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1. An inkling of lambda calculus and 

combinatory logic 

The following is a mini-tutorial on lambda calculus,
possibly to be skipped.



1.1. An easy string rewrite system

ab → bbba

ba → a

bb → b

the replacement rules

abba → bbbaba

abba → aba

abba → aba

ab → bbba → ba → a



From inaugural lecture Hans Zantema,  

‘Op zoek naar bewijs’, TUE, 2008

the replacement rules

…

a play 

1.2. A difficult string rewrite system

must every play terminate,

or are there infinite plays?



λ-calculus is a rewrite system , or a replacement system

The λ-calculus is the simplest possible programming language for information processing - the

‘ur-programming language’. The words in this language are called λ-terms. They are step by step 

transformed until a λ-term is reached representing an ‘answer’. A single rule giving these transformation 

steps suffices, the beta-rule (β-rule). It simply states how we can fill in a woord in a second word in  the 

indicated places. The word that is filled in is colored red, the world , the word in which we fill in, is blue.

the places where we fill in, are black symbols, officially called variables, and the variable for which 

we fill in is right after the λ.

Example. Fill in for each letter letter z in the word ziezo the word aap.

Result: aapieaapo. This rewrite step  or β-reduction step is in mathematical notation written as

(λz. ziezo) aap → aapieaapo

Another example of a β-reduction step is

(λa. aap) ziezo → ziezoziezop



1.3. Calculemus!

maal: M = λfgx.f(gx)

plus: P = λfgxy.fx(gxy)

1 = λfx.fx

2 = λfx.f(fx)

3 = λfx.f(f(fx))

4 = λfx.f(f(f(fx)))

2 maal 3 = M23 →

  (λgx.2(gx))3 →

  λx.2(3x) →

  λxx'.3x(3xx') →

  λxx'.(λx'.x(x(xx')))(3xx') →

  λxx'.x(x(x(3xx'))) →

  λxx'.x(x(x((λx'.x(x(xx')))x'))) →

  λxx'.x(x(x(x(x(xx')))))  = 6

3 maal 2 = M32 →

  (λgx.3(gx))2 →

  λx.3(2x) →

  λxx'.2x(2x(2xx')) →

  λxx'.(λx'.x(xx'))(2x(2xx')) →

  λxx'.x(x(2x(2xx'))) →

  λxx'.x(x((λx'.x(xx'))(2xx'))) →

  λxx'.x(x(x(x(2xx')))) →

  λxx'.x(x(x(x((λx'.x(xx'))x')))) →

  λxx'.x(x(x(x(x(xx'))))) = 6

    2 plus 3 =  P23 →

  (λgxy.2x(gxy))3 →

  λxy.2x(3xy) →

  λxy.(λx'.x(xx'))(3xy) →

  λxy.x(x(3xy)) →

  λxy.x(x((λx'.x(x(xx')))y)) →

  λxy.x(x(x(x(xy)))) = 5



 3 tot de macht 2 =  32 = 23

 (λfx.f(fx))3 →

  λx.3(3x) =  λx.(λfx’.f(f(fx’)))(3x) →

  λxx'.3x(3x(3xx')) →

  λxx'.(λx'.x(x(xx')))(3x(3xx')) →

  λxx'.x(x(x(3x(3xx')))) →

  λxx'.x(x(x((λx'.x(x(xx')))(3xx')))) →

  λxx'.x(x(x(x(x(x(3xx')))))) →

  λxx'.x(x(x(x(x(x((λx'.x(x(xx')))x')))))) →

  λxx'.x(x(x(x(x(x(x(x(xx')))))))) = 9

4.11. The length of a term is its number of symbols times 0.5 cm. Write down a
λ-term of length < 30 cm with normal form > 1010

10

light year.
[Hint. Use Proposition 2.15 (ii). The speed of light is c = 3 � 1010 cm/s.]

