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Infinite Objects

Turing Machines

Formalisation of Computability:

Recursive Functions, Recursion Theory

Algebraic Specifications,

Abstract Data Types

String Rewriting

Systems (SRSs)

Functional Programming

Typed Lambda Calculi

Type Theory,

Theorem Provers,

Proof Assistants

(Automath, Coq,. . . )

Formalization and Verifi-

cation of Mathematics

Foundations of Logic and Mathematics

Theory of Types

Lambda Calculus, Combinatory Logic

Term Rewriting Systems (TRSs)

Infinitary TRSs, infinitary Lambda Calculus

Infinite Sequences, Productivity of Streams

Higher-order TRSs

Communicating Processes,

Process Algebra, CCS, CSP,

ACP, π-calculus, Bigraphs

Coalgebraic Techniques,

Data & Codata,

Recursion & Corecursion

1900

1920

1930

1940

1970

1978

1960–1980

1990

1960–1980

2000 1980

1995–2005

historical time-flow

confluence arose here

infinitary rewriting arose 

here
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1. rewriting dictionary

b

a

normal form

a

reduction cycle;

loop if one step

a

b c

d

CR, Church-Rosser

b

cc

d

equivalent: CR, 

Church-Rosser

a

· · ·

· · ·

WN, weakly normalizing

a

SN, strongly 

normalizing;terminating; noetheria

a

nf b

NF, normal form property

nf a

nf b
≡

UN=, unique normal 

form property wrt =

a

n1 n2!

UN 
", unique 

normal form 

property wrt "



CR

WCR
≤1

CR
=

NF UN UN
→

&WCR SN WN

&



I,K,S, B

# = $x.xx

% = ##

 & = $xy.y(xy) = SI, Smullyan’s Owl

' = &# = &(&(&(& ... = Y&

Y0 = $f. ($x.f(xx)) ($x.f(xx))  Curry’s fpc

Y1 = ($ab. b(aab)) ($ab. b(aab))  Turing’s fpc

Y0 & = Y1
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Henk Barendregt, spring 1971

Parallel Reduction a� la Tait and Martin"Lo� f

M bw!M

M bw!M$

*x .M bw!*x .M$

M bw!M$ N bw!N$

MN bw!M$N$

M bw!M$ N bw!N$

(*x .M)N bw!M$[x :=N$]

We use the notation bw! for parallel reduction. In the style of Tait and Martin!

Lo� f, it is defined by the inductive clauses in Table 10. It characterizes complete

developments, in the sense that M bw!N if and only if there is a complete develop-

ment from M to N.

In Aczel [Acz78] the last clause is replaced by:

M bw!*x .M$ N bw!N$

MN bw!M$[x :=N$]
.

Now there is a complete ;-superdevelopment form M to N if and only if M bw!N

according to Aczel's definition.

Example 12.1. In the first definition, due to Tait and Martin-Lo� f, we do not

have IIII bw!I (with I#*x .x); in Aczel's definition we do.

Likewise (*xyz .xyz) abc bw!abc and even II(*xyz .xyz) abc bw!abc.



1924. "Über die Bausteine der mathematischen Logik"

Moses Schönfinkel

9

λxyz.xz(yz)

λxy.x

λx.x

S K

I



History of Lambda-calculus and

Combinatory Logic

Felice Cardone ∗ J. Roger Hindley †

2006,

from

Ever since the original proof of the confluence of λβ-reduction in [Church and
Rosser, 1936], a general feeling had persisted in the logic community that a shorter
proof ought to exist. The work on abstract confluence proofs described in §5.2
did not help, as it was aimed mainly at generality, not at a short proof for λβ in
particular.

For CL, in contrast, the first confluence proof was accepted as reasonably simple;
its key idea was to count the simultaneous contraction of a set of non-overlapping
redexes as a single unit step, and confluence of sequences of these unit steps was
easy to prove, [Rosser, 1935, p.144, Thm. T12].

