

Ten Topics in Term Rewriting

Jan Willem Klop

Logic Colloquium

august 1999

Utrecht

1. Knots, Braids and Abstract Reduction Systems
2. Decreasing Diagrams
3. Infinite Diagrams
4. First-order Term Rewriting Systems
5. Critical Pair Completion
6. Orthogonal term rewriting systems
7. Transfinite rewriting
8. Recursive Path Orders with Stars
9. Higher-order rewriting
10. References

Knots, Braids and
Abstract Reduction Systems

In our first topic we start with introducing Abstract Reduction Systems or Abstract Rewrite

Systems, consisting of just a set of objects together with one or more reduction or rewrite relations

on them, to be perceived as ‘transformation’ or ‘computation’ relations. Before giving several

formal definitions of the relevant notions, we consider two examples from topology, knots and

braids. In this way already several rewrite notions will be encountered.

1.1. Knots

Topic 1: Knots, Braids and Abstract Reduction Systems - page 1

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure 1.1. un-knotting

Reidemeister moves

Figure 1.2

Discussion. Important is the idea that transformations on the objects of ‘interest’ (representations

of knots) are made ‘locally’, by changing some small part of the object. In this case the

transformation or ‘rewrite’ or ‘reduction’ relation as given by the Reidemeister moves is

symmetric; there is no direction of preference.

1.2. Braids

The next example, braids, has much to do with the previous one but will also present some new

concepts. It is about the ‘confluence’problem for braids, as described on p.132-134 in Schmidt and

Ströhlein [91], in the following anthropomorphic terms. The study of braids goes back to Artin [26,

47, 47a].

1.2.1. The semi-group of braids

A girl has two braids consisting of, say, 6 strings (see Figure 1.3). The father starts braiding the left

braid, the mother of the girl starts braiding the right braid. After some initial 'twists' as indicated in

the figure, they notice that they do it in a different way. But they want to arrive, eventually, at two

identical braids. Question: can they go on and still arrive at identical braids?

Topic 1: Knots, Braids and Abstract Reduction Systems - page 2

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Girl with two braids

Fig. 1.3

Note that braids are subject to a topological equivalence, which will be explained now. First we

need a notation for braids. Consider Figure 1.4. The openings between the strings are numbered

1,2,3,... . A twist or crossing in which the upper string moves over the lower is denoted ‘positively’,

just as the corresponding opening: if this is i, the positive twist twist at this position is also denoted

by i. Otherwise we have a 'negative' crossing, denoted by i- 1 if it is in the i-th opening. Thus the

braid in Figure 1.4a is 1.2- 1.1.2- 1.1.2 .

Now we restrict attention to positive crossings only. E.g. in Figure 1.4b we have the braid

1.2.4.1.3.1.4.3 . The restriction means that we work in the semi-group generated by 1,2,3,4 (if there

are five strings).

Topic 1: Knots, Braids and Abstract Reduction Systems - page 3

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1

2

1 12-1 2-1 1 2

1

2

3

4

1 2 4 1 3 1 4 3

a

b

Figure 1.5

Not all these braids are really different. See Figure 1.5a. The braid 1.3 is ‘the same’,

topologically viewed, as 3.1, just by shifting the crossings in the other order. Also 1.4 is equivalent

with 4.1. We will write 1.3 = 3.1, and 1.4 = 4.1. In general we have:

i.j = j.i if |i-j| ≥ 2

For consecutive openings like 1 and 2, respective crossings do not commute. But it is not hard to

see that starting with 1.2 and 2.1, we can make them (topologically) equal by continuing 1.2 with 1

and 2.1 with 2. So 1.2.1 = 2.1.2. See Figure 1.5b. Note that 1.2.1 and 2.1.2 are indeed

topologically the same; an experiment with actual strings of wire will demonstrate this. In general

we have for all i:

i.(i+1).i = (i+1).i.(i+1)

1

2

1 2 1 2 1 2

1

2

3

1 3 3 1
a

b

eq

eq

Figure 1.5

The equations above completely define the topological equivalence considered (see Artin [47]). The

confluence problem is now: given two elements u, v of this braid semi-group, can we always find

elements x, y such that ux = vy? The problem can be approached by means of an abstract rewriting

Topic 1: Knots, Braids and Abstract Reduction Systems - page 4

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

analysis using the “elementary diagrams” as in Figure 1.6. (Only some of the generators 1,2,3,...

are mentioned in the figure.) These diagrams are just another way of phrasing the equations above;

e.g. the second e.d. states that 1.3 = 3.1 the last one states that 1.2.1 = 2.1.2. The first e.d is trivial,

it states that 1 = 1; but such trivial e.d’s still are useful as will be apparent in the next example. The

question is now whether ‘tiling’ with these diagrams always succeeds in a confluent reduction

diagram.

elementary diagrams for confluence problem in braid semi-group

1

2

2

1

1 2

1

3 3

1

1

1

Figure 1.6

1.2.1.1. EXAMPLE. We complete in a diagram the braidings started by the father and the mother

as in Figure 1.3: the braids there are 3142 and 215 (counting the openings from right to left). See

Figure 1.7.

As it turns out, we are lucky in this example; the tiling procedure terminates succesfully in a

completed “reduction diagram”, whose lower and right sides yield the (or rather, an) answer to our

question.

1.2.1.2. THEOREM (Garside [69]). Braids are confluent. That is: For all u, v of the braid semi-

group, there exist elements x, y such that ux = vy.

1.2.1.3. REMARK.(i) Actually, braids are confluent in a canonical way, namely by the tiling

procedure as demonstrated in the example. This was proved recently by Melliès and van Oostrom.

(ii) Note that ‘empty steps’, as introduced in the trivial e.d.’s, propagate ‘through’ steps in the

obvious way; see the reduction diagram in Figure 1.7.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 5

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

2 1 5

3

1

4

2

3

2
2 3

3 3
1 5

1 2

2

1

25

5 1

1

2

2 1

1
3

3 2

2

3

2

2

3 3

5

5

35

4 4

4

3

4 4 4
4

55 42

2 3

3

2

3 3 3
3
4

2 2

5

5
2

4 3

4
2

2
3

3 24532

3 4

3 4

1

1

2
3 2

Figure 1.7

Topic 1: Knots, Braids and Abstract Reduction Systems - page 6

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.3. Abstract Rewrite Systems

Figure 1.8

1.3.1. DEFINITION.

(i) An Abstract Reduction System (ARS) is a structure A = 〈A, (→α)α∈I 〉 consisting of a set
A and a sequence of binary relations →α on A, also called reduction or rewrite relations.
Sometimes we will refer to →α as α. In the case of just one reduction relation (see Figure 1.8), we
also use → without more. (An ARS with just one reduction relation is called ‘replacement system’
in Staples [75], and a ‘reduction system’ in Jantzen [88].) If for a,b ∈ A we have (a,b) ∈ →α, we
write a →α b and call b a one-step (α-)reduct of a.

(i i) The transitive reflexive closure of →α is written as →→α. (More customary is the notation
→α*, but we prefer the double arrow notation as we find it more convenient in diagrams.)
So a →→α b if there is a possibly empty, finite sequence of ‘reduction steps’ a ≡ a0 →α a1 →α ...
→α an ≡ b. Here ≡ denotes identity of elements of A. The element b is called an (α-)reduct of a.
The equivalence relation generated by →α is =α, also called the convertibility relation generated by
→α. The reflexive closure of →α is →α≡ . The transitive closure of →α is →α+ . The converse
relation of →α is ←α or →α-1 . The union →α ∪ →β is denoted by →αβ. The composition →α °
→β is defined by: a →α ° →β b if a →α c →β b for some c ∈ A.

(iii) If α, β are reduction relations on A, we say that α commutes weakly with β if the following
diagram (see Figure 1.1a) holds, i.e. if ∀a,b,c∈A ∃d∈A (c ←β a →α b ⇒ c →→α d ←← β b), or
in a shorter notation: ←β ° →α ™ →→α ° ←← β.

Further, α commutes with β if →→α and →→β commute weakly. (This terminology differs
from that of Bachmair & Dershowitz [86], where α commutes with β if α-1

° β ⊆ β-1
° α.)

(iv) The reduction relation → is called weakly confluent or weakly Church-Rosser (WCR) if it is
weakly self-commuting (see Figure 1.1b), i.e. if ∀a, b, c ∈ A ∃d ∈ A (c ← a → b ⇒

c →→ d ←← b).
(The property WCR is also often called ‘local confluence’, e.g. in Jantzen [86].)

(v) → is subcommutative (notation WCR≤1) if the diagram in Figure 1.1c holds, i.e. if

Topic 1: Knots, Braids and Abstract Reduction Systems - page 7

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

∀a,b,c∈A ∃d∈A (c ← a → b ⇒ c →≡ d ←≡ b).

(vi) → is confluent or is Church-Rosser, has the Church-Rosser property (CR) if it is self-com-
muting (see Figure 1.1d), i.e. ∀a,b,c∈A ∃d∈A (c ←← a →→ b ⇒ c →→ d ←← b).

In the sequel we will use the terms ‘confluent’ and ‘Church-Rosser’ or ‘CR’ without
preference. Likewise for weakly confluent and WCR, etc. The following proposition follows
immediately from the definitions. Note especially the equivalence of (i) and (vi); sometimes (vi) is
called ‘Church-Rosser’ and the situation as in Definition 1.1(vi) ‘confluent’.

1.3.2. PROPOSITION. The following are equivalent:

(i) → is confluent
(i i) →→ is weakly confluent
(iii) →→ is self-commuting
(iv) →→ is subcommutative
(v) the diagram in Figure 1.1e holds, i.e.

∀a, b, c ∈ A ∃d ∈ A (c ← a →→ b ⇒ c →→ d ←← b)
(vi) ∀a, b ∈ A ∃c ∈ A (a = b ⇒ a →→ c ←← b)

(Here ‘=’ is the convertibility relation generated by →. See diagram in Figure 1.1f.) �

1.3.3. DEFINITION. Let A = 〈A, →〉 be an ARS.
(i) We say that a ∈ A is a normal form if there is no b ∈ A such that a → b. Further, b ∈ A has

a normal form if b →→ a for some normal form a ∈ A.
(i i) The reduction relation → is weakly normalizing (WN) if every a ∈ A has a normal form. In
this case we also say that A is WN.
(iii) A (or →) is strongly normalizing (SN) if every reduction sequence a0 → a1 → ... eventually

must terminate. (Other terminology: → is terminating, or noetherian.) If the converse
reduction relation ← is SN, we say that A (or →) is SN-1.
(iv) A (or →) has the unique normal form property (UN) if

∀a, b ∈ A (a = b & a,b are normal forms ⇒ a ≡ b).
(v) A (or →) has the normal form property (NF) if

∀a, b ∈ A (a is a normal form & a = b ⇒ b →→ a).
(vi) A (or →) is inductive (Ind) if for every reduction sequence (possibly infinite) a0 → a1 → ...
there is an a ∈ A such that an →→ a for all n.
(vii) A (or →) is increasing (Inc) if there is a map | |: A → N such that

∀a, b ∈ A (a → b ⇒ |a| < |b|).
Here N is the set of natural numbers with the usual ordering < .
(viii)A (or →) is finitely branching (FB) if for all a ∈ A the set of one step reducts of a,

{b ∈ A | a → b}, is finite. If the converse reduction relation ← is FB, we say that A (or →)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 8

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

is FB-1. (In Huet [78], FB is called ‘locally finite’.)

An ARS which is confluent and terminating (CR & SN) is also called complete (other
terminology: ‘canonical’ or ‘uniquely terminating’).

Before exhibiting several facts about all these notions, let us first introduce some more
concepts.