Exercise (Barendregt)



We laten de kleuren verder weg.
Een woord (officieel, een λ-term) kan ook uit een enkele letter bestaan.
Dus we hebben ook bijvoorbeeld de stappen
(λx.x)aap → aap
(λx.yxy)z → yzy

Een meer zinvol voorbeeld is het verdubbelen van woorden:
(λx.xx)aap → aapaap
Dus (λx.xx) is een woordverdubbelaar, elk woord waarop deze λ-term
wordt ‘toegepast’, wordt in één stap verdubbeld. Een woord uitwissen kan
ook:
(λa.goed)slecht → goed
Want goed bevat geen a!
λ-termen kunnen ook op zichzelf worden toegepast: zelfapplicatie. Voor de
verdubbelaar levert dit een interessant verschijnsel op:
(λx.xx)(λx.xx) → (λx.xx)(λx.xx)



1.4. A swiss pocket knife for lambda calculus



1924. "Über die Bausteine der mathematischen Logik"

Moses Schönfinkel

λxyz.xz(yz)

λxy.x

λx.x

S K

I

1.5. Combinatory Logic, the twin of lambda calculus



Infinite Objects

Turing Machines

Formalisation of Computability:

Recursive Functions, Recursion Theory

Algebraic Specifications,

Abstract Data Types

String Rewriting

Systems (SRSs)

Functional Programming

Typed Lambda Calculi

Type Theory,

Theorem Provers,

Proof Assistants

(Automath, Coq,. . . )

Formalization and Verifi-

cation of Mathematics

Foundations of Logic and Mathematics

Theory of Types

Lambda Calculus, Combinatory Logic

Term Rewriting Systems (TRSs)

Infinitary TRSs, infinitary Lambda Calculus

Higher-order TRSs

Communicating Processes,

Process Algebra, CCS, CSP,

ACP, π-calculus, Bigraphs

Coalgebraic Techniques,

Data & Codata,

Recursion & Corecursion

1900

1920

1930

1940

1970

1978

1960–1980

1990

1960–1980

2000 1980

1.7. How did we come here?

crisis in the foundations of 

mathematics

De Bruijn  1968…

Barendregt 1980,1984

Gonthier

Barendregt, Dekkers, Statman 2013



How did we come here? Zooming out three centuries



How did we come here? Zooming out two milennia

Αριστοτελησ
384 vC- 322 vC

,

 I. Barbara, Celarent, Darii, Ferio, Barbari, Celaront

 II. Cesare, Camestres, Festino, Baroco, Cesaro, Camestros

 III. Darapti, Disamis, Datisi, Felapton, Bocardo, Ferison

 IV. Bamalip, Calemes, Dimatis, Fesapo, Fresison, Calemos

24 logische 

syllogismen,

fragment van 

predikatenlogica

coming back to 

this later



2. Black holes in the lambda calculus:

Henk’s notion of  unsolvables

The straightforward extension of the space-time universe

breaks down in the form of black holes, the astronomical 

witnesses of singularities in the mathematical theory of 

Einstein’s equations, where some terms become infinite.

In the computational universe there are several systems that can 

define and compute all computable functions. They are called 

Turing complete. They all show  singularities where their 

‘normal functioning’ breaks down. These singularities emerge 

due to self-reference, reflection of the system in itself. For 

Turing Machines this is known as the unsolvability of the 

Halting Problem; no TM  can compute whether a TM plus 

input terminates or runs forever.

QUESTION:  

see Chaitin: is there is a relation  

between incompleteness  of PA  

with HP? 

QUESTION:  
Are black holes in space also somehow  
a consequence of space turned in itself? 
Is there something like reflection here?



 2.1. Turing complete systems

Conway’s Life

Lambda calculus Turing Machine

deterministic

non-deterministic (non-)deterministic

Also PA, Post Production systems,  

tag systems, Markov systems, and so on.



We have already encountered one black hole in lambda calculus:

(λx.xx)(λx.xx) → (λx.xx)(λx.xx)

Another cyclic black hole:

1. Let A ≡ λab.baa. Then

AAA → (λb.bAA)A → AAA

(λx.xx)(λx.xx)

ur-cycle pure 3-cycle

2



(λx.x(λy.xy))(λx.x(λy.xy))

Another black hole, whose reduction graph displays 
cycles of every length except 1: 

00

02

20

11

10

01

12

23
03

30

13

21

22

(!x.x(!y.xy))(!x.x(!y.xy))



The unsolvable     -terms M are those for which there is a sequence of
   -terms A1, …An such that 

λ

λ

MA1A2 . . . An =β I

where   I ≡ λx.x

Equivalently, appealing to the Church-Rosser theorem

MA1A2 . . .Mn ⇣β I

An equivalent definition was given by Wadsworth: 
unsolvable terms are those without head normal form.



solvable termssolvable terms

unsolvable termsunsolvable terms

I

λx.xx

λyx.yxx

order 0 Ω

order 1 λx.Ω

.

