAIL (SS)SI  is a fpc

Are all these composite fpc’s really different?



3.12. Weak fixed point combinators,
aka looping combinators

An example of a weak fpc is the term A(BAB) where A = BM and

M = Az.xzz. This example was found by Statman, in his study of terms composed only
of symbols B and M. Here the generator changes in each ‘production cycle’. We have the
following reduction:

A(BAB)z
—3 M(BABz)
— BABx(BAB«x)
—3 A(Bz)(BABz)
—3 M(Bz(BAB))
— Bxz(BABx)(Bx(BABx))
—3 2(BABz(Bz(BABz)))
—3 z(A(Bz)(Bz(BAB)))
—3 z(M(Bz(Bz(BAB))))
— z(Bx(Bz(BABx))(Bx(Bx(BABx))))
—° z(x(Bx(BABz)(Bxz(Bx(BAB)))))
—3 z(z(x(BABz(Bz(Bz(BAB))))))
3 z(x(z(A(Bzx)(Bx(Bx(BABx))))))
3 z(x(x(M(Bx(Bx(Bx(BAB)))))))
— z(z(x(Bx(Bzx(Bx(BABz)))(Bx(Bx(Bx(BAB)))))))
3 z(x(z(x(Bzx(Bx(BABx))(Bx(Bz(Bx(BABx))))))))
3 x(x(x(x(x(Bx(BABx)(Bx(Bz(Bx(BABx)))))))))
3 z(x(x(x(z(z(BABx(Bx(Bx(Bx(BABx))))))))))
—° z(z(z(z(x(x(A(Bz)(Bz(Bx(Bz(BAB))))))))))
—? g(x(x(z(z(z(M(Bx(Bx(Bz(Bz(BAB)))))))))))



in functional languages the Y-combinator is
represented by a term graph with a cycle:
self-reference!

Yx

SN



“
/4’/ /‘\\\\'

S

N
A

d

5
o~
[
3
<
G
< by
VWA,
\ 1
//
AY
"ll||\‘\\7a
ol
>
—h
>
=
—h
w
ka3

. ,/

Y 7,
KRN N
5

AT AX.X
7

|"’1

/.

o 4. Clocks in the lambda calculus
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The evaluation of lambda terms M to their infinite
expansion BT(M) turns out to possess an underlying clock
mechanism, a rhythm, that can be used to discriminate
lambda terms wrt beta-conversion.

But first we pay attention to the curious phenomenon
of a clock mechanism in human consciousness.



4.1. The stream of consciousness ...

1S not a continuous stream

but has a rhythm, a heart How your min d

beat, o ClOCk Warps time

...and time warps your mind
'zn

£3.25 US$5.95 No2731

www.NewScientist.com

m— i 437
News, ideasand innavation . i :
The bestjobsinscience : ? 9 I770262040720




The wagon wheel illusion

It these frames were played in succession, which way would the wheel appearto be rolling - clockwise or anticlnrkwice?

L D DX

No camera required

In a movie this wheel would appear to be moving anticlockwise, when in fact it is rolling clockwise

Each frame captured by the camera shows The illusion, often seen in old westemns

the wheel after just under a quarterof a can be created in real life too, with no
revolution. The brain assumes the wheel has rAmera present, sugoesting that the hrain
moved the smaller distance - a slight annle creates the perception of continuity from a
anticlockwise with each frame, rather than saries of discrete frames, just like a film reel

the bigger rotation clockwise




whether you are in control ot your
own body.” says William Hetrick, whn
studies the brain's timekeeping and
schizophrenia at Indiana University in
Bloomington. “The ability to attribute
acliuns Lo uneself versus others, to
perceive one’s own thou ghts against
thoughts generated from external
sources, perhaps requires a tight
coupling in time [within the brain].”
The idea could explain many of the
experiences reported by people with
schizaphrenia. By muddling the order
of thoughts and perceptions within
your brain, for example, you might
move your hand before you are
conscious of the decision, making it

teel as if someone else is controlling
your movements. And when an
advert appears on TV, your brdin
might picture the product before it
consciously registers seging it on
screen - creating the disturbing

"By upsetting the brain’s
clock, you can recreate
some of the delusions
seen in schizophrenia”

illusion that your thoughts are being
broadcast on Lelevision.

If poor time-processing really does
underlie many psychotic delusions, it
could polnt to a single culpritin the

brain: the cerebelium. For decades,
the cerebellum hasbeenseenasa
centre for timing the movement of
muscles, but some neuroscientists
now reckon that it might coordinate
thoughts and the processing of
Sensory perceptions too.

That would fit with the
neurological evidence. "During a
hroad range of mental tasks, peaple
with schizophrenia have lower rates
of cerebellar blood flow than healthy
people do,” says Nancy Andreasen,
a schizophrenia researcher at the
University of lowa in lowa City.

The idea has sparked plenty of
interest. David Eagleman at Baylor

College of Medicine in Houston,
Texas, has studied people with
schizophrenla using a video game
similar to the aircraft game, which
lets him manipulate delays between
volunteers’ actions and

their outcomes.

When he alters time delays, people
with schizophrenia find it more
difficult to compensate than healthy
controls. “schizophremic brains seem
to be temporally inflexible,” he says.
“They don't recalibrate.” Eagleman
hopes such games might be useful in
the future to measure the severity of
schizophrenia, or patients’ responses
to treatment and drugs.






clock behaviour of fpc in Bohm sequence of fpc’s
Yo, Y00, Y000, Y0000, Y0000, ...

Y3=Yp000 —} Aa.a(wsWs00a)

ilaa

W5 W50 0a —»Zl a(wsws00a)

t o




Clocked Bohm trees of BYy and BY(S.



Atomic clocks

Record not only the number steps, but also the positions of the steps.

Let M € A. The atomic clock Bohm tree BTea(M) of M is defined by
BTas(M) = L if M has no hnf. Otherwise, there is a head reduction

M —pd py - " —hd.pe AX1- .. AXp YNy oo Ny
and then put B-I_A‘Q(M) - [<p17 . pk>]>\)?yB-|;‘l(Nl) ce B-I_A‘A(Nm).

The theory for clocked BT's generalizes to atomic trees: Here we use the
subsequence relation for comparing annotations (= lists of positions):

(a1, ...,an) < (b1,...,bm) <= (a1,...,an) = (bj,...,b;)

for some indices i1 < b < ... < I,.

Example: Yy #3 Us.



Lévy—Longo and Berarducci trees

» The theory easily generalizes to Lévy—Longo and Berarducci trees.

» LLT-semantics is based on head reduction to weak hnf
(whnf = abstraction, or application with leading var).

> Clocked LLT's can distinguish e.g. PP #3 QQ where
P = Axy.xx QR = Axyz.xx



Clocked Lambda Calculus

(Ax.M)N — t(M|x:=N])
T(M)N — ©(MN)

The 7’s are ticks of the clock (measure of efficiency).
Properties: orthogonal, SN™, CR™, UN™

Normal forms are clocked Lévy—-Longo trees:

nf(Yof) = 72 nf (Y1.f) = 12

different clock
f 7l f T2
| | = Yo £ Y]



Making lambda calculus see sharper:

we find a spectrum of intermediate
equalities between (-equality

and BT-equality, each a
discrimination tool for

B-equality




clocked lambda theories

Exercise.
(i) in AP there is only one Ogre,
Omnivore;

(ii) in AP there are infinitely many,

i.p. all YnK are ditferent F
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To Henk: much success in the coming cﬁa}owr of your ﬁfe,
bridging the two streams, and much l\-llradl (mudita) in doing so!