β α

α β

(a) (b) (d)

(e) (f)

(c)

¡ ¡

Figure 1.9

font correction: in (c) the inverted exclamation symbol should be ≡

1.3.4. DEFINITION. Let A = 〈A, →α 〉 and B = 〈B, →β〉 be two ARSs. Then A is a sub-ARS of
B, notation A ⊆ B, if:

(i) A ⊆ B
(i i) α is the restriction of β to A, i.e. ∀a, a' ∈ A (a →β a' ⇔ a →α a')
(iii) A is closed under β, i.e. ∀a ∈ A (a →β b ⇒ b ∈ A).

The ARS B is also called an extension of A.

Note that all properties introduced so far (CR, WCR, WCR≤1, WN, SN, UN, NF, Ind, Inc,
FB) are preserved downwards: e.g. if A ⊆ B and B is CR, then also A is so.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 9

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Of particular interest is the sub-ARS determined by an element a in an ARS:

1.3.5. DEFINITION. Let A = 〈A, →〉 be an ARS, and a ∈ A. Then G(a), the reduction graph of a,
is the smallest sub-ARS of A containing a. So G(a) has as elements all reducts of a (including a
itself) and is structured by the relation → restricted to this set of reducts.

We will now collect in one theorem several implications between the various properties of
ARSs. The first part (i) is actually the main motivation for the concept of confluence: it guarantees
unique normal forms, which is of course a desirable state of affairs in (implementations of)
algebraic data type specifications. Apart from the fundamental implication CR ⇒ UN, the most
important fact is (ii), also known as Newman’s Lemma. The property CP (‘cofinality property’)
is... see Exercise 1.7.13 below,

1.3.6. THEOREM.

(i) CR ⇒ NF ⇒ UN
(i i) SN & WCR ⇒ CR (Newman’s Lemma)

(iii) UN & WN ⇒ CR
(iv) UN & WN ⇒ Ind
(v) Ind & Inc ⇒ SN
(vi) WCR & WN & Inc ⇒ SN
(vii) CR ⇔ CP for countable ARSs. �

Topic 1: Knots, Braids and Abstract Reduction Systems - page 10

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

WCR
≤1

CR CPNF

UN & WN

SN & WCR

Ind & Inc

WCR

WN
Inc

countable

-1
FB & SN-1

(complete)

consistency

relations between properties of Abstract Reduction Systems

Figure 1.10

PROOF. (i) Immediate from the definitions.
(ii) Short proofs of Newman’s Lemma are given in Huet [78] and in Barendregt [84]. An
alternative proof, illustrating the notion of ‘proof ordering’, is given in Chapter 6 (Exercise 6.10.1).
Another proof, using König’s Lemma, is given in the solution to Exercise xxx. The proof in
Barendregt [84] is very simple:

Call an element in the ARS under consideration good if it has exactly one normal form, bad if
it has two or more. Now we claim that a bad point has a one step reduct which is again bad. To this
end, let a be bad, reducing to different normal forms n1, n2: a → b → ... n1 and a → c → ... n2. If b

≡ c the claim is proved: b is bad. Otherwise, apply WCR on the diverging steps a → b, a → c to
yield a common reduct d such that b →→ d and c →→ d. If d is bad, also b, c are bad. If d is good, it
reduces to n1, n2 or some other normal form n3. In all cases b or c is bad. This proves the claim.
However, the claim contradicts with the assumption of SN.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 11

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

a

b c

d

n1 n2

n3

≡

normal
forms

Figure x x

(v) is from Nederpelt [73]; the proof is obvious.
(vi) is proved in Klop [80].
(vii) see Exercise 1.7.13 below, where it is noted that the condition ‘countable’ cannot be missed.

The propositions in the statement of the theorem (and some more) are displayed also in
Figure 1.2; here it is important whether an implication arrow points to the conjunction sign &, or to
one of the conjuncts. Likewise for the tail of an implication arrow. (E.g. UN & WN ⇒ Ind,
SN & WCR ⇒ UN & WN, Inc ⇒ SN-1, FB-1 & SN-1 ⇒ Inc, CR ⇒ UN but not
CR ⇒ UN & WN.)

It is not possible to reverse any of the arrows in this diagram of implications. An instructive
counterexample to WCR ⇒ CR is the TRS in Figure 1.3 (given by R. Hindley, see also Huet [78]).

a b c d

Figure 1.3

Topic 1: Knots, Braids and Abstract Reduction Systems - page 12

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

References
ARTIN, E.(1926). Theorie der Zöpfe. Abh. math. Semin. Hamburg Univ. 4 (1926), 47-72.

ARTIN, E.(1947). Theory of braids. Ann. of Math. (2) 48 (1947) 101-126

ARTIN, E.(1947a). Braids and permutations. Ann. of Math. vol. 48 (1947), 643-649

GARSIDE, F.A. (1969). The braid group and other groups. Quart. J. Math. 20 (1969) 235-254

MAKANIN, G.S. (1968). The conjugacy problem in the braid group. Soviet Math. Dokl. 9 (1968) 1156-1157

HINDLEY, J.R. (1964). The Church-Rosser property and a result in combinatory logic. Ph.D. Thesis, Univ.
Newcastle-upon-Tyne, 1964.

HUET, G. (1980). Confluent reductions: Abstract properties and applications to term rewriting systems. JACM,
Vol.27, No.4 (1980), 797-821.

KLOP, J.W. (1980). Combinatory Reduction Systems. Mathematical Centre Tracts 127, Amsterdam 1980.

KLOP, J.W. (1992). Term rewriting systems. In Vol.2 of Handbook of Logic in Computer Science
(eds. S. Abramsky, D. Gabbay & T. Maibaum), Oxford University Press 1992, p.1-116

NEWMAN, M.H.A. (1942). On theories with a combinatorial definition of "equivalence". Annals of Mathematics,
43(2):223-243, April 1942.

SCHMIDT, G. & STRÖHLEIN, T. (1991). Relations and Graphs - Discrete Mathematics for Computer Scientists.
Springer-Verlag, EATCS Monographs on Theoretical Computer Science, 1991.

1.7.13. EXERCISE (Klop [80]). Let A = 〈A, →〉 be an ARS. Let B ⊆ A. Then B is cofinal in

A if ∀a ∈ A ∃b ∈ B a →→ b. Furthermore, A is said to have the cofinality property (CP) if in

every reduction graph G(a), a ∈ A, there is a (possibly infinite) reduction sequence

a ≡ a0 → a1 → ... such that {an | n ≥ 0} is cofinal in G(a).

(i) Prove that for countable ARSs: A is CR ⇔ A has CP.

(ii) Show that the condition of countability cannot be missed. (See Solutions.)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 13

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.3. Confluence by decreasing diagrams

In this section we present a recently found quite powerful criterion for confluence of abstract
rewriting. The method, developed by van Oostrom [94, 94a] and called ‘confluence by decreasing
diagrams’, generalizes several well-known confluence criteria for abstract rewriting such as the
Lemma of Hindley and Rosen, Huet’s Strong Confluence lemma , Newman’s Lemma, the
‘request’ lemma’s of Staples, the relative termination lemma of Geser (see the exercises at the end
of this chapter). For these applications we refer to van Oostrom [94, 94a]. Actually, the way to van
Oostrom's method was prepared by an unpublished note of De Bruijn [78], containing a slightly
weaker form of van Oostrom's theorem with a complicated inductive proof. The notion of decrea-
sing diagrams was not yet present in that note.

We will consider ARSs, indexed by some set I: A = 〈A, (→α)α∈I〉 , which in this section is
a well-founded partial order. In examples, we will use the set of natural numbers with the usual
ordering as index set.

1.2.1. Reduction diagrams

An important ingredient in finding a common reduct of the end points of two diverging reduction
sequences consists of the elementary diagrams, see the examples in Figure 1.1. They are the
‘atomic’ or basic building blocks for constructing reduction diagrams. An non-trivial elementary
diagram consists of two diverging steps (arrows), joined by two sequences of steps of arbitrary
length. Note that in the e.d.’s we may use empty sides (the dashed sides, in some figures shaded),
to keep matters orthogonal. This gives rise to some trivial e.d.’s as in the lower part of Figure 1.1.
The e.d.’s are used as ‘tiles’ with the intention to obtain a completed reduction diagram as in
Figure 1.2. Usually we will forget the direction of the arrows (second picture in Figure 1.2): they
always are from left to right, or downwards (except the empty ‘steps’ that have no direction).

elementary diagrams

Topic 1: Knots, Braids and Abstract Reduction Systems - page 14

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure 1.4

Figure 1.5

Topic 1: Knots, Braids and Abstract Reduction Systems - page 15

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure x

Topic 1: Knots, Braids and Abstract Reduction Systems - page 16

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure x

EXERCISE. (i) Prove that an infinite reduction diagram must possess an infinite proper reduction
(i.e. one without empty ‘steps’. (Solution included.)
(ii) Obtain Newman’s Lemma as a corollary of (i).

SOLUTION. Consider a construction of the infinite diagram in stages, by repeatedly adjoining an
e.d. After each finite stage the diagram contains finitely many proper reductions starting from the
initial term of the two diverging reductions that constitute stage 0 of the construction. Also, after
each finite stage there must be eventually an adjunction of an e.d. with splitting converging sides;
otherwise the construction would terminate. But such an adjunction will prolong, with at least one
proper step, at least one of the finite proper reductions from the initial term that are present in the
diagram at that stage. Now apply König’s Lemma: in the limit an infinite proper reduction must
arise.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 17

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

We will need somewhat more structure on the multiset p.o. If we have X ≥µ Y, there is a
‘descendant’ relation between the elements of X and Y. Some elements of X are ‘preserved’ in Y:
this is indicated by heavy arrows (see Figure 1.3). Some elements of X will be replaced by some
elements in Y that are strictly smaller (in the p.o. I); this is indicated by light arrows. Heavy arrows
cannot split, light arrows can. From an element of X also zero light arrows can exit: that element just
disappears. (E.g. the ‘1’ in Figure 1.3.) A descendant relation for X ≥µ Y by means of ‘multiset
arrows’ need not be unique, e.g. the pair of multisets in Figure 1.3 admits several other descendant
relations.

 { 3, 3, 4, 3, 2, 1, 4}

{ 2, 2, 1, 0, 4, 2, 3, 2, 3, 2, 3 }

Figure 1.6

1.2.2. Monotonic filtering

We start with an important definition. Given a tuple σ of natural numbers (we will use natural

numbers as running example, but everything below is in fact intended for a well-founded p.o. I),

filter(σ) is the tuple obtained by ‘reading’ σ from left-to-right, removing the elements that are less

than what was already encountered, and taking the tuple of the remaining elements. See example in

Figure 2.1. Another operation on tuples is multiset; it yields the corresponding multiset. In the

sequel we will be especially interested in multiset (filter(σ)).

3 2 4 4 3 1 2 6 2 8 7 8 4 2 5

3 4 4 6 8 8

monotonic filtering of string of natural numbers

Figure 1.7

Topic 1: Knots, Braids and Abstract Reduction Systems - page 18

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

splitting off tail end of
string yields more
elements after filtering

Figure 1.8

In the sequel the following phenomenon will appear: if σ, τ are tuples (strings), then we do
not simply have multiset(filter(σ·τ)) = multiset(filter(σ)) ∪ multiset(filter(τ)). Figure 2.2 explains
what happens, some extra elements may crop up after splitting.

1.2.3. Decreasing diagrams

Before defining what a decreasing diagram is, we need the notion of ‘norm of a reduction
sequence’ in the ARS with indexed rewrite relations. This will be a tuple of natural numbers (in
general, elements of I). Par abus de langage, we will also denote reduction sequences with σ, τ. If σ
is a reduction sequence, label(σ) is the string of indexes of consecutive reduction steps in σ. Single
steps will be denoted by α, β. So label(α) is the index of the step α. If σ = ...α...β...we say that α
is before β in σ.