.

.

order ∞ YK≡ λx1x2x4 . . . .

Statman 1978

instead of MA      ( N, write M   !  N ""
"" A

M   !  N: M is more solvable than N.

Every countable poset is 

embeddable in poset of unsolvables

2.1.  Black holes are hugely complicated



countable, countably universal poset of unsolvables

ogres YK

identity I, solvable terms

isomorphic embedding

Rick Statman, 1986



2.2. Once upon a time … Henk lived here (1975)



in the house there were writings on the wall



2.3.  Black holes can be beautiful
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2.4.  Another nice black hole, a pure cycle



reduction cycles entail black holes

Theorem. Let the λ-term M admit a cyclic reduction. Then M is unsolvable,
or else, a subterm of a reduct of M is unsolvable. In fact, even ’mute’, the
worst kind of unsolvable.

M

N ! C[! ]

2.5. Let’s have a theorem:



2.6. The threefold path of unsolvables

There is a natural hierarchy of unsolvable lambda terms,
in three families, leading to Böhm Trees (BT), Lévy-Longo Trees 
(LLT),and Berarducci Trees (BeT).

They embody different notions of undefined: having 
no head normal form, having no weak head normal form, 
having no root normal form. 

This can be seen as three different semantics for lambda calculus,
with BT-semantics as the coarsest (= most identifying), next LLT-
semantics as intermediate, finally BeT-semantics as the finest 
(= most distinguishing)



Böhm trees provide a semantics of λ-calculus where terms without head nor-
mal form are considered meaningless. In fact, this semantical view is one of three
canonical semantical frameworks that arise in a uniform way by considering the
three dimensions d, l, r in which λ-terms can grow:

d down, in an abstraction;

l left in an application;

r right in an application,

d

l r

λ001

d

l r

λ101

d

l r

λ111

Figure 12: Suppressed dimensions.BT LLT BeT

d

l r

λ000

r

finitary lambda  
calculus

From eightfold path to threefold path



no hnf

no whnf

no rnf

Ω

Y K

Y I

λy.Ω

Ωx

Henk’s unsolvables

undefined

more undefined

most undefined

shades of undefinedness



z

z

z

z

ω
z

BeT

λx0

λx1

λx2

Black hole,
or Ogre [48]

LLT BeT

z

z

z

z

z
ω

LLTBT BeT

Figure 14: Three infinite λ-terms. The color flags mention to which families of trees

they belong.



M BT(M) LLT(M) BeT(M)
(λx.xx)(λx.xx) Ω Ω Ω

(λxy.xx)(λxy.xx) Ω • •

(λx.xxz)(λx.xxz) Ω Ω
ωz

(λx.z(xx))(λx.z(xx)) zω zω zω

λy.((λx.xx)(λx.xx)) Ω λy.Ω λy.Ω

(λx.xx)(λx.xx)y Ω Ω Ωy

Table 3: BT, LLT, BeT-examples.



λx0

λx1

λx2

λxn

x

λx0

λx1

λx2

λxn

x

: A pair of socks: building blocks for BTs and LLTs.

in a variab

k �~x.y .

n turn, th

pinching the boomerang yields 

Henk’s notation



λx1

λx2

λy1

λy2

λz1spine

head

λy1lazy

λy1root

redex is root =⇒ lazy =⇒ head =⇒ spine

Figure 15: The strategic redexes: root, lazy, head and spine.



For BTs and LLTs, the ‘building blocks’ are as depicted in Figure 16. Note
that in [2] another notation is used, which may be called the hnf-notation; there
a ‘building block’ is obtained by pinching together the boomerang shaped figure
of the form d∗l∗ ending in a variable. (The left sock in Figure 16.) Then we

obtain the building block �~x.y . The building blocks for LLTs are sub-blocks

of those for BTs. And in turn, the building blocks for BeTs are even smaller
sub-blocks, namely application nodes, abstraction nodes �x, variables, Ω. So
the composition or decomposition of the building blocks parallels the refinement
order in BT(M) ≤Ω LLT(M) ≤Ω BeT(M). In a slogan:

The finer the building blocks, the finer the semantics.