Then in 1965 William Tait presented a short confluence proof for CL to a sem-
inar on λ organized by Scott and McCarthy at Stanford. Its key was a very neat
definition of a unit-step reduction by induction on term-structure. Tait’s units were
later seen to be essentially the same as Rosser’s, but his inductive definition was
much more direct. Further, it could be adapted to λβ. (This possibility was noted
at the seminar in 1965, see [Tait, 2003, p.755 footnote]). Tait did not publish his
method directly, but in the autumn of 1968 he showed his CL proof to Per Martin-
Löf, who then adapted it to λβ in the course of his work on type theory and included
the λβ proof in his manuscript [Martin-Löf, 1971b, pp.8–11, §2.5].

Martin-Löf’s λβ-adaptation of Tait’s proof was quickly appreciated by other
workers in the subject, and appeared in [Barendregt, 1971, Appendix II], [Stenlund,
1972, Ch. 2] and [Hindley et al., 1972, Appendix 1], as well as in a report by Martin-
Löf himself, [Martin-Löf, 1972b, §2.4.3].42

In λ, each unit step defined by Tait’s structural-induction method turned out to
be a minimal-first development of a set of redexes (not necessarily disjoint). Curry
had introduced such developments in [Curry and Feys, 1958, p.126], but had used
them only indirectly; Hindley had used them extensively in his thesis, [Hindley,
1969a, p.547,“MCD”], but only in a very abstract setting. They are now usually
called parallel reductions, following Masako Takahashi. In [Takahashi, 1989] the
Tait-Martin-Löf proof was further refined, and the method of dividing reductions
into these unit steps was also applied to simplify proofs of other main theorems on
reductions in λ.

Tait’s structural-induction method is now the standard way to prove confluence
in λ and CL. However, some other proofs give extra insights into reductions that
this method does not, see for example the analysis in [Barendregt, 1981, Chs. 3,
11–12].

Besides confluence, major themes in the study of -reductions have been given
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Consideration is given to the equational theory !" of lambda calculus 

extended with constants ", "0, "1 and axioms for subjective pairing: 

"0("XY)=X, "1("XY)=Y, "("0X )("1X)=X. 

The reduction system that one obtains by reading the equations 

are reductions (from left to right) is not Church-Rosser. 

Despite this failure, the author obtains a syntactic consistency 

proof of !" and shows that it is a conservative extension of the pure ! calculus

Extending the lambda calculus with 
surjective pairing is conservative

Klop, de Vrijer 1989: but UN holds

nasty overlap

De Vrijer 1989



CA

ε(CA)Cε(CA)

ε(δ(CA)(CA))

β

δ

ε

δ

ε

ε

δ

ε

δ
ε

ε

δ

BT

BT

Question: what about $∞( & and $∞( ) ?

A Question of Balance (The Moody Blues 1970)

A CA ε(δA(CA)) ε(δ (CA)(CA)) ε(CA)

C(ε(CA))

δxx →δH
x Cx � ε(δx(Cx))

A �CA
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Aczel 1978

coherent contraction 

schemes



Look Inside Get Access
Typed Lambda Calculi and Applications
Lecture Notes in Computer Science Volume 664, 1993, pp 306-317

Orthogonal higher-order rewrite systems are confluent

Abstract

The results about higher-order critical pairs and the confluence of OHRSs provide a firm foundation for

the further study of higher-order rewrite systems. It should now be interesting to lift more results and

techniques both from term-rewriting and !-calculus to the level of HRSs. For example termination proof

techniques are much studied for TRSs and are urgently needed for HRSs; similarly the extension of our

result to weakly orthogonal HRSs or even to Huet's “parallel closed” systems is highly desirable.

Conversely, a large body of !-calculus reduction theory has been lifted to CRSs [10] already and should

be easy to carry over to HRSs.

Finally there is the need to extend the notion of an HRS to more general left-hand sides. For example the

eta-rule for the case-construct on disjoint unions [15] case(U,!x.F(inl(x)),!y.G(inr(y))) → F(U) is outside

our framework, whichever way it is oriented.