1.2.3.1. DEFINITION.

(i) Let σ be a reduction sequence. Then |σ|, the norm of σ, is multiset(filter(label(σ)))

Topic 1: Knots, Braids and Abstract Reduction Systems - page 19

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(ii) The norm of two diverging reductions σ, τ is |σ| ∪ |τ| . (Figure 2.3.)

Norm of pair of divergent
reductions

Figure 1.9

1.2.3.2. DEFINITION. Let σ: a →→ b, τ: a →→ c, σ': c →→ d, τ': b →→ d be reductions forming the
reduction diagram D with corners a, b, c, d. (Figure 2.4.) Then D is a decreasing diagram, if

|σ| ∪ |τ| ≥µ |σ·τ'| and
|σ| ∪ |τ| ≥µ |τ·σ'|

a b

c d

τ

σ

τ'

σ'

Figure 1.10

We will now give a slightly different definition of ‘decreasing diagram’, which we will call
‘trace-decreasing diagram’. It will turn out that trace-decreasing implies decreasing, but not vice

Topic 1: Knots, Braids and Abstract Reduction Systems - page 20

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

versa. However, in case the index set I is a total well-founded order, then the two notions coincide.
Moreover, also for partially ordered I the two notions coincide for elementary diagrams. The notion
of trace-decreasing is more cumbersome to formulate than van Oostrom’s definition above, but it
helps in visualizing this rather intricate concept of decreasing diagram.

1.2.3.3. DEFINITION. A diagram D as in the preceding definition is trace-decreasing if:
(i) Every step α' in τ' traces back to a unique step α in σ or τ, called its ancestor, such that
label(α) ≥ label(α'). If label(α) > label(α') we say that the tracing relation from α to α' is given by
a light arrow, if label(α) = label(α') by a heavy arrow. Likewise dually.
(i i) Heavy arrows can only go from τ to τ' and from σ to σ'. The first are called horizontal, the
second are vertical. Horizontal heavy arrows do not cross, likewise dually. Heavy arrows cannot
split (i.e. no two heavy arrows have the same begin). See Figure 2.5a.
(iii) If α' in τ' traces back by a heavy arrow to α in τ, and if β' is a step in τ' before α' then β'
traces back to a step β (by a light arrow) in σ or a step β (by a light or heavy arrow) in τ before α.
Likewise dually. See Figure 2.5b.

a b

c

decreasing diagram

Figure 1.11

Topic 1: Knots, Braids and Abstract Reduction Systems - page 21

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

The notion of trace-decreasing can conveniently be described by forbidding certain
configurations of the tracing arrows, as in Figure 2.6.

a b c d e

forbidden configurations

Figure 1.12

1.2.3.4. REMARK. Note that the situation as in Figure 2.7 (and also its dual) is allowed. This
means that the tracing arrows are not ‘multiset arrows’ as in Figure 1.3; a heavy multiset arrow
cannot be co-initial with any arrow.

 Figure 1.13

Topic 1: Knots, Braids and Abstract Reduction Systems - page 22

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

σ

σ'

τ τ'

M

Figure 1.14

1.2.3.5. PROPOSITION. A trace-decreasing diagram is decreasing.

PROOF. Suppose the diagram as in Definition 2.2.2 (see Figure 2.8) is trace-decreasing. We have
to prove that |σ| ∪ |τ| ≥µ |σ·τ'|. According to Proposition 1.3.1, the elements in |σ| 'take care for
themselves', so we can leave them out and prove that |τ| ≥µ |τ'| minus the elements majorized by
some element in σ. (The deleted elements are shaded in Figure 2.8.) Call the latter multiset M. Now
consider the given tracing relation. Each element in M traces back to the opposite τ (not to σ since
elements in M are not majorized by those in σ, and heavy arrows cannot go from σ to τ').

However, we are not yet done, since (1) the tracing arrows need not be multiset trace arrows
and (2) since the ancestors are in τ, not the filtered |τ|.

Ad (1). This obstacle is in fact absent: situations as in Figure 2.6a, b (top row) are forbidden
by definition of trace-decreasing, and the situation as in Figure 2.7 does not occur because M (or
rather the tuple underlying the multiset M) is monotone.

Ad (2). Obstacle (2) is overcome as follows. When an element α' in M has as ancestor a
‘white’ α in τ (that is therefore filtered out in |τ|) then we take as new ancestor of α', the element
α* in τ that is the nearest black step in τ before α. It is not hard to check (using the fact that M is
monotone, and properties of trace-decreasing) that this redirection of arrow-roots does the job: all
ancestors of elements in M are now in |τ |, and the arrows are multiset arrows, i.e. |τ | ≥µ M. �

1.2.3.6. REMARK. (i) The reverse: decreasing ⇒ trace-decreasing, does not hold. A
counterexample is given in Figure 2.9. Here a, b, c are incomparable elements in the p.o. I. This
diagram is decreasing:
|σ| ∪ |τ| = |σ·τ'| = |τ·σ'| = {a, b, c}, but not trace-decreasing since there is a crossing of heavy

Topic 1: Knots, Braids and Abstract Reduction Systems - page 23

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

arrows.
However, in case the order I is total, the reverse does hold. The proof is routine (just

‘uncross’ the crossed heavy arrows) and omitted; we do not need it in the sequel.

c

a

b

b

a

c

(i i) Note why crossing heavy arrows are harmful (see Figure 2.10): an allowed configuration as
in Figure 2.7 could turn after appending a pair of crossing heavy arrows into a forbidden situation
(as in Figure 2.6b).

=

Figure 1.16

For elementary diagrams, the property of being decreasing amounts to the situation as in
Figure 2.11. The second and third e.d. in this figure are degenerated cases, where only one or zero
heavy arrows are present.

decreasing elementary diagram

Figure 1.17

Topic 1: Knots, Braids and Abstract Reduction Systems - page 24

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.2.3.7. EXAMPLE. So, we have examples as in Figure 2.12 of some decreasing and non-
decreasing e.d.'s. (We will come back to the set of non-decreasing tiles in Figure 2.12(a) in Section
4, about confluence of braids.)

1

2

2

1

1 2

1

2

1

2

1 1

(a)

1

2

2

1

1 1

1

2 2

11

2

3

1

3

2

2 2 2

(b)

decreasing

not decreasing

Figure 1.18

Now we will establish the two important properties of trace-decreasing diagrams that give
confluence. The first is indicated in Figure 2.13: pasting preserves trace-decreasingness.

1.2.3.8. PROPOSITION. Let two trace-decreasing diagrams be joined as in Figure 2.13. Then the

resulting diagram is again trace-decreasing.

PROOF. The proof is simply by checking that no forbidden trace configurations arise by joining
two trace-decreasing diagrams as indicated. See also Figure 2.14, indicating how new trace configu-
rations arise after pasting two trace-decreasing diagrams together to yield one. (In particular, conca-
tenating a light arrow with a heavy arrow yields a light one, two heavy arrows concatenated yield
again a heavy one, etc.) �

Topic 1: Knots, Braids and Abstract Reduction Systems - page 25

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

decreasing decreasing

decreasing

pasting preserves decreasing diagrams

Figure 1.19

=

Figure 1.20

The second important property is indicated in Figure 2.15: inserting a decreasing diagram in
a pair of co-initial reductions reduces the norm of the resulting pair of co-initial reductions. The
proof uses Figure 2.16.

decreasing

diagram

decreased
measure

Figure 1.21

1.2.3.9. PROPOSITION. Let a trace-decreasing diagram be inserted as in Figure 2.15 into a pair

of diverging reductions. Then the resulting pair of diverging reductions has a smaller norm.

PROOF. See Figure 2.16, where 1,2,...,6 denote the multisets of the indicated elements. In particular,
3 and 5 denote those elements (shaded in the figure) that are majorized by (an element in) 2.

Because the inserted diagram is trace-decreasing, it is also decreasing (Proposition 2.2.5); so
we have

Topic 1: Knots, Braids and Abstract Reduction Systems - page 26

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1 ∪ 2 ≥µ 2 ∪ 6.

By Proposition 1.3.1 therefore

1 ≥µ 6.

Furthermore

2 ≥µ 3 ∪ 5.

Hence

1 ∪ 2 ≥µ 3 ∪ 5 ∪ 6.

So

1 ∪ 2 ∪ 4 ≥µ 3 ∪ 4 ∪ 5 ∪ 6.

Finally,

 1 ∪ 2 ∪ 4 >µ 3 ∪ 4 ∪ 5 ∪ 6,

since the first element in the horizontal reduction of the inserted decreasing diagram has been
‘used’ (is not preserved in 3 ∪ 4 ∪ 5 ∪ 6) either by disappearing or by yielding some lesser
elements. �

1

2 3
4

5

6

Topic 1: Knots, Braids and Abstract Reduction Systems - page 27

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure 1.22

Finally, we can combine the two important properties to yield a proof of confluence, based on

well-founded induction. See Figure 2.17.

elementary
decreasing

diagram

decreasing diagram
obtained by induction

hypothesis

decreasing diagram
obtained by induction

hypothesis

I II

III

Figure 1.23

We now arrive at the conclusion: ‘confluence by decreasing diagrams’.

1.2.3.10. THEOREM (Van Oostrom [94])
Every ARS with reduction relations indexed by a well-founded partial order I, and satisfying the

decreasing criterion for its e.d.’s, is confluent.

PROOF. Immediate, by combining Propositions 2.2.7 and 2.2.8. (See Figure 2.17.) �

1.2.3.11. REMARK. H. Zantema (personal communication) remarked that in fact we needed to
prove this theorem only for the restricted case of well-founded totally ordered I. The theorem above
then follows by this reasoning: every well-founded p.o. I can be extended by Zorn’s Lemma to a
well-founded total order I*. If an elementary diagram is decreasing with respect to I, it is also
decreasing with respect to I*. An appeal to the theorem above for the restricted case of total orders,
then yields confluence. Hence we have the unrestricted theorem above. We did not follow this route
since it would entail no significant reduction in the burden of proof.

1.3. Confluence of braids

As a contrast, however, to the applicability of the decreasing diagram method, we discuss in the final
section of this chapter a situation where confluence is obtained while the diagrams involved are not

Topic 1: Knots, Braids and Abstract Reduction Systems - page 28

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

decreasing. The example concerns the group and the semi-group of ‘braids’, studied already more
than half a century ago (see Artin [26, 47, 47a]). The braid confluence problem is described on
p.132-134 in Schmidt and Ströhlein [91], in the following anthropomorphic terms.

1.3.1. The semi-group of braids

A girl has two braids consisting of, say, 6 strings (see Figure 4.1). The father starts braiding the left
braid, the mother of the girl starts braiding the right braid. After some initial ‘twists’ as indicated in
the figure, they notice that they do it in a different way. But they want to arrive, eventually, at two
identical braids. Question: can they go on and still arrive at identical braids?

Girl with two braids

Figure 1.24

Note that braids are subject to a topological equivalence, which will be explained now. First
we need a notation for braids. Consider Figure 4.2. The openings between the strings are numbered

Topic 1: Knots, Braids and Abstract Reduction Systems - page 29

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1, 2, 3, A twist or crossing in which the upper string moves over the lower is denoted
‘positively’, just as the corresponding opening: if this is i, the positive twist at this position is also
denoted by i. Otherwise we have a ‘negative’ crossing, denoted by i- 1 if it is in the i-th opening.
Thus the braid in Figure 4.2a is 1.2-1.1.2-1.1.2 .