Partial order of lambda calculus theories

adding infinity

refining semantics,

seeing sharper

Henk

Th(Pω) = Th(λ ∞β ΩBT) = B

Th(λ ∞β ΩLLT)

Th(λ ∞β ΩBeT)
Th(λβ ΩBT) = H

Th(λβ ΩLLT)

Th(λβ ΩBeT)

Th(λ ∞β )

Th(λβ )

Fig. 18.8: Partial order of λ -calculus theories..

Barendregt



3. Fixed point combinators

The theory of sage birds (technically called
fixed point combinators) is a fascinating and
basic part of combinatory logic; we have only
scratched the surface.

R. Smullyan, To Mock a Mockingbird, 1985.



(λb.b((λab.b(aab))(λab.b(aab))b))M→

M((λab.b(aab))(λab.b(aab)))M)

(λab.b(aab))(λab.b(aab)) M →

   → →M(      )

is fixed point van M

   =  M(      )

Alan Turing

invented this 

fixed point combinator



The owl δ

Smullyan: An extremely interesting bird is the owl

δ
def

= λab.b(ab) =β SI

� Y is an fpc if and only if δY =β Y

� If Y is a reducing fpc, then so is Y δ

� There is no fpc Y such that Y δ =β Y (Intrigila 1997)



3.0. Curry’s and Turing’s fixed point combinator

Y0 = $f. ($x.f(xx)) ($x.f(xx))  Curry’s fpc

Y1 = ($ab. b(aab)) ($ab. b(aab))  Turing’s fpc

 & = $xy.y(xy) = SI, Smullyan’s Owl

' = &# = &(&(&(& ... = Y&

Y0 & = Y1



3.1. The Russell paradox

liner. We form the set X of all sets x that are not member of themselves, i.e.

¬x 3 x, or simply ¬(xx). So X = λx.¬(xx). We compute:

XX ⌘ (λx.¬(xx))(λx.¬(xx))! ¬(λx.¬(xx))(λx.¬(xx))⌘ ¬(XX).

In fact, as we will see later, XX is the fixed point, or rather a fixed point, of

negation ¬:

XX = Y¬

where Y is Curry’s fixed point combinator

λ f .(λx. f (xx))(λx. f (xx))



L can see R through the in-between screen (screen is white, transparent) iff L cannot see R 

raising hands. Screen turns black (non-transparent) iff L sees R with raised hands

3.2. Henk’s Russell-paradox hypnosis experiment

(performed in Logic course 1975)



3.3. The Russell paradox by Dick de Bruijn told on a party
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2.11: Two ordinary trees (left and right) and a special tree (middle).

2.12: The super-tree with all ordinary trees as direct subtrees.

is ordinary iff it is not ordinary

ordinary:

not containing itself 

as direct subtree

special: not 

ordinary



3.4. The fixed point of negation ¬: why not

Y¬ ¬(Y¬) ¬(¬(Y¬)) Y¬

why not 

not why not 

not not why not 

=



3.5. The Russell paradox in a comicbook 





Engraving by Lucas Jennis, in alchemical tract titled De Lapide Philosophico.. Around 1600.

3.6. Circularity in alchemy

https://en.wikipedia.org/wiki/Lucas_Jennis
https://en.wikipedia.org/wiki/Alchemical


3.7. Circularity on the dining table



3.8. Circularity in Escher’s art





3.9. Self-referentiality  pun in my library

smullyan: 

What is the name of this book?



3.10. Self-referentiality in streams 

(infinite sequences of natural numbers)

Naming sequence:

Kolakoski  sequence, equal to the sequence of its own run lengths

Thue-Morse  sequence; morphic sequences

Toeplitz  sequence

self-similarity;  

fixed point construction,  

fractals



symbolization

mathematical 
statements

logical 
statements

arithmetization
godelization
coding

Emil Post (1897-1954): 

Symbolic Logic may be said to be Mathematics become self-conscious.