Van Oostrom, van Raamsdonk 1994

$(* ! CR
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( xy. x )

( y. ) !

( y. ) !

( y. ) !

(λx.Z(x))Z� → Z(Z�) (β )

M → Ω if M �= Ω is unsolvable (uns)

ΩM → Ω (Ωl)

λx.Ω → Ω (Ωd)

Modulo unsolvables: 

$(% ! CR



In Barendregt 84: section 15.2, 8 pages

Blue preprint 1976, Barendregt, Bergstra, Klop, Volken:

youth sentiment and contortuous casuistics

later question:
$∞(*% ! CR∞

$(*% ! CR
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Iω(Iω)
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I
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ω(Iω)

I
3
ω(I2ω)

I
3
ω(I3ω)

ω(Iω) Iω(Iω) I
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ω(Iω) I

3
ω(Iω)



solvable termssolvable terms

unsolvable termsunsolvable terms

I

λx.xx

λyx.yxx

order 0 Ω

order 1 λx.Ω

.

.

.

order ∞ YK≡ λx1x2x4 . . . .

Statman 1978

instead of MA      ( N, write M   !  N ""
"" A

M   !  N: M is more solvable than N.

Every countable poset is 

embeddable in poset of unsolvables



� root

�� root

�� lazy � lazy

��head �head

��spine �spine

ΩBeT (mute terms, no root stable form)

ΩLLT (no weak head normal form)

ΩBT (no head normal form, unsolvables)

⊆
⊆

=

⊆

=

=

= =

=

=

=

head normalization theorems
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F(0) P

0           F

S

0

P

P

P

P

0

S

0 S

S

0

.....

Limit: infinite sequence of natural numbers

F(x) " P(x, F(S(x)))
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F(x) " P(x, F(S(x)))

P

F F

0 0

P

F

0

P

P

P

P

P

0

S

0 S

S

0

P

P

P

P

P

0

S

0 S

S

0

P

P

P

P

P

0

S

0 S

S

0

P
! !

Transfinite reduction sequence of length ! + !
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Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations

difference between CC and SC: looping terms
Kennaway-de Vries 1992; De Vrijer, Grabmayer, Endrullis, Hendriks, Simonsen 2012



ω ·1 ω ·2 ω ·3 ω ·4 ω ·5 ω ·6 ω ·7 ω ·8 ω ·9 ω ·10 ω ·11 ω ·12 ω ·13ω ·14ω ·15ω ·16ω ·17ω ·18ω ·19

0 ω
2

convergence of depths towards ω
2

strong convergence: redex depth to infinity



Finitary rewriting Infinitary or transfinite rewriting

finite reduction strongly convergent reduction

infinite reduction divergent reduction (“stagnating”)

normal form possibly infinite normal form

CR: two coinitial finite reductions can
be prolonged to a common term

CR∞: two coinitial strongly conver-
gent reductions can be prolonged by
strongly convergent reductions to a
common term

UN: two coinitial reductions ending in
normals forms, end in the same normal
form

UN∞: two coinitial strongly conver-
gent reductions ending in (possibly in-
finite) normal forms, end in the same
normal form

SN: all reductions lead eventually to a
normal form

SN∞: all reductions lead eventually to
a possibly infinite normal form, equiv-
alently: there is no divergent reduction

WN: there is a finite reduction to a
normal form

WN∞: there is a strongly convergent
reduction to a possibly infinite normal
form



∞

M

A

∞

M

A
∞

A

∞

M(0,∞)

M(0,S(∞))

M(0,S(S(∞)))

M(0,Sω) A(M(0,Sω),0)

A(M(0,∞),0)

A(A(M(0,∞),0),0)

µx.A(x,0)

A

A

A

A

A

A

A

A

A

A

0
0

0

0

0

0

0

0

0

0

A(x, 0)" x
A(x, S(y)) " S(A(x, y))
M(x, 0) " 0
M(x, S(y)) " A(M(x, y), x)
+  " S(+)

zero times infinity



! t0 t1 t" t"+1

!’

t"+"

t’0 t’1 t’2 t’" t’"+1 t’"+"

p0 p1 p2

|| || || || || || ||

s0 s1 s"

p" p"+"



35

A(x)          x
B(x)          x
C              A(B(C))!