Now we restrict attention to positive crossings only. E.g. in Figure 4.2b we have the braid
1.2.4.1.3.1.4.3 . The restriction means that we work in the semi-group generated by 1, 2, 3, 4 (if
there are five strings).

1

2

1 12-1 2-1 1 2

1

2

3

4

1 2 4 1 3 1 4 3

a

b

Figure 1.25

Not all these braids are really different. See Figure 4.3a. The braid 1.3 is ‘the same’,
topologically viewed, as 3.1, just by shifting the crossings in the other order. Also 1.4 is equivalent
with 4.1. We will write 1.3 = 3.1, and 1.4 = 4.1. In general we have:

i.j = j.i if |i-j| ≥ 2

For consecutive openings like 1 and 2, respective crossings do not commute. But it is not hard to
see that starting with 1.2 and 2.1, we can make them (topologically) equal by continuing 1.2 with 1
and 2.1 with 2. So 1.2.1 = 2.1.2. See Figure 4.3b. Note that 1.2.1 and 2.1.2 are indeed
topologically the same; an experiment with actual strings of wire will demonstrate this. In general
we have for all i:

i.(i+1).i = (i+1).i.(i+1)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 30

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1

2

1 2 1 2 1 2

1

2

3

1 3 3 1
a

b

eq

eq

Figure 1.26

The equations above completely define the topological equivalence considered (see Artin
[47]). The confluence problem is now: given two elements u, v of this braid semi-group, can we
always find elements x, y such that ux = vy? The problem can be approached by means of an
abstract rewriting analysis using the elementary diagrams as in Figure 4.4. (Only some of the
generators 1, 2, 3,... are mentioned in the figure.) The question is now whether tiling with these
diagrams always succeeds in a confluent reduction diagram. Note that these e.d.’s are not

decreasing (that is, the third one in Figure 4.4 is not).

elementary diagrams for confluence problem in braid semi-group

1

2

2

1

1 2

1

3 3

1

1

1

Figure 1.27

1.3.2. EXAMPLE. We complete in a diagram the braidings started by the father and the mother as
in Figure 4.1: the braids there are 3142 and 215 (counting the openings from right to left). See
Figure 4.5.

1.3.3. REMARK. If we admit also negative crossings, the confluence problem trivializes: given the

Topic 1: Knots, Braids and Abstract Reduction Systems - page 31

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

braids 3142 and 215 the continuations as in 3142(3142)- 1 = 31422- 14- 11- 13- 1 and 215(215)- 1 =
2155- 11- 12- 1 yield the same result, ε. We are now in the braid group; it has the same defining
relations as above for the semi-group.

2 1 5

3

1

4

2

3

2
2 3

3 3
1 5

1 2

2

1

25

5 1

1

2

2 1

1
3

3 2

2

3

2

2

3 3

5

5

35

4 4

4

3

4 4 4
4

55 42

2 3

3

2

3 3 3
3
4

2 2

5

5
2

4 3

4
2

2
3

3 24532

3 4

3 4

1

1

2
3 2

Figure 1.28

1.4. Confluence and termination

The confluence problem for the braid semi-group can be reformulated as a termination problem in
the braid group, as follows. To prove: in every braid, i.e. tuple of consecutive positive and negative
crossings, we can ‘postpone’ (= push to the right) the negative crossings, using the rewrite rules
(writing 2' instead of 2-1, etc.):

i'·j → j·i·j'·i' if |i-j| = 1

Topic 1: Knots, Braids and Abstract Reduction Systems - page 32

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

i'·j → j·i' if |i-j| ≥ 2
i'·i → ε, the empty string

Example (see Figures 4.6 and 4.7)
3' 2 2 1 3 → 2 3 2' 3' 2 1 3 → 2 3 2' 2 3 2' 3' 1 3 → 2 3 3 2' 3' 1 3 →

2 3 3 2' 1 3' 3 → 2 3 3 2' 1 → 2 3 3 1 2 1' 2'

Observe that this termination problem is equivalent to the preceding confluence problem.

3

2 2 1 3

3

2

2 3

2 3

3

3 1

2

3

1 2

1 2

1
2 2

1

Figure 1.29

Topic 1: Knots, Braids and Abstract Reduction Systems - page 33

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

2 1 3

3

2

2 3

3

2 2 1 3

1 3

2

2 3

2 3

3

2

2 3

1 3

3

3

2

3

2 3

3

1

2

3

2 3

3

1

2

2 3

3
1 2

1
2

2 3 3 1 2

2
1

Figure 1.30

Topic 1: Knots, Braids and Abstract Reduction Systems - page 34

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.4.1. REMARK. Also in the case of confluence by decreasing diagrams we have termination of the
corresponding rewrite rules, using in addition to the labels in the set I the inverses of the labels,
corresponding to reverse rewrite steps. One can ask whether the decreasing hypothesis says
something about the way of termination. H. Zantema observed (personal communication) that in
this case we have in fact simple termination. For this notion, see Middeldorp and Zantema [94]. He
also observed that in the present case of the non-decreasing tiles for braids, the corresponding
termination is not simple termination.

A quite different way to reformulate an abstract confluence problem into an equivalent
termination problem for a first-order TRS (modulo associativity of some operator) is as follows.
Let x, y, z,... denote reduction sequences; the empty reduction sequence (containing zero steps) is ε.
Concatenating x, y yields x·y, written as xy. Concatenation is associative. Furthermore, x/y denotes
the projection of x over y; this is the lower side of the reduction diagram with upper side x and left
side y (see Figure 4.8). This operation and the corresponding equations are originally due to J.-J.
Lévy in the setting of λ-calculus and orthogonal term rewriting (see Barendregt [84]). See Table 2,
where n, m = 1, 2, 3,... The first six rules are general and are just Lévy’s equations with an
orientation. The last three rule schemes are specific for the braid problem. To understand the rules,
see Figure 4.8.

(xy)/z → (x/z)(y/(z/x))

z/(xy) → (z/x)/y

ε/x → ε

x/ε → x

εx → x

xε → x

n/n → ε

n/m → n if |n-m| ≥ 2

n/m → nm if |n-m| = 1

projection rules for
confluence of braids

Table 2

1.4.2. EXAMPLE. (i) Consider the first six rules together with 1/2 → ε, 2/1 → 1·2. Now 2/12
gives rise to an infinite reduction diagram as the first in Figure 3.1. Indeed, the ‘projection rules’

Topic 1: Knots, Braids and Abstract Reduction Systems - page 35

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

are non-terminating:

2/12 → (2/1)/2 → 12/2 → (1/2)(2/(2/1)) →→ ε(2/12) → 2/12 → ...

(ii) It is easy to show that the six general rules are terminating (by lexicographic path ordering),
and that the critical pairs are convergent. Hence these six rules are also confluent.

x

y

x/y

y/x z

x y

x/z

z/x

y/(z/x)

z

x

y

z/x

(z/x)/y
projection of rewrite sequences

Figure 1.31

We now have three different but equivalent versions of the braid confluence problem:
(1) as confluence problem in the braid semi-group,
(2) as termination problem in the braid group,
(3) as termination problem of the projection rules in Table 2.
As to (1): here we mean the strong version (called CR+ in Klop [80]) stating that the tiling
procedure yields a completed, finite diagram.

As far as we know, there is no direct proof for any of the three versions. An indirect proof
can be obtained as follows. In Garside [69] it is proved by lengthy combinatory manipulations that
in the braid semi-group (so for positive braids) we have:∀u, v ∃x, y xu = yv. Here xu = yv means
that xu can be converted into yv by the defining equations 13 = 31, 232 = 323 etc. By a simple
appeal to symmetry we therefore also have ∀u,v ∃x, y ux = vy. That is, we have confluence in the
general sense, but not yet in the strong sense by the tiling procedure. Indeed, the converging x, y
constructed in Garside [69] would be relatively long, and not the ‘best possible’ as would be
obtained by the tiling procedure. However, this is easy to obtain now. With some effort, we can
prove that if p = q in the braid semi-group, the diagram with diverging sides p, q will be completed
by tiling into one

Topic 1: Knots, Braids and Abstract Reduction Systems - page 36

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

v

u x

y

3

2

3

2 3 2

3

22 3

2

2

3

3

(a) (b)

Figure 1.32

with empty converging sides. In fact we have that the following are equivalent:

(i) p = q in the braid semi-group,
(ii) q-1p = ε in the braid group,
(iii) p/q →→ ε & q/p →→ ε in the projection TRS of Table 2.

Applying this on ux, vy with ux = vy we find a diagram as in Figure 4.9(a) with empty converging
sides; and this diagram contains a subdiagram (shaded) with diverging sides u, v. This proves the
strong, tiling version of confluence referred to in (1) above, and hence also termination as in (2), (3)
above.

1.5. Exercises: Criteria for confluence.

1.5.1. EXERCISE (Rosen [73]). If 〈A,→1,→2〉 is an ARS such that →→1 = →→2 and →1 is
subcommutative, then →2 is confluent.

1.6.2. EXERCISE (Hindley [64]). Let 〈A, (→α)α∈I 〉 be an ARS such that for all α, β ∈ I, →α
commutes with →β. (In particular, →α commutes with itself.) Then the union → = Uα∈I →α is
confluent.

(This proposition is sometimes referred to as the Lemma of Hindley-Rosen; see e.g.
Barendregt [84], Proposition 3.3.5. For an application, see Exercise 2.2.10 and 2.2.11.)

1.6.3. EXERCISE (Hindley [64]). Let 〈A,→1,→2〉 be an ARS. Suppose:
∀a, b, c ∈ A ∃d ∈ A (a →1 b & a →2 c ⇒ b →→2 d & c →1≡ d). (See Figure 1.4a.) Then →1,→2
commute.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 37

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.6.4. EXERCISE (Staples [75]). Let 〈A,→1,→2〉 be an ARS. Suppose:
∀a, b, c ∈ A ∃d ∈ A (a →1 b & a →→2 c ⇒ b →→2 d & c →→1 d). (See Figure 1.4b.) Then
→1,→2 commute.

1.6.5. EXERCISE (Rosen [73]). Let 〈A,→1,→2〉 be an ARS.

DEFINITION: →1 requests →2 if ∀a, b, c ∈ A ∃d, e ∈ A (a →→1 b & a →→2 c ⇒ b →→2 d &
c →→1 e →→2 d)).

(See Figure 1.4c.) To prove: if →1,→2 are confluent and if →1 requests →2, then →12 is
confluent.

1.6.6. EXERCISE (Rosen [73]). Let 〈A,→1,→2〉 be an ARS such that →2 is confluent and:
∀a, b, c ∈ A ∃d, e ∈ A (a →→1 b & a →2 c ⇒ b →→2 d & c →→1 e →→2 d). (See Figure 1.4d.)
Then →1 requests →2.

1.6.7. EXERCISE (Staples [75]). Let 〈A,→1,→2〉 be an ARS such that →2 is confluent and →1
requests →2. Let →3 be the composition of →→1 and →→2, i.e. a →3 b iff ∃c a →→1 c →→2 b.
Suppose moreover that ∀a, b, c ∈ A ∃d ∈ A (a →→1 b & a →→1 c ⇒ b →3 d & c →3 d). Then
→12 is confluent.

1.6.8. EXERCISE (Staples [75]) .

DEFINITION: In the ARS 〈A,→1,→2〉 the reduction relation →2 is called a refinement of →1 if
→1 ⊆ →→2. If moreover ∀a, b ∈ A ∃c ∈ A (a →→2 b ⇒ a →→1 c & b →→1 c), then →2 is a
compatible refinement of →1.