3.9. Circularity, self-referentiality in logic

Noson Yanowsky 2013: 
The outer limits of reason - 
what science, mathematics, 
and logic cannot tell us



Peano's nine axioms, rephrased in contemporary notation, are:

1 1 is a natural number.

2 Every natural number is equal to itself (equality is reflexive).

3 For all natural numbers a and b, a=b if and only if b=a (equality is 

symmetric).

4 For all natural numbers a, b, and c, if a=b and b=c then a=c (equality is 

transitive).

5 If a = b and b is a natural number then a is a natural number.

6 If a is a natural number then Sa is a natural number.

7 If a and b are natural numbers then a=b if and only if Sa =Sb.

8 If a is a natural number then Sa is not equal to 1.

9 For every set K, if 1 is in K and for every natural number x in K, Sx is also 

in K, then every natural number is in K. (It makes no difference here whether 

all elements of K are natural numbers.)

 57

PA, Peano’s Arithmetic

http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Symmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation




3.10. Reflection in the lambda calculus:

an inner model of the lambda calculus

lambda terms lambda terms

normal forms

codes

coding

enumerator 

(evaluator) E

d e

EdMe =β M

EdMe ⇣β M

E ⌘ hhK,S,Cii
K ≡ λab.a

S ≡ λabc.ac(bc)
C ≡ λabc.acb

Stephen Cole Kleene 

1909-1994

Conjecture by Barendregt,  
proved by Statman for enumerators. 
Also for this evaluator?



p q }

2.4.13. COROLLARY. The term hhK, S, Cii is a self-interpreter for the lambda cal-
culus with the coding defined in Definition 2.4.11.

2.4.11. DEFINITION. (Mogensen) Define for a lambda term M its code pMq

as follows.

pxq ≡ λe.eU3

1
xe = FLx;

pMNq ≡ λe.eU3

2
pMqpNqe = FPpMqpNq;

pλx.Mq ≡ λe.eU3

3
(λx.pMq)e = F!(λx.pMq).

The trick here is to code the lambda with lambda itself, one may speak of an
inner model of the lambda calculus in itself. Putting the ideas of Mogensen
[1992] and Böhm et al. [1994] together, as done by Berarducci and Böhm
[1993], one obtains a very smooth way to create the mechanism of reflection
the lambda calculus. The result was already proved in Kleene [1936]3.

2.4.12. THEOREM. There is a lambda term E (evaluator or self-interpreter) such
that

Epxq = x;

EpMNq = EpMq(EpNq);

Epλx.Mq = λx.(EpMq).

It follows that for all lambda terms M one has

EpMq = M.

as above.

in



Y          Y (AAA)A~nII⇒  

Y         Y δ   ⇒  

Y         Y (SS)S~nI⇒  

(Böhm)

(Scott)

(A = BS)

(δ = SI)

δ (SS)SI (AAA)AAAAIIY0 δ (SS)SI is a fpc

Are all these composite fpc’s really different?

3.11. Lego blocks for fixed point combinators



3.12. Weak fixed point combinators,

aka looping combinators

Example 14. An example of a weak fpc is the term A(BAB) where A ≡ BM and

M ≡ λx.xx. This example was found by Statman, in his study of terms composed only

of symbols B and M. Here the generator changes in each ‘production cycle’. We have the

following reduction:

A(BAB)x

→
3
M(BABx)

→ BABx(BABx)

→
3
A(Bx)(BABx)

→
3
M(Bx(BABx))

→ Bx(BABx)(Bx(BABx))

→
3
x(BABx(Bx(BABx)))

→
3
x(A(Bx)(Bx(BABx)))

→
3
x(M(Bx(Bx(BABx))))

→ x(Bx(Bx(BABx))(Bx(Bx(BABx))))

→
3
x(x(Bx(BABx)(Bx(Bx(BABx)))))

→
3
x(x(x(BABx(Bx(Bx(BABx))))))

→
3
x(x(x(A(Bx)(Bx(Bx(BABx))))))

→
3
x(x(x(M(Bx(Bx(Bx(BABx)))))))

→ x(x(x(Bx(Bx(Bx(BABx)))(Bx(Bx(Bx(BABx)))))))

→
3
x(x(x(x(Bx(Bx(BABx))(Bx(Bx(Bx(BABx))))))))

→
3
x(x(x(x(x(Bx(BABx)(Bx(Bx(Bx(BABx)))))))))

→
3
x(x(x(x(x(x(BABx(Bx(Bx(Bx(BABx))))))))))

→
3
x(x(x(x(x(x(A(Bx)(Bx(Bx(Bx(BABx))))))))))

→
3
x(x(x(x(x(x(M(Bx(Bx(Bx(Bx(BABx)))))))))))



in functional languages the Y-combinator is
represented by a term graph with a cycle:
self-reference!