!
!

C

A(B(C))

A(C)                      B(C)

A(A(B(C)))           B(A(B(C)))

A(A(C))                 B(B(C))

A(A(A(B(C))))      B(B(A(B(C))))

A(A(A(C)))           B(B(B(C)))

A                            B

"

" "

" "

" "

""

""

......

......

# #

C

ABC

ABABC

ABABABC

ABABABABAB...

A                           B# #

"

"

"

"

...

##

(a) (b)

Failure of infinitary confluence

not CR+
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Sxyz         xz(yz)
Kxy          x

!

!

!
!

@(@(@(S, x), y), z)      @(@(x, z), @(y, z))
@(@(K, x), y)                x

@

@          K

K

@

@          S

K

@

@          K

K @

@          S

K @

@          K

K @

@          S

K @

@

@          S

K @

@          S

K @

@          S

K @

@          S

K @

@

@          K

K @

@          K

K @

@          K

K @

@          K

K @

" "

collapsing contexts

Failure of infinitary confluence for Combinatory Logic



A(x) ! x
B(x) ! x
C ! A(B(C))

"
Failure 

of CR

37



C

ABC

BC

BABC

BBC

BBABC

BBBC

BBBABC

BBBBC

BBBBABC

BBBBBC
BBBBBABC

BBBBBBC
BBBBBBABC

BBBBBBBC
BBBBBBBABC

BBBBBBBBC

ABC

AC

AABC

AAC

AAABC

AAAC

AAAABC

AAAAC

AAAAABC

AAAAAC
AAAAAABC

AAAAAAC
AAAAAAABC

AAAAAAAC
AAAAAAAABC
AAAAAAAAC

BC

BABC

BBC

AC

AABC

AAC

ABC

C

ABC

C

ABC-counterexample in perspective:

euclidean distance = tree distance



K

K

K

K

K

K

K

K

K
.

.

.

K

S

K

S

K

S

K

S

K

Example 2.4. The ‘ABC-example’ that we saw in the preced-
ing example also works in the much more important rewrite
system Combinatory Logic CL, with the usual three basic
combinators I,K, S and their corresponding reductions rules
(see, e.g., Barendregt [2]), and also in infinitary λ-calculus
that we will consider in more detail in the next section. The
figure on the right, with the infinite collapsing tower of two
different collapsing contexts K�K and K�S shows how the
ABC-counterexample can be simulated using a fixed-point
construction in those calculi. To see that this is indeed a CR∞-
counterexample, note that µx.K(KxS)K →→→ µx.KxS and also
µx.K(KxS)K →→→ µx.KxK, while µx.KxS and µx.KxK only re-
duce to themselves (in any countable ordinal number of steps,
by the way).



M1

M2

N normal form

!

Ketema-Simonsen, with UN∞ as corollary



Ter
∞(Σ)

I
ω

Ω

divergent

root active

hypercollapsing

alternatingly
hypercollapsing

CR∞

WN∞

SN∞

NF

UN∞

bad good

Fam(t)
t

15.1. For all terms t in an orthogonal TRS, we have

Fam(t)∩HC =∅ ⇒ CR∞(t)
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For infinitary lambda calculus

Parallel Moves Lemma PML+ 

fails, hence also CR+

$+ :not PML+
!I!I "(!I!I)

!I!I

"!

!!I

!!
!!!!!!

"2(!I!I) "3(!I!I)

"(!I!I)

"!

"!

"!

?

I

@

I

@

I

@

I

@

I# !