Let in the ARS 〈A,→1,→2〉 the reduction relation →2 be a refinement of →1. Prove
that →2 is a compatible refinement of →1 iff ∀a, b, c ∈ A ∃d ∈ A (a →2 b & b →→1 c ⇒
c →→1 d & a →→1 d).

1.7.9. EXERCISE (Staples [75]). Let 〈A,→1,→2〉 be an ARS where →2 is a compatible
refinement of →1. Then: →1 is confluent iff →2 is confluent.

1.7.10. EXERCISE (Huet [80]). DEFINITION: Let 〈A, →〉 be an ARS. Then → is called
strongly confluent (see Figure 1.4e) if: ∀a, b, c ∈ A ∃d ∈ A (a → b & a → c ⇒ b →→ d &
c →≡ d). Prove that strong confluence implies confluence.

1.7.11. EXERCISE. Let 〈A, (→α)α∈I 〉 be an ARS such that for all α, β ∈ I, →α commutes
weakly with →β.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 38

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

DEFINITION: (a) →α is relatively terminating if no reduction a0 → a1 → a2 → ... (where
→ = Uα∈I →α) contains infinitely many α-steps.

(b) →α has splitting effect if there are a, b, c, ∈ A such that for every d ∈ A and every β ∈ I
with a →α b, a →β c, c →→α d, b →→β d, the reduction b →→β d consists of more than one step.

To prove: if every →α (α ∈ I) which has splitting effect is relatively terminating, then → is
confluent. (Note that this strengthens Newman’s Lemma.)

a

b c

d

≡
12

1 2

a

b c

d

12

1 2

a

b c

d

1
2

1 2

2

a

b c

d

1
2

1 2

2

(a) (b) (c) (d)

a

b c

d

≡

d'

≡

(e)

>

>

>
>

>
>

>
>

(f) (g)

Figure 1.4

1.7.12. EXERCISE (Winkler & Buchberger [83]). Let 〈A, → 〉 be an ARS where the ‘reduction’
relation > is a partial order and SN. (So > is well-founded.) Suppose a → b implies a > b. Then the
following are equivalent:
(a) → is confluent,
(b) whenever a → b and a → c, there is a →-conversion b ≡ d1 ↔ d2 ↔ ... ↔ dn ≡ c (for some
n ≥ 1) between b, c such that a > di (i = 1,...,n). Here each ↔ is → or ←. (See Figure 1.4f.)
(Note that this strengthens Newman’s Lemma.)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 39

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.7.13. EXERCISE (Klop [80]). Let A = 〈A, →〉 be an ARS. Let B ⊆ A. Then B is cofinal in
A if ∀a ∈ A ∃b ∈ B a →→ b. Furthermore, A is said to have the cofinality property (CP) if in
every reduction graph G(a), a ∈ A, there is a (possibly infinite) reduction sequence
a ≡ a0 → a1 → ... such that {an | n ≥ 0} is cofinal in G(a).
(i) Prove that for countable ARSs: A is CR ⇔ A has CP.
(ii) Show that the condition of countability cannot be missed. (See Solutions.)

SOLUTION (from Klop [80]).

1.7.14. EXERCISE. Let 〈A, →〉 be an ARS. For well-founded partial orderings > on A we define
the following properties.
(i) ▲(>): whenever b ← a → c there is a →-conversion b ≡ d0 ↔ d1 ↔... ↔ dn ≡ c (for some n ≥
0) such that a > di for i = 1,...,n-1. (So, in case n = 0 or 1 there is no partial order requirement.)
Here each ↔ is → or ←. (See Figure 1.4(f).)

(ii) ◆(>): whenever b ← a → c there is a →-conversion b ≡ d0 → d1 →... → dn ← dn+1← ... ←
dn+m ≡ c (for some n, m ≥ 0) such that a > di for i = 1,...,n+m-1. (See Figure 1.4(g).)

(iii) The weakened properties ▲-(>) and ◆-(>) are obtained as follows (in addition to the clauses of
the definition of ▲(>) and ◆(>), respectively): if for the diverging steps b ← a → c we can find an
element d such that b → d ← c, we do not require a > d but only a ≥ d.

(iv) We now define that the ARS 〈A, →〉 has property ▲ if for some well-founded partial ordering
> on A, we have ▲(>). Likewise for property ◆, and for ▲- and ◆-.

(v) Let #: A → ORD be an ordinal assignment to elements of A. Analogous to (i-iii) above we
define ▲o(#), ◆o(#), ▲o-(#), ◆o-(#), by replacing a > b by #(a) > #(b) and a ≥ b by #(a) ≥ #(b).
(The latter >, ≥ denote the ordering between ordinals.) Analogous to (iv) we define ▲o, ◆o, ▲o-,

◆o-. All eight properties are criteria for confluence; somewhat surprisingly they are not all
equivalent.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 40

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

CR & SN

⇔
⇓

⇓

⇓

⇓

⇔

⇔

⇔

⇔ ▲ ◆ ◆ o▲
o

▲- ◆-

-▲
o

-◆ o

CR

Figure 1.5

(vi) Prove that implications and equivalences hold as in Figure 1.5. Note that this entails
SN ⇒ (▲ ⇔ CR), which is in fact Exercise 1.7.12. For an application of the confluence criterion
◆o- , see the next exercise.

Prove that the implications are strict, by considering the examples in Figure 1.6. Show that
the ARS in (a) has properties ¬◆, ◆-, ◆o-. The ARSs in (e) and (f) satisfy ¬◆, ¬◆-, ◆o-. The
other three ARSs satisfy property ◆.

1.7.15. EXERCISE (Geser [89]). This exercise reformulates and slightly generalizes Exercise
1.7.11. Let 〈A, →α, →β〉 be an ARS.

DEFINITION: α/β (“α modulo β”) is the reduction relation β*αβ*. So a →α/β b iff
there are c, d such that a →→β c →α d →→β b.

Note that α is relatively terminating (in the sense of Exercise1.7.11) iff α/β is SN.

DEFINITION. β is called nonsplitting (with respect to α ∪ β) if

∀a,b,c ∈ A ∃d ∈ A (a →β b & a →α∪β c ⇒ c →→α∪β d & b (→α∪β)≡ d).

Prove: If α/β is SN, α is WCR, and β is non-splitting, then α ∪ β is confluent.

(Hint: Note that the transitive closure (α/β)+ is a well-founded partial ordering. This gives rise to
an ordinal assignment to elements of A, such that a →α b ⇒ #(a) > #(b) and a →β b ⇒ #(a) ≥
#(b). Now show that ◆o- as in the previous exercise (vi) holds.)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 41

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(a) (b)

(c) (d)

(e) (f)

Figure 1.6

1.7.16. EXERCISE (Curien & Ghelli [90]). Let A = 〈A, →α 〉 and B = 〈B, →β〉 be ARSs.
Suppose:

Topic 1: Knots, Braids and Abstract Reduction Systems - page 42

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(i) B is confluent,
(i i) A is WN (weakly normalizing).

Moreover, let ϕ: A → B be a map such that:
(iii) a →α a' ⇒ ϕ(a) =β ϕ(a'), for all a, a' ∈ A,
(iv) ϕ translates α-normal forms into β-normal forms,
(v) ϕ is injective on α-normal forms.

Then A is confluent.

1.7.17. EXERCISE (De Bruijn [78]). Let A = 〈A, (→n)n∈I 〉 be an ARS with I a partial order.
Then, for a, b ∈ A, a →→<n b means that there is a sequence of reduction steps from a to b, each
reduction step having index < n. Analogously, a →→≤n b is defined. Furthermore, →n≡ is the
reflexive closure of →n. Prove:

n

n

n

k

<n n
≡

<n <k n
≡

<n

<n≤n
(k < n)

Figure 1.7

LEMMA. Let A = 〈A, (→n)n∈I 〉 be an ARS with I a well-founded linear order. Suppose that

(i) ∀a, b, c, n ∃d, e, f (a →n b & a →n c ⇒ b →→≤n f & c →→<n d →n≡ e →→<n f), and

(ii) ∀a, b, c, n, k ∃d, e, f (k < n & a →n b & a →k c ⇒ b →→<n f & c →→<k d →n≡ e →→<n f).

(See Figure 1.7.) Then A is confluent.

1.6. Exercises: Criteria for Strong Normalization.

1.8.1. EXERCISE (Newman [42]). Let WCR1 be the following property of ARSs 〈A, →〉 :

Topic 1: Knots, Braids and Abstract Reduction Systems - page 43

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

∀a,b,c∈A ∃d∈A (c ← a → b & b ≠ c ⇒ c → d ← b). (See Figure 1.8a.) Prove that WCR1 &
WN ⇒ SN, and give a counterexample to the implication WCR≤1 & WN ⇒ SN.

1.8.2. EXERCISE (Bachmair & Dershowitz [86]). Let 〈A, →α, →β〉 be an ARS such that ∀a,b,c
∈ A ∃d ∈ A (a →α b →β c ⇒ a →β d →→αβ c). (In the terminology of Bachmair &
Dershowitz [86]: β quasi-commutes over α.) (See Figure 1.8b.) Prove that β/α is SN iff β is SN.
(For the definition of β/α, see Exercise 1.7.15.)

1.8.3. EXERCISE (Klop [80]). Let A = 〈A, →α〉 and B = 〈B, →β〉 be ARSs. Let ι: A → B and
κ: B → A be maps such that
(i) κ(ι(a)) = a for all a ∈ A,
(ii) ∀a,a' ∈ A ∀b ∈ B ∃b' ∈ B (b →κ a →α a' ⇒ b →β b' →κ a') (Reductions in A can be
‘lifted’ to B.) See Figure 1.8c.

Prove that B is SN implies that A is SN.

(a) (b) (c)

β

α

β

αβ

κ κ

β

α

Figure 1.8

1.8.4.EXERCISE. (Geser [89]) Let 〈A, →α, →β〉 be an ARS with two reduction relations α, β

such that α ∪ β is transitive. Then:
α ∪ β is SN ⇔ α is SN and β is SN.

(Hint: use Ramsey’s Theorem, see Preliminaries.)

1.7. Exercises: Other properties of ARSs

1.9.1.EXERCISE. Define: A (or →) has the unique normal form property with respect to

reduction (UN→) if ∀a,b,c∈A (a →→ b & a →→ c & b,c are normal forms ⇒ b ≡ c). Show that
UN ⇒ UN→, but not conversely.

1.9.2.EXERCISE. Find a counterexample to the implication WCR & WN ⇒ Ind.

Topic 1: Knots, Braids and Abstract Reduction Systems - page 44

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1.9.3.EXERCISE. Let A = 〈A, →〉 be an ARS. Define: A is consistent if not every pair of
elements in A is convertible. Note that if A is confluent and has two different normal forms, A is
consistent. Further, let A = 〈A, →α〉 , B = 〈B, →β〉 be ARSs such that A ⊆ B. Then we define:
B is a conservative extension of A if ∀a,a' ∈ A (a =β a' ⇔ a =α a'). Note that a conservative
extension of a consistent ARS is again consistent. Further, note that a confluent extension B of A
is conservative.

1.9.4. EXERCISE. (i) Let A = 〈A, →〉 be a countable ARS with decidable syntactic equality (≡).
Moreover, let → be a recursively enumerable relation and let the set of normal forms of A be
decidable. Show that if A is CR and WN, convertibility (=) in A is decidable.
(ii) Give an example of an ARS A = 〈N, →〉 (where N is the set of natural numbers) such that →
is decidable, but NF(A), the set of normal forms of A, is undecidable.

1.9.5. EXERCISE (V. van Oostrom):
Give an example of an ARS which is WCR, UN→, but not UN=

(Solution: Roel's counterexample, mixed with Hindley's counterexample.)

