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Y0 = λf.(λx.f(xx)) (λx.f(xx))                       (Curry)

 Y1 = (λab.b(aab)) (λab.b(aab)) = ηη        (Turing) 

Exercise. Find M such that Mx = MxM
Answer: M      Y(λmx.mxm)≡

Y is a fixed point combinator if Yx = x(Yx),
and a reducing fpc if Yx         x(Yx)→→

Lesson 1fpc’s: 

recursion 

=

reflection in itself



Lesson 2
Y is a fixed point combinator if Yx = x(Yx).

Böhm: AH! so Y is itself defined by a fixed 
point equation! 
So, given a fpc Y’, we can construct Y:

Y = Y’ (λyx.x(yx)) = Y’(SI) = Y’ δ
Y0 , Y0 δ , Y0 δ δ , Y0 δ δ δ , ...  Böhm sequence of fpc’s

Y0 , Y1  , Y2 , Y3 , ...  

Easy exercise: first two are different
Hard exercise: they are all different



ηηδδ

γ(ηη)δδ

δ(ηηδ)δ

γ(ηηδ)δ

δ(ηηδδ)

γ(ηηδδ)

ηηδδa

γ(ηη)δδa

δ(ηηδ)δa

γ(ηηδ)δa

δ(ηηδδ)a

γ(ηηδδ)a

a(ηηδδa)

ηηδδa

γ(γ(ηη))δδa

δ(γ(ηη)δ)δa

γ(γ(ηη)δ)δa

δ(γ(ηη)δδ)a

γ(γ(ηη)δδ)a

a(γ(ηη)δδa)

γ(ηη)δδa

Y3

invariant:

2 passive δ occurrences



Theorem (Intrigila).
Statman’s double fpc does not exist, 

indeed.

Question. Are there other postfixes that generate 

fpc’s? Possibly with more arguments

super hard exercise (Statman hard): 

If Y is a fpc, then Y ≠ Yδ



intermezzo: Smullyan’s owl

= δ = SI

δ δ δ δ δδδδ δδδ δδδ

δδδ(δ(δ(δδδδ)))(δ(δδδδ))

δδδδδδ          →
δ(δδ)δδδ       →
δ(δδδ)δδ       →
δ(δδδδ)δ       →
δ(δδδδδ)       →
δ(δ(δδ)δ        →
δ(δ(δδδ)δ)     →
δ(δ(δδδδ))     →
δ(δ(δδ)δ)δ))  →
δ(δ(δ(δδδ)))  →
δ(δ(δ(δ(δδ))))

δxy → y(xy) 



D= λab.b(ab)

A=DD

  

AA

 A(DA)

 DA(D(DA))

 D(DA)(A(D(DA)))

 A(D(DA))(DA(A(D(DA))))

 D(DA)(D(D(DA)))(DA(A(D(DA))))

 D(D(DA))(DA(D(D(DA))))(DA(A(D(DA)))) 

 DA(D(D(DA)))(D(DA)(DA(D(D(DA)))))(DA(A(D(DA))))

 D(D(DA))(A(D(D(DA))))(D(DA)(DA(D(D(DA)))))(DA(A(D(DA))))

Word problem ?



Scott’s equation BY = BYS

BY0I = (λabc. a(bc)) Y0I = λc. Y0(Ic) =  Y0

BY0SI = (λabc. a(bc))Y0SI = Y0(SI) = Y0 δ =  Y1

QED

For general Y, apply Intrigila’s theorem:Y ≠ Yδ

Easy exercise: 
Y0 ≠ Y1



 BY = BYS continued (2)

BY =  (λabc. a(bc))Y = (λbc. Y(bc)) = λbc. (bc)ω

BYS =  (λabc. a(bc))YS = (λc. Y(Sc)) = λc. (Sc)ω

= λc. Sc(Sc)ω = λcz.cz((Sc)ωz) = λcz.cz(cz((Sc)ωz)) =
...  λcz. (cz)ω = λbc. (bc)ω

Note that (λbc. (bc)ω)I = λc. (Ic)ω = λc. cω = Y in 

infinitary lambda calculus λ∞.

And note that in λ∞ BY = BYS= BYSS=BYSSS=... = 

λbc. (bc)ω



 BY = BYS continued (3)

BY = BYS= BYSS=BYSSS=... = λbc. (bc)ω

BYI = BYSI = BYSSI = BYSSSI =... = λc. cω = Y in λ∞

Now return to finitary λ-calculus:

-  every BYS~nI is a fpc. The first two are as in 
the Böhm fpc sequence, but the subsequent 
ones deviate. The sequence contains no 
duplications. 