#I ! ($x.I(xx)
# ! $x.xx

YI " #I #I



another counterexample

Z

Let M ≡ λx.Kxw and Z = Y M. Then

MZ KZw

Y I K

K

K

K

K
.
.
.

w

w

w

w

w

curious: in the limit, w is 

fixed as a free variable, 

all reducts are open terms

all reducts are closed terms



BYSI BYI 

BY BYS≠( ?

≠( !

BYI ! ($abc.a(bc)) YI 

$c.Y(Ic)

$c.Yc  

Y  

Curry’s fpc

BYSI ! ($abc.a(bc))YSI 

Y(SI)

Turing’s fpc

A simple proof

45



Y0:   #f. (x.f(xx)(#x.f(xx))

Y1:   (#ab. b(aab)) (#ab. b(aab))

Y0(SI)         Y1""

Exercise. Prove that Y0  ≠( Y1



infinitary lambda calculus subsumes scott’s 

induction rule

Yx"" x(Yx)   " "  x2 (Yx) "#  x# ! x(x(x(x...

BY ! ($abc.a(bc)) Y BYS ! ($abc.a(bc)) YS 

$bc.Y(bc) 

$bc. (bc)# ! $cz. (cz)# 

#

$c.Y(Sc) 

$c. Sc(Y(Sc)) 

$cz. cz(Y(Sc)z) 

$cz. cz(cz(Y(Sc)z)) 
#

=+

≠(

), ax * bx + a(ux) * b(ux)
,

), a⊥ * b⊥ + a(Yu) * b(Yu)



playing with infinite lambda terms: 

infinite fixed point combinators

(v) ∆∆ is an interesting term. We have

∆∆ →→→ ∆
ω

→→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · ·

See Figure 8. Somewhat surprisingly, ∆∆ does have a normal form, viz.
µx.xx; and moreover ∆∆ has the property SN∞. To see that µx.xx is
indeed the normal form, one may consider the reduction

∆∆ →→→ (∆ω)ω ≡ ∆
ω((∆ω)ω) →→→ (∆ω)ω((∆ω)ω) →→→ · · ·

and check that the reductions involved do not employ root redexes. (Only
in the reduction∆∆ →→→ ∆

ω a root step is present; in the ‘later’ reductions
there are no root steps.) In fact we have a strongly convergent reduction

∆∆ →→→ ∆
ω

→→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · · →→→ µx.xx

(vi) The term ∆∆ has uncountably many reducts. It has reductions of any
countable ordinal length. It is SN∞ with µx.xx as its unique normal form.
This normal form is in fact a Berarducci tree. The example of ∆∆ was
also mentioned in [4]. SN∞ can be proved as follows: We have CR∞ as
there are no collapsing rules in this TRS, which is a fragment (sub-TRS)
of CL. Since there is a normal form, we have WN∞. Hence, SN∞ follows
by the equivalence SN∞

⇐⇒ WN∞ as global properties of TRSs.

twinkle = ' = &# = &(&(&(& ...

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆
ω

∆

δ

∆∆

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆
ω

∆

δ

∆∆

term graph edges

infinitary rewriting

(SS)$SSSI, another infinite fpc

∆x ≡ δ∆x →β→β x(∆x)



Theorem 13.2.5 ([15]). The infinitary β-reduction →→→β has the infinitary nor-
mal form property NF∞, that is, for all M,N ∈ Ter∞(λ) with N a normal
form and M ( →→→β∪ →→→β)

∗ N we have M →→→β N. In a picture:

M N a normal form
∗

Actually the following property is sufficient:

M N a normal form

L

We obtain infinitary unique normal forms UN∞ as a direct corollary.
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playing with infinite lambda terms: 

looping lambda terms

!

t0"v0

"v1

"v2

"v3

t1

t2

t3

!

!

looping term with infinite spine (red) and cascade projective sequence,

with projection ! .