Topic 1: Knots, Braids and Abstract Reduction Systems - page 45

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Decreasing Diagrams

As seen in Topic 1, we can infer CR from WCR when given the additional assumption of SN

(Newman’s Lemma). Also in this topic we will infer CR from WCR, this time given extra

information on the nature of WCR, that is, on the form of the ‘elementary diagrams’ or e.d.’s that

WCR provides. In the braid confluence problem we already encountered the procedure of tiling

with e.d.’s to obtain a confluent diagram. We will now look in detail at this ‘tiling game’, starting

with Huet’s strong confluence lemma, in a sequence of introductory examples.

2.1 EXAMPLE. (i) DEFINITION. For an ARS A = 〈A, →〉 we define: → is strongly confluent if

∀a,b,c∈A ∃d∈A (b ← a → c ⇒ c →→ d ←≡ b) (See Fig. 2.1(a))

(Here →≡ is the relexive closure of →, so b →≡ d is zero or one step.)

(ii) LEMMA (Huet [80]). Let A be strongly confluent. Then A is CR.

The proof is simple. The assumption of strong confluence provides us with elementary

diagrams (e.d.’s) as in Figure 2.1(a), which can be used to obtain CR as suggested in the diagram

in Figure 2.1(b), where we profit from the fact that “splitting” occurs in the direction of our

choice.

(This is so, because the quantification over a,b,c implicit in Figure 2.1(a) is universal, so we can

mirror the e.d. in that figure around the main diagonal.)

Topic 2: Decreasing Diagrams - page 1

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

≡

a b

c d

strong confluence

(a) (b)

Figure 2.1

2.2 EXAMPLE. When splitting of e.d.’s would occur in both directions, our “diagram chase” to

obtain confluence may very well fail: given e.d.’s of the form as in Figure 2.2(a), so corresponding

to the WCR assumption

∀a,b,c∈A ∃d,e,f ∈A (c ← a → b ⇒ c → d → e ←f ← b),

we may fail in our attempt to construct a confluent diagram by tiling; see Figure 2.2(b), where the

diagram construction of diagram D falls in the trap of an infinite regress.

D

D
e.d. splitting in
both directions

(a) (b)

Figure 2.2

2.3. EXAMPLE. This tiling game is even more interesting when dealing with more than one

reduction relation. Suppose we have two reduction relations, labeled (or indexed) with 1,2, and that

we have for their union →12 WCR in the form of the e.d.’s as in Figure 2.3.

Question: does CR hold for →12?

Answer: No; for we may have a situation as in Figure 2.3, lower diagram.

Topic 2: Decreasing Diagrams - page 2

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

2

1

1

1

2

2

2

2

2

1

1

1

1

2

1

1

1

2

1

1 2

D

D

2

Figure 2.3

2.4. EXAMPLE. However, if we change the e.d.’s of Example 2.3 slightly as in Figure 2.4 we do

have CR!

2

1

1
1

2

2

2

2

2

1

1

1

1

Figure 2.4

2.5. EXAMPLE. Question: do we have CR given the e.d.’s in Figure 2.5? This is not at all easy to

see. The answer is yes, as will be clear at the end of this topic.

2

2

1
2

1

2

1

2

1

1

1

1

1

2

Figure 2.5

2.6. Reduction diagrams. We will now be more precise about elementary diagrams. They are of

the following shapes; see Figure 2.6.

Topic 2: Decreasing Diagrams - page 3

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure 2.6

 They are the ‘atomic’ or basic building blocks for constructing reduction diagrams. A non-trivial

elementary diagram consists of two diverging steps (arrows), joined by two sequences of steps of

arbitrary length. Note that in the e.d.’s we may use empty sides (the dashed sides, in some figures

shaded), to keep matters orthogonal. This gives rise to some trivial e.d.’s as in the lower part of

Figure 2.6. The e.d.’s are used as scalable 'tiles' with the intention to obtain a completed reduction

diagram as in Figure 2.7. Usually we will forget the direction of the arrows (second picture in

Figure 2.7): they always are from left to right, or downwards (except the empty ‘steps’ that have no

direction).

2.7. Indexed Abstract Reduction Systems. In this topic we will consider an Abstract Reduction

System (ARS) A, equipped with a collection of rewrite or reduction relations →α, indexed by

some set I: A = 〈A, (→α)α∈I〉 . The index set I is in this topic always a well-founded partial

order. In examples, we will use the set of natural numbers with the usual ordering as index set. The

union of the rewrite relations →α will be →. We use the notation →→ for the transitive-reflexive

closure of →.

2.8. Multisets. We will use multisets over the index set I, together with the multiset ordering

induced by that of I. It is well-known that this is again a well-founded partial order. (Furthermore, if

I is a total order, then the p.o. of multisets over I is again total.)

We will use the notations: multiset ordering ≥µ, strict multiset ordering >µ, multiset union ∪.

Topic 2: Decreasing Diagrams - page 4

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Figure 2.7

We will show somewhat more structure on the multiset p.o. If we have X ≥µ Y, there is a

‘descendant’ relation between the elements of X and Y. Some elements of X are ‘preserved’in Y:

this is indicated by heavy arrows (see Figure 2.8). Some elements of X will be replaced by some

elements in Y that are strictly smaller (in the p.o. I); this is indicated by light arrows. Heavy arrows

cannot split, light arrows can. From an element of X also zero light arrows can exit: that element

just disappears. (E.g. the ‘1’ in Figure 2.8.) A descendant relation for X ≥µ Y by means of

‘multiset arrows’ need not be unique, e.g. the pair of multisets in Figure 2.8 admits several other

descendant relations.

 { 3, 3, 4, 3, 2, 1, 4}

{ 2, 2, 1, 0, 4, 2, 3, 2, 3, 2, 3 }

Figure 2.8

Topic 2: Decreasing Diagrams - page 5

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(Actually in the present treatment of this topic we will suppress all detailed proofs and therefore not

really use this extra descendant structure for X ≥µ Y, but mention of these heavy and light tracing

arrows anticipates their use in the next topic.)

2.9. Monotonic filtering. We start with an important definition. Given a tuple σ of natural

numbers, filter(σ) is the tuple obtained by ‘reading’ σ from left-to-right, removing the elements that

are less than what was already encountered, and taking the tuple of the remaining elements. See

example in Figure 2.9. Another operation on tuples is multiset; it yields the corresponding multiset.

In the sequel we will be especially interested in multiset (filter(σ)).

3 2 4 4 3 1 2 6 2 8 7 8 4 2 5

3 4 4 6 8 8

monotonic filtering of string of natural numbers

Figure 2.9

2.10. Decreasing diagrams. Before defining what a decreasing diagram is, we need the notion of

‘norm of a reduction sequence’ in the ARS with indexed rewrite relations. This will be a tuple of

natural numbers (in general, elements of I). Par abus de langage, we will also denote reduction

sequences with σ, τ. If σ is a reduction sequence, label(σ) is the string of indexes of consecutive

reduction steps in σ. Single steps will be denoted by α, β. So label(α) is the index of the step α.

2.10.1. DEFINITION.

(i) Let σ be a reduction sequence. Then |σ|, the norm of σ, is multiset(filter(label(σ))).

(ii) The norm of two diverging reductions σ, τ is |σ| ∪ |τ| . (Figure 2.10.)

Topic 2: Decreasing Diagrams - page 6

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Norm of pair of divergent
reductions

Figure 2.10

2.10.2. DEFINITION. Let σ: a -→→ b, τ: a →→ c, σ': c →→ d, τ': b →→ d be reductions forming the

reduction diagram D with corners a,b,c,d. (Figure 2.11.)

a b

c d

τ

σ

τ'

σ'

Figure 2.11

Then D is a decreasing diagram, if

|σ| ∪ |τ| ≥µ |σ·τ'| and

|σ| ∪ |τ| ≥µ |τ·σ'|.

Note: we merely require ≥µ, not >µ!

2.11. Decreasing elementary diagrams. We will now see what the decreasingness condition

means for elementary diagrams. Some consideration shows readily that decreasing e.d.’s have the

following shape, as in Figure 2.12.

Explanation: Given two diverging steps a →n b and a →m c with indices n, m there is a common

Topic 2: Decreasing Diagrams - page 7

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

reduct d such that

b →→ <n . →≡
m ... →→ <n or <m d and dually

c →→ <m . →≡
n ... →→ <n or <m d

So from b we take some steps with indices < n, followed by 0 or 1 step with index m, followed by

some steps with index < n or < m, with result d. Dually, from c we have a reduction to d as

indicated.

≡

n

m

< n

m

< n or < m

< m n < n or < m

≡

a

c d

b

Figure 2.11

2.11.1. EXAMPLE. (i) So, we have examples as in Figure 2.13 of some decreasing and non-

decreasing e.d.'s. (Note that the first e.d., upper-left, is an e.d. encountered in the braids confluence

problem; so confluence of braids cannot be proved by an appeal on the theorem in this topic about

confluence by decreasing diagrams!)

Topic 2: Decreasing Diagrams - page 8

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1

2

2

1

1 2

1

2

1

2

1 1

(a)

1

2

2

1

1 1

1

2 2

11

2

3

1

3

2

2 2 2

(b)

decreasing

not decreasing

Figure 2.13

(ii) The e.d. in Example 2.2, Fig. 2.2 is not decreasing; of the e.d.’s in Fig.2.3 the first one is not

decreasing, the other two are; the e.d.’s in Fig. 2.4 are decreasing; the e.d.’s in Fig. 2.5 are

decreasing.

Now we will mention the two important properties of decreasing diagrams that give

confluence. The first is indicated in Figure 2.14: pasting preserves decreasingness.

2.12. PROPOSITION. Let two decreasing diagrams be joined as in Figure 2.14. Then the resulting

diagram is again decreasing.

decreasing decreasing

decreasing

pasting preserves decreasing diagrams

Figure 2.14

The second important property is indicated in Figure 2.15: inserting a decreasing diagram in a
pair of co-initial reductions reduces the norm of the resulting pair of co-initial reductions.

Topic 2: Decreasing Diagrams - page 9

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

decreasing
diagram

decreased
norm

Figure 2.15

2.13. PROPOSITION. Let a decreasing diagram be inserted as in Figure 2.15 into a pair of

diverging reductions. Then the resulting pair of diverging reductions has a smaller norm.

Finally, we can combine the two important properties to yield a proof of confluence, based on

well-founded induction. See Figure 2.16.

elementary
decreasing

diagram

decreasing diagram
obtained by induction

hypothesis

decreasing diagram
obtained by induction

hypothesis

I II

III

Figure 2.16

Let us give this final argument a bit more explicitly. See Fig. 2.17. The original norm is norm (β.τ,

α.σ) = |β.τ| ∪ |α.σ|. The induction hypothesis (IH) states that for all pairs of divergent reductions

with smaller norm, tiling with decreasing e.d.’s succeeds. We have |β| <µ |β.τ|, so norm (β, α.σ) <µ

norm (β. τ, α.σ). Now norm (β’, σ) <µ norm (β, α.σ) <µ norm (β. τ, α.σ). Part I + II is again

decreasing by Proposition 2.12. Hence (Proposition 2.13) norm (τ, α’.σ’) <µnorm (β. τ, α.σ).

Now IH yields part III.

Topic 2: Decreasing Diagrams - page 10

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

decreasing
e.d.

decreasing diagram
obtained by IH

decreasing diagram
obtained by IH

I II

III

α σ

β β'

α' σ'

τ

.
Figure 2.17

2.14. THEOREM (De Bruijn - Van Oostrom)

Every ARS with reduction relations indexed by a well-founded partial order I, and satisfying the

decreasing criterion for its e.d.'s, is confluent.