-  If Y is a fpc, then Y(SS)S~nI is a fpc.



 BY = BYS concluded

Similar: the equation BBBY = BBBY(BS) = 
λabc. (abc)ω yields fpc generating schemes

(with A = BS):

Y       Y(S(AI))I
Y       Y(AAA)II
Y        Y(AII)
Y        Y(AAI)I
Y        Y(AAA)A~nII    

⇒

⇒
⇒
⇒

⇒

AII = δ !

bachelor thesis:

compute the schemes

obtainable from

λabcd. (abcd)ω etc.



    I=\x.x
    K=\xy.x
    S=\xyz.xz(yz)
    B=\xyz.x(yz)
    C=\xyz.xzy
    1=\xy.xy
    Y=\f.(\x.f(xx))\x.f(xx)
    T=\xy.x
    F=\xy.y
    J=\abcd.ab(adc)
      

.li leftmost innermost
      .lo leftmost outermost [default]
      .po parallel outermost
      .gk gross knuth
      .l lambda reduction [default]
      .c combinator reduction
      .ex eta reduction
      .in no eta reduction [default]
      .+ fold combinators
      .- don't fold combinators [default]
      .tau translate to CL
      .tau' translate economically to CL
      .. normalize
      .<< previous input term
      .< previous term
      .> next term
      .>> next input term
      .? help
      . exit



D=\ab.b(ab)
 A=BS

  Y(AAA)IIx
  Y(AAA)IIx .c
  Y(AAA)IIx 
  (\x.AAA(xx))(\x.AAA(xx))IIx 
  AAA((\x.AAA(xx))\x.AAA(xx))IIx 
  BSAA((\x.AAA(xx))\x.AAA(xx))IIx 
  S(AA)((\x.AAA(xx))\x.AAA(xx))IIx 
  AAI((\x.AAA(xx))(\x.AAA(xx))I)Ix 
  BSAI((\x.AAA(xx))(\x.AAA(xx))I)Ix 
  S(AI)((\x.AAA(xx))(\x.AAA(xx))I)Ix 
  AII((\x.AAA(xx))(\x.AAA(xx))II)x 
  BSII((\x.AAA(xx))(\x.AAA(xx))II)x 
  S(II)((\x.AAA(xx))(\x.AAA(xx))II)x 
  IIx((\x.AAA(xx))(\x.AAA(xx))IIx) 
  Ix((\x.AAA(xx))(\x.AAA(xx))IIx) 
  x((\x.AAA(xx))(\x.AAA(xx))IIx) 
  

Conjecture for Benedetto:

Y ≠ Y(AAA)II;

in general for every fpc 

generating postfix



general conjecture

• Yδ~n ≠ Y for every fpc Y

• Y ≠ Y’ ⇒ Yδ ≠ Y’δ for al fpc’s Y, Y’

• Every fpc Y can be factorized uniquely in a prime fpc 

followed by a string of (prime) fpc postfixes

• There are no non-trivial equations between fpc’s, no 

postfix derivation cycles, no intersecting derivation 

trails

• Fpc’s form a ‘free structure’

Caveat: Y(KY’) = Y’
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fixed point combinator 

Y3 as a clock τ7γ(τ7γ)ω

Yn has clock τ2n+1 γ (τ2n+1 γ)ω

Y0δδδ λa.a(ωδωδδδa)

ωδωδδδa)

λa.a■

a(ωδωδδδa)

a■

τ7

τ7

γ

γ



clocked BT of BY

λb

λc

b

c
b

c
b

c .....

0

0

0

0

2

2

2

2

clocked BT of BYS

λb

λc

b

c
b

c
b

c .....

4

0

0

0

4

4

0

4

number of head 

reduction steps; 

independent of actual 

reduction

clocked bOHM trees

λbc. (bc)ω



M

M’

γ

γ

τ

ι

τ

τ

τ

τ

τ

τ

τ

ι

ι ι∅

∅

∅

∅

∅

∅

∅

∅

∅∅

∅

∅

∅

clock(M)         =          clock(M’)

ι

ι

τ

ι

ι

τ

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

ι

∅

Clock invariance for 

simple terms; reduct 

of simple term has 

same clock

For simple terms

clock behaviour is 

discriminating 

feature

Alternative proof

that Böhm sequence

of fpc’s is free of 

duplicates