Yx  = 

x



4. Clocks in the lambda calculus
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The evaluation of lambda terms M to their infinite
expansion BT(M) turns out to possess an underlying clock
mechanism, a rhythm, that can be used to discriminate 
lambda terms  wrt beta-conversion.

But first we pay attention to the curious phenomenon 
of a clock mechanism in  human consciousness. 



4.1. The stream of consciousness …

is not a continuous stream 

but has a rhythm, a heart 

beat, a clock







 

 

  

_ 
Discrete states of consciousness 
 

An inquiry into the dynamics of conscious cognition based on neurophysiological 

evidence.  

 

2014 

Name   : Anthony Mahabir  

1
st

 supervisor : Henk Barendregt  

2
nd

 supervisor : Menno Lievers 

Credits   : 60 ECTS 

Date   : 19-09-2014 



Y3 ≡ Y0δδδ λa.a(ωδ ωδ δδa)

ωδ ωδ δδa a(ωδ ωδ δδa)

7

h

7

h

λa.a2

a2

clock behaviour of fpc in Böhm sequence of fpc’s

Y0, Y0 &, Y0 &&, Y0 &&&, Y0 &&&&, ...
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Figure 21: Clocked Böhm trees of BY0 and BY0S.
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Atomic clocks

Record not only the number steps, but also the positions of the steps.

Let M ⌃ Λ. The atomic clock Böhm tree BT (M) of M is defined by
BT (M) = � if M has no hnf. Otherwise, there is a head reduction

M ⇤hd,p1 · · · ⇤hd,pk �x1. . . .�xn.yN1 . . .Nm

and then put BT (M) = [ p1, . . . , pk⌦]�⇧x .yBT (N1) . . .BT (Nm).

The theory for clocked BT’s generalizes to atomic trees: Here we use the
subsequence relation for comparing annotations (= lists of positions):

 a1, . . . , an⌦ ⇥  b1, . . . , bm⌦
def

⌅⇧  a1, . . . , an⌦ =  bi1 , . . . , bin⌦

for some indices i1 < i2 < . . . < in.

Example: Y2 ⌥=β U2.



Lévy–Longo and Berarducci trees

� The theory easily generalizes to Lévy–Longo and Berarducci trees.

� LLT-semantics is based on head reduction to weak hnf
(whnf = abstraction, or application with leading var).

� Clocked LLT’s can distinguish e.g. PP �=β QQ where

P = λxy .xx Q = λxyz .xx



Clocked Lambda Calculus

(λx.M)N ! τ(M[x :=N])
τ(M)N ! τ(MN)

The τ’s are ticks of the clock (measure of efficiency).

Properties: orthogonal, SN∞, CR∞, UN∞

Normal forms are clocked Lévy–Longo trees:

τ2

·

f τ1

·

f τ1

·

f . . .

τ2

·

f τ2

·

f τ2

·

f . . .

nf (Y0 f )⌘ nf (Y1 f )⌘

different clock

) Y0 6= Y1



BT

BT

BT
LLT

LLT

LLT
BeT

BeT

BeT

=β

Making lambda calculus see sharper: 

we find a spectrum of intermediate 

equalities between β-equality 

and BT-equality, each a 

discrimination tool for 

β-equality



BT

BT

BT
LLT

LLT

LLT
BeT

BeT

BeT

=β

clocked lambda theories

Exercise.

(i) in $∞( there is only one Ogre, 

Omnivore;

(ii) in $( there are infinitely many, 

i.p. all YnK are different
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मुिदता
To Henk: much success in the coming chapter of your life,
bridging the two streams, and much             (mudita) in doing so!
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