2.15. REMARK. The unpublished note De Bruijn [78] is the first appearance of this theorem. There

an asymmetrical version of the notion of decreasing elementary diagram is given. The notion of

‘decreasing’ as presented in this section was not present there and appears in Van Oostrom [94,

94a]. In Bezem et al. [96] the theorem is proved using the notion of ‘trace-decreasing’ which is

slightly stronger than decreasing.

2.16. REMARK. The question arises how strong this method of decreasing diagrams is. In a way, it

is best possible, at least for countable ARSs, since there is the following ‘completeness’ result:

Define an ARS A = 〈A, →〉 to have the property DCR (decreasing Church-Rosser), if there is an

indexed ARS AI = 〈A, (→α)α∈I〉 with rewrite relations (→α)α∈I, such that AI has decreasing

e.d.’s with respect to some well-founded order on I, and such that the union of the rewrite relations

→α is →. So we have seen above that DCR ⇒ CR. Now we have:

THEOREM (Van Oostrom [94]. For countable ARSs: DCR ⇔ CR.

The proof, also present in Bezem et al. [96], employs the fact mentioned in Topic 1: CR ⇔ CP for

countable ARSs.

It seems to be a difficult exercise to establish the (conjectured) result that the condition

Topic 2: Decreasing Diagrams - page 11

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

’countable’ is necessary.

2.17. Some applications. We have already seen some applications in the examples of decreasing

diagrams.More interesting is that also Huet’s Strong Confluence Lemma in Example 2.1 and

Newman’s Lemma are corollaries of confluence by decreasing diagrams. For both, a little trick is

required, as follows.

(i) Huet’s strong confluence lemma. Note that e.d.’s corresponding to Figure 2.1(a), the

assumption of strong confluence, are in general not decreasing. E.g. one with two steps in the lower

side is not. Yet, this situation can be seen in the scope of the present method as follows. Take two

copies of →, one labeled with h (horizontal): →h, one with v (vertical): →v. Now the e.d.’s as in

Figure 2.18 are decreasing, under the ordering h < v.

Therefore, A{h,v} = 〈A, (→h, →v〉 with the three types of e.d.’s as shown, is CR by the theorem.

This means that the original A = 〈A, →〉 is also CR.

.

h

v

h h

h

h h

h

v v

v

vh

Figure 2.18

(ii) Newman’s Lemma. Let ARS A = 〈A, →〉 be SN and WCR. For the sake of exposition, let

us assume that A is FB (finitely branching); then by SN each reduction graph G(a), a ∈A, is

finite, using König’s Lemma. Let a be the cardinality of G(a), so a is a natural number. Call it the

size of a. Note that if a → b, then a > b. Now take for each step a → b, an indexed relation → a

such that a → b ⇔ a → a b; in other words, label each step with the size of its left-hand side

element. Now it is not hard to see that WCR gives us decreasing e.d.’s. Hence the labeled ARS is

CR, and therefore the original one also.

The general argument, not assuming FB, is equally simple, using well-founded trees as size of

an element instead of natural numbers.

References
BEZEM, M., KLOP, J.W. & VAN OOSTROM, V.,(1996) Diagram Techniques for Confluence.

Information and Computation, Vol.141, No.2, p.172-204, 1998.

Topic 2: Decreasing Diagrams - page 12

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

DE BRUIJN, N.G. (1978). A note on weak diamond properties. Memorandum 78-08, Eindhoven University of

Technology, August 1978.

HUET, G. (1980). Confluent reductions: Abstract properties and applications to term rewriting systems. JACM,

Vol.27, No.4 (1980), 797-821.

VAN OOSTROM, V. (1994). Confluence for Abstract and Higher-Order Rewriting. Ph.-D. thesis, Vrije

Universiteit, Amsterdam, March 1994.

VAN OOSTROM, V. (1994a). Confluence by decreasing diagrams.

Theoretical Computer Science 126. p.259-280.

Topic 2: Decreasing Diagrams - page 13

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Infinite Diagrams

In this Topic we give a proof (sketch) of the ‘confluence by decreasing diagrams’ theorem in Topic

2 by an analysis of the geometry of, possibly infinite, reduction diagrams, resulting from two co-

initial diverging finite reduction sequences, by ‘tiling’ with elementary reduction diagrams. Infinite

diagrams arise this way, when we have a failure of confluence.

We will give several examples of infinite reduction diagrams, some of them exhibiting an

interesting fractal-like boundary, some of them reminiscent to the pictures of M.C. Escher, with a

repetition of the same pattern, receding in infinity.

 Actually, we consider an enrichment of mere reduction diagrams, namely diagrams with a ‘tree

covering’. A tree covering of a diagram determines an ancestor-descendant relation between the

edges appearing in a reduction diagram. By means of a tree covering an edge can be traced back to

its ancestor edge on one of the original divergent reduction sequences. The theorem proved in this

section states the impossibility of certain infinite diagrams with a tree-covering. Since the notion of

decreasing diagram gives rise in a natural way to a tree covering—of the impossible kind—we have

as an immediate corollary then the theorem of confluence by decreasing diagrams. The method of

proof of our theorem is purely geometric. It employs topological notions such as condensation

points of point sets in the real plane.

3.1. Infinite reduction diagrams and towers. We will consider infinite reduction diagrams as

they arise from unsuccesfully tiling with elementary reduction diagrams (e.d.’s), defined in Topic

2. Some examples are given in Figure 3.1 and 3.2. The first example in Figure 3.1, the simplest

infinite diagram, will be called the ‘Escher-diagram’. Note the ‘fractal-like’ boundary that arises in

Topic 3: Infinite Diagrams - page 1

Logic Colloquium 99 - Utrecht

Figure 3.2.

Figure 3.1

3.1.1. REMARK. Since we admit also empty steps, it is not immediately clear that an infinite

diagram contains infinitely many non-empty edges. However, this is indeed the case; Bezem et al.

(1996) proves the stronger fact that an infinite diagram possesses an infinite reduction containing

infinitely many splitting steps. (An elementary diagram is ‘splitting’ if one of the converging sides

contains two or more steps which then are called splitting steps. Clearly, splitting steps are non-

Topic 3: Infinite Diagrams - page 2

Logic Colloquium 99 - Utrecht

empty.)

Figure 3.2

Topic 3: Infinite Diagrams - page 3

Logic Colloquium 99 - Utrecht

Figure 3.2a

A tower in an infinite reduction diagram is the result of adjoining elementary reduction

diagrams in a ‘linear’ way, as suggested in Figure 3.3. We will always be interested in infinite

towers. Towers can be either horizontal or vertical. Figure 3.4 displays two towers in the fractal-like

diagram (Figure 3.2). Figure 3.4a displays (shaded) one of the two towers constituting the Escher

diagram.

infinite towers

Figure 3.3

Topic 3: Infinite Diagrams - page 4

Logic Colloquium 99 - Utrecht

Figure 3.4

Topic 3: Infinite Diagrams - page 5

Logic Colloquium 99 - Utrecht

Figure 3.4a

3.2. PROPOSITION. Every infinite diagram contains an infinite horizontal tower and an infinite

vertical tower.

PROOF. Consider the infinite diagram, and draw in each tile arrows from the left side to the steps in

the right side (see Figure 3.4b). In this way finitely many trees arise. By the pigeon-hole principle

and König’s Lemma, one of these trees must have an infinite branch. This branch determines an

infinite horizontal tower. Dually we find an infinite vertical tower. �

Topic 3: Infinite Diagrams - page 6

Logic Colloquium 99 - Utrecht

Figure 3.4b

Consider again the left-to-right trees in the preceding proof. Their branches are linearly

ordered according to whether the one is ‘above’ the other. A branch σ is above branch τ, when after

running together for some (possibly 0) steps, σ branches off to above compared to τ.

Furthermore it is clear that there is a highest infinite branch in the left-to-right trees of an

infinite diagram. It is constructed in the obvious way: to start, choose the highest root of the left-

right trees that has an infinite branch, then choose the highest successor with the same property, and

so on.

Since branches in the left-right trees correspond with horizontal towers, there also exists a

highest horizontal infinite tower. This will play an important role in the full proof (not given here.).

3.2.1. REMARK. In fact, the towers of a reduction diagram are linearly ordered by the relation

‘above’. There may be continuum many towers (see Figure 3.4c).

continuum many towers

Figure 3.4c

Topic 3: Infinite Diagrams - page 7

Logic Colloquium 99 - Utrecht

3.3. Tree coverings of reduction diagrams. Next, we will define the concept of a tree covering

of a reduction diagram. Elementary reduction diagrams will be equipped with arrows leading from

the initial (diverging) edges of the elementary reduction diagram to the opposite (converging)

edges. Each converging edge is traced back via an arrow to one of the two initial edges (if the

elementary diagram is not trivial; empty sides are not traced back). Figure 3.7 shows an example of

a finite, completed reduction diagram with a tree covering. In this example the branches of the trees

do not intersect, in general they may however.

3.4. DEFINITION. (i) A step in a branch is straight if it leads from an initial edge to an opposing

edge.

(ii) A branch changes orientation if it goes from vertical to horizontal or dually.

(iii) An infinite branch is meandering if it changes orientation infinitely often.

(iv) Let τ be a horizontal branch. We say that τ branches off downward to branch σ, if τ, σ are

concurrent for some steps, after which σ branches off to a lower opposing edge, or changes

orientation. Likewise dually: a vertical branch may branch off to the right.

(v) There is exactly one tree covering all of whose steps are straight. We call it the canonical tree

covering.

tree covering of reduction diagram

Figure 3.7

Topic 3: Infinite Diagrams - page 8

Logic Colloquium 99 - Utrecht

infinite branch of tree covering, contained in tower,
branching off only in downward direction

Figure 3.8

We now formulate the main theorem of this topic. The full proof is omitted here and can be found

in Klop et al. [99]. An intuition is sketched below. The full proof contains a notion not treated here,

namely that of an ‘upper boundary branch’ of a tower.

3.5. THEOREM. An infinite reduction diagram does not possess a tree covering such that

(i) all infinite branches are eventually contained in towers (i.e. straight),

(ii) infinite branches contained in horizontal towers split, eventually, only downwards,

(iii) infinite branches contained in vertical towers split, eventually, only to the right.

Topic 3: Infinite Diagrams - page 9

Logic Colloquium 99 - Utrecht

1 2 3 4

11 12

13 14

22 23

24 33

34 44

Figure 3.9

3.6. EXAMPLE. Figure 3.9 contains a number of ‘periodic’ tree coverings of the Escher diagram.

The upper part of Figure 6.1 gives some of the tree coverings (not exhaustive) of the

elementary diagram of which the Escher diagram is built. (Note that the Escher diagram is indeed

built from elementary diagrams of a single shape). These tree covered elementary diagrams are then

used to build the Escher diagram in various combinations 11, 12, ... E.g. 23 means that the tree

covered elementary diagram 2 is used, next the elementary diagram 3 (after mirroring); then the 23

configuration is recursively repeated.

Now the ten cases of Figure 3.9 have the following properties (see Table 1); indeed, no case

has all three properties (i-iii) of the theorem.

Topic 3: Infinite Diagrams - page 10

Logic Colloquium 99 - Utrecht

 (i) (ii) (iii)

 11 + - -
 12 + - +
 13 + - +
 14 + - +
 22 - + +
 23 - + +
 24 - + +
 33 - + +
 34 - + +
 44 - + +

Table 1

Let us elaborate on the underlying intuition. Condition (i) says that there are no infinitely

meandering branches. Let us simplify the situation by forbidding any meandering, so assume all

branches are straight. This means that we are dealing with the canonical tree covering (Def. 3.4(v)).