Theorem 13.2.6. In infinitary λ-calculus, a term is root looping if and only if
it is of one of the following forms:

(i) Ω

(ii) Iω

(iii) BB where B is the infinite solution of B = λx.xB,

(iv) (λv0.(λv1.(λv2....)t2)t1)t0 such that ti is obtained from ti+1 by replacing
v0 by t0 and all variables vj+1 by vj. We call such a term a cascade.

λv0

λv1

λv2

λx4 t3

t2

t1

t0

π

π

π

Figure 13.2: The shape of cascades; here π stands for replacing all variables vj by
vj+1 followed by replacing an arbitrary (possibly infinite) number of occurrences
of t0 by v0.
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λ z
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different ways to count depth
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typical terms in the three domains
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BeT(YΩ3) =

ω3

ω3

ω3

BeT(Ω3) =

ω3

ω3

I

BeT(Ω3I) =

not easy easy

easy for closed normal forms;

open problem for general terms

Berarducci Trees

a tool for consistency analysis



λx0

λx1

λx2

λxn

x

λx0

λx1

λx2

λx3

λx4

.

.

.

λx0

λx1

λx2

λxn

. . .

building blocks for infinitary lambda normal forms
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2. Lambda and CL: basic confluence

1. Introduction

3. Surjective Pairing: confluence lost

4. Confluence of a higher order

5. Lambda with black holes: confluence 

6. Confluence lost in infinity

7. The threefold path

8. Black holes to the rescue

9. The rhythm of lambda terms

10. Getting rid of ordinals

11. Infinity and eta: total breakdown

12. A lambda universe



BT(M) =

�

λ�x.y BT(M1) . . .BT(Mm) if M has hnf λ�x.yM1 . . .Mm,

⊥ otherwise.

LLT(M) =















x LLT(M1) . . . LLT(Mm) if M has whnf xM1 . . .Mm,

λx.LLT(M �) if M has whnf λx.M �,

⊥ otherwise.

BeT(M) =























y if M →→ y,

λx.BeT(N) if M →→ λx.N ,

BeT(M1)BeT(M2) if M →→ M1 M2 such that M1 is of order 0,

⊥ in all other cases (i.e., when M is mute).

Coinductive definition of BT, LLT, BeT
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redex is root ⇒ lazy ⇒ head ⇒ spine

the typical redexes



mute

no whnf

no hnf

hypercollapsing

various notions of undefined

!

!

!

!

notions of undefinedness, with a caveat



lambda theories compared

Question:
Do we have LLT and BeT 

versions of P # ?

continuum many 

theories

Question:
can we interpret $∞(% in P# ?

CR, ¬CR∞,

¬SN∞, UN∞

CR∞, UN∞,

SN∞

CR, ¬CR∞,

UN∞

Th(Pω) = B
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λ∞β Ω101

λ∞β Ω111

λβ Ω001

λβ Ω101

λβ Ω111

λ∞

001
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101
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111
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Y3 ≡ Y0δδδ λa.a(ωδ ωδ δδa)

ωδ ωδ δδa a(ωδ ωδ δδa)

7

h

7

h

λa.a�

a�

clock behaviour of fpc in Böhm sequence of fpc’s

Y0, Y0 &, Y0 &&, Y0 &&&, Y0 &&&&, ...
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Figure 21: Clocked Böhm trees of BY0 and BY0S.
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Clocked Lambda Calculus

(λx.M)N → τ(M[x :=N])
τ(M)N → τ(MN)

The τ’s are ticks of the clock (measure of efficiency).

Properties: orthogonal, SN∞, CR∞, UN∞

Normal forms are clocked Lévy–Longo trees:

τ2

·

f τ1

·

f τ1

·

f . . .

τ2

·

f τ2

·

f τ2

·

f . . .

nf (Y0 f )≡ nf (Y1 f )≡

different clock

⇒ Y0 �= Y1



BT

BT

BT
LLT

LLT

LLT
BeT

BeT

BeT

=β

clocked lambda theories

Exercise.

(i) in $∞( there is only one Ogre, 
Omnivore;

(ii) in $( there are infinitely many, 
i.p. all YnK are different



confluent

fi
n

it
e

IWC-WIR

4

not confluent

5

6

7

8

9

1

2

3

12

11

10

4

!

3

2

5

6

3
3

6

6

5

2

2

2

in
fi

n
it

ar
y

2. Lambda and CL: basic confluence

1. Introduction

3. Surjective Pairing: confluence lost

4. Confluence of a higher order

5. Lambda with black holes: confluence 

6. Confluence lost in infinity

7. The threefold path

8. Black holes to the rescue

9. The rhythm of lambda terms

10. Getting rid of ordinals

11. Infinity and eta: total breakdown

12. A lambda universe



confluent

fi
n

it
e

IWC-WIR

4

not confluent

5

6

7

8

9

1

2

3

12

11

10

4

!

3

2

5

6

3
3

6

6

5

2

2

2

in
fi

n
it

ar
y

2. Lambda and CL: basic confluence

1. Introduction

3. Surjective Pairing: confluence lost

4. Confluence of a higher order

5. Lambda with black holes: confluence 

6. Confluence lost in infinity

7. The threefold path

8. Black holes to the rescue

9. The rhythm of lambda terms

10. Getting rid of ordinals

11. Infinity and eta: total breakdown

12. A lambda universe



+∞
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−∞

0 •

•

•

•

•

•

•

n

PS → ε SP → ε

where ε is the empty word. This system has two trivial critical pairs:

P ← PSP → P S ← SPS → S ,

and hence is weakly orthogonal.
Now consider the term ψ defined as follows:

ψ = PSSPPPSSSSPPPPPSSSSSS . . .→

S
ω
←←← ψ →→→ P

ω



·

λx0

λx1

·

·

·

λx
−1

λx0

λx1

λx2

·

·

·

·

·

.

.

.
x
−2

x
−1

x0

x1

x2

x
−1

x0

x1

x0

λx1

λx2

.

.

.

·

·

·

.

.

.
x
−2

x
−1

x0

β η

Question:
$∞(*% ! CR∞

$∞(* ! UN∞



confluent

fi
n

it
e

IWC-WIR

4

not confluent

5

6

7

8

9

1

2

3

12

11

10

4

!

3

2

5

6

3
3

6

6

5

2

2

2

in
fi

n
it

ar
y

2. Lambda and CL: basic confluence

1. Introduction

3. Surjective Pairing: confluence lost

4. Confluence of a higher order

5. Lambda with black holes: confluence 

6. Confluence lost in infinity

7. The threefold path

8. Black holes to the rescue

9. The rhythm of lambda terms

10. Getting rid of ordinals

11. Infinity and eta: total breakdown

12. A lambda universe



Other bus tours of the 

RTA-IWC-WIR company

Abstract rewriting and confluence, decreasing 

diagrams, De Bruijn - Van Oostrom

Alternative set-up of infinitary rewriting, Kahrs,

ideal completion (Bahr), coinductive definition, 

Endrullis, Polonsky et al.

Infinitary Rewriting Coinductively

�� = µ x. ν y. (→ε ∪ x)∗ ◦ y

R = {� f (s1, . . . ,sn), f (t1, . . . , tn)� | s1 R t1, . . . ,sn R tn } ∪ id

Decreasing Diagrams
de Bruijn-van Oostrom

Newman’s Lemma

Huet’s Strong 
Confluence 
Lemma  

Winkler-Buchberger

Hindley-Rosen

Request Lemma 
Staples

Winkler-Buchberger
extended

Barthes

Yokouchi

Relative termination
Geser-Klop



Fig. 18.18: Large random λ -term, viewed as a mini-cosmos, evolving non-

deterministically by local changes due to β -steps; their patterns are the red

configurations. In the final result the place and nature of the normalized parts

of the structure, as well as the singularities formed by the unsolvable terms,

the black holes, is ’predestined’, independent of the actual evolution path to

the normal form, an infinite λβΩ -term.
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