Now consider the lowest horizontal branch σ and the rightmost vertical branch τ. Now say an edge

in diagram D is ‘accounted for’ if a branch of the tree covering under consideration passes through

it. the branches σ and τ account for infinitely many edges, as they are infinite. But there remain

infinitely many edges not touched by σ and τ. Some experiments make this clear; e.g. in the Escher

diagram we find that the steps in bold are not accounted for (see Figure 3.9a). In Figure 3.9b this

is the grey area, containing infinitely many edges. Now if σ and τ are not allowed to branch off

towards this infinitely large area, the tree covering can never cover all these edges.

σ

τ

Figure 3.9a

Topic 3: Infinite Diagrams - page 11

Logic Colloquium 99 - Utrecht

σ

τ

Figure 3.9b

3.7. Confluence by decreasing diagrams. Let us repeat the general form of an decreasing e.d.

from the preceding topic (See Figure 3.10), together with an example of some decreasing e.d’s as

in Figure 3.10a).

≡

n

m

< n

m

< n or < m

< m n < n o r < m

≡

a

c d

b

Figure 3.10

Topic 3: Infinite Diagrams - page 12

Logic Colloquium 99 - Utrecht

1

2

2

1

1 1

1

2 2

11

2

3

1

3

2

2 2 2

Figure 3.10a

We will now connect the present definition of decreasing e.d. with the tree coverings of this

topic. In a decreasing elementary diagram we will trace back the converging steps to the two

diverging steps. In doing so, it will be helpful to use a heavy arrow in case the index remains the

same, and a light arrow in case the index decreases.

The heavy and light arrows are determined as follows. Consider the vertical reduction

b →→ <n . →≡
m ... →→ <n or <m d. Now we let the first part of this reduction, consisting of steps

with index less than the index n of the horizontal step a →n b, trace back lightly to that step. If the

second part consists of 1 step with label m, it is traced back heavily to the vertical step a → c. If it

consists of 0 steps, we do nothing. The part consisting of steps with label less than n or m is treated

as follows. If the step label is less than n we trace back lightly to a → b, if less than m then lightly

to a → c, if both then we choose one. Likewise dually.

So a decreasing elementary diagram with the tracing arrows has one of the shapes of Figure

3.11: containing two heavy arrows, or one, or none. It is important that heavy arrows (along which

the indices remain the same) are straight, while the light arrows (along which the indices decrease)

may involve a change of orientation.

Topic 3: Infinite Diagrams - page 13

Logic Colloquium 99 - Utrecht

decreasing elementary diagram

Figure 3.11

Elementary diagrams with tree covering

See Figure 3.12, consisting of the decreasing elementary diagrams of Figure 3.10a but now

enriched with the tracing arrows (with the convention for heavy and light just mentioned).

1

2

2

1

1 1

1

2 2

11

2

3

1

3

2

2 2 2

Figure 3.12

Note that the tracing pattern (the tree covering) is not uniquely determined by the decreasing

elementary diagram; e.g. Figure 3.13 contains two tracings for the same elementary diagram.

Topic 3: Infinite Diagrams - page 14

Logic Colloquium 99 - Utrecht

1

2 2

11

1

2 2

11

Figure 3.13

We now have

3.8. THEOREM. Every diagram construction using decreasing elementary diagrams will

terminate eventually in a finite confluent diagram.

PROOF. Equip the decreasing elementary diagrams with heavy and light arrows as explained above.

Note that heavy arrows preserve indices and are straight, while light ones decrease indices and may

change orientation. Note furthermore that a horizontal heavy arrow cannot split off in upward

direction (see Figure 3.14) and likewise dually.

(b)

3

1

3

2

(c) (d)

3

1

3

2

2

(a)

3

3

3 3

2

3

not allowed

allowed

Figure 3.14

Topic 3: Infinite Diagrams - page 15

Logic Colloquium 99 - Utrecht

Now consider an infinite branch in the diagram enriched with heavy and light arrows. Because

the partial order I is well-founded, eventually only heavy (index-preserving) arrows

can occur in this branch. But these are straight. So, every infinite branch must be eventually straight

(and thus contained in a tower).

Furthermore, from infinite horizontal branches we can only have split offs in downward

direction (either by straight arrows as in Figure 3.14(c) or by a change in orientation as in 3.14(d).

Likewise dually. That is, the three hypotheses of Theorem 3.5 are fulfilled. According to this

theorem the diagram cannot be infinite. �

3.9. COROLLARY (De Bruijn–Van Oostrom; confluence by decreasing diagrams)

Every ARS with reduction relations indexed by a well-founded partial order I, and satisfying the

decreasing criterion for its elementary diagrams , is confluent.

References
BEZEM, M., KLOP, J.W. & VAN OOSTROM, V., (1996) Diagram Techniques for Confluence.

Information and Computation, Vol.141, No.2, p.172-204, 1998.

KLOP, J.W., De Vrijer,R.C. & VAN OOSTROM, V., (1999) A Geometric Proof of Confluence by

Decreasing Diagrams Tech. Report Vrije Universiteit Amsterdam, 1999 (www.cs.vu.nl/~rdv/recent publications)

Topic 3: Infinite Diagrams - page 16

Logic Colloquium 99 - Utrecht

First-order Term Rewriting Systems

After the ‘abstract’ considerations of the preceding topics, in this topic we start with introducing

term rewriting systems (TRSs). In contrast with the higher-order term rewriting systems in a later

topic, we will call them also first-order TRSs; but often we will omit this qualification when it is

clear.

4.1. Syntax of Term Rewriting Systems. A (first-order) Term Rewriting System (TRS) is a

pair (Σ,R) of an alphabet or signature Σ and a set of reduction rules (rewrite rules) R. The alphabet

Σ consists of:

(i) a countably infinite set of variables x1,x2,x3,... also denoted as x,y,z,x',y',...

(ii) a non-empty set of function symbols or operator symbols F,G,..., each equipped with an

‘arity’ (a natural number), i.e. the number of ‘arguments’ it is supposed to have. We not only

(may) have unary, binary, ternary, etc., function symbols, but also 0-ary: these are also called

constant symbols.

The set of terms (or expressions) ‘over’ Σ is Ter(Σ) and is defined inductively:

(i) x,y,z,... ∈ Ter(Σ),

(ii) if F is an n-ary function symbol and t1,...,tn ∈ Ter(Σ) (n ≥ 0), then F(t1,...,tn) ∈ Ter(Σ). The

ti (i = 1,...,n) are the arguments of the last term.

Terms not containing a variable are called ground terms (also: closed terms), and Ter0(Σ) is

the set of ground terms. Terms in which no variable occurs twice or more, are called linear.

Topic 4: First-order Term Rewriting Systems- page 1

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Contexts are ‘terms’ containing one occurrence of a special symbol ■, denoting an empty

place. A context is generally denoted by C[]. If t ∈ Ter(Σ) and t is substituted in ■, the result is

C[t] ∈ Ter(Σ); t is said to be a subterm of C[t], notation t ⊆ C[t]. Since ■ is itself a context, the

trivial context, we also have t ⊆ t. Often this notion of subterm is not precise enough, and we have to

distinguish occurrences of subterms (or symbols) in a term; it is easy to define the notion of

occurrence formally, using sequence numbers denoting a ‘position’ in the term, but here we will be

satisfied with a more informal treatment.

4.1.1. EXAMPLE. Let Σ = {A,M,S,0} where the arities are 2,2,1,0 respectively. Then A(M(x,y),y)

is a (non-linear) term, A(M(x,y),z) is a linear term, A(M(S(0),0),S(0)) is a ground term,

A(M(■,0),S(0)) is a context, S(0) is a subterm of A(M(S(0),0),S(0)) having two occurrences:

A(M(S(0),0),S(0)).

A substitution σ is a map from Ter(Σ) to Ter(Σ) satisfying σ(F(t1,...,tn)) = F(σ(t1),...,σ(tn))

for every n-ary function symbol F (here n ≥ 0). So, σ is determined by its restriction to the set of

variables. We also write tσ instead of σ(t).

A reduction rule (or rewrite rule) is a pair (t, s) of terms ∈ Ter(Σ). It will be written as

t → s. Often a reduction rule will get a name, e.g. r, and we write r: t → s. Two conditions will be

imposed:

(i) the LHS (left-hand side) t is not a variable,

(ii) the variables in the right-hand side s are already contained in t.

A reduction rule r: t → s determines a set of rewrites tσ →r sσ for all substitutions σ. The LHS tσ

is called a redex (from ‘reducible expression’), more precisely an r-redex. A redex tσ may be

replaced by its ‘contractum’ sσ inside a context C[]; this gives rise to reduction steps (or one-step

rewritings)

C[tσ] →r C[sσ].

A term without a redex is a normal form. We call →r the one-step reduction relation generated

by r. Concatenating reduction steps we have (possibly infinite) reduction sequences t0 → t1 → t2 →

... or reductions for short. If t0 → ... → tn we also write t0 →→ tn, and tn is a reduct of t0, in

Topic 4: First-order Term Rewriting Systems- page 2

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

accordance with the notations and concepts introduced in Topic 1 for ARSs.

It is understood that R does not contain two reduction rules that originate from each other

by a 1-1 renaming of variables.

4.1.2. EXAMPLE. Consider Σ as in Example 4.1.1. Let (Σ, R) be the TRS (specifying the natural

numbers with addition, multiplication, successor and zero) with the following set R of reduction

rules:

 r1 A(x,0) → x

 r2 A(x,S(y)) → S(A(x,y))

 r3 M(x,0) → 0

 r4 M(x,S(y)) → A(M(x,y),x)

__

Table 4.1

Now M(S(S(0)), S(S(0))) →→ S(S(S(S(0)))), since we have the following reduction:

M(S(S(0)),S(S(0))) →

A(M(S(S(0)),S(0)),S(S(0))) →

S(A(M(S(S(0)),S(0)),S(0))) →

S(S(A(M(S(S(0)),S(0)),0))) →

S(S(M(S(S(0)),S(0)))) →

S(S(A(M(S(S(0)),0),S(S(0))))) →

S(S(A(0,S(S(0))))) →

S(S(S(A(0,S(0))))) →

S(S(S(S(A(0,0))))) →

S(S(S(S(0)))).

Here in each step the bold-face redex is rewritten. Note that this is not the only reduction from

M(S(S(0)), S(S(0))) to S(S(S(S(0)))).

Topic 4: First-order Term Rewriting Systems- page 3

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Obviously, for each TRS (Σ,R) there is a corresponding ARS, namely (Ter(Σ), (→r)r∈R).

Here we have to be careful: it may make a big difference whether one discusses the TRS (Σ, R)

consisting of all terms, or the TRS restricted to the ground terms (see the next example). We will

adopt the convention that (Σ, R) has as corresponding ARS the one mentioned already, and we write

(Σ, R)0 if the ARS (Ter0(Σ), (→r)r∈R) is meant. Via the associated ARS, all notions considered in

Topic 1 (CR, UN, SN, ...) carry over to TRSs.

4.1.3. EXAMPLE. Let (Σ, R) be the TRS of Example 4.1.2 and consider (Σ, R') where R' =

R ∪ {A(x, y) → A(y, x)}; so the extra rule expresses commutativity of addition. Now (Σ, R') is

not WN: the term A(x, y) has no normal form. However, (Σ, R')0 (the restriction to ground terms) is

WN.

Whereas (Σ, R)0 is SN, (Σ, R')0 is no longer so, as witnessed by the infinite reductions

possible in the reduction graph in Figure 4.1. The ‘bottom’ term in that reduction graph is a normal

form.

A(0, S(0))

A(S(0), 0) S(A(0, 0))

S(0)

 Figure 4.1

4.3. Semi-Thue systems. Semi-Thue Systems (STSs), as defined e.g. in Jantzen [88], can be

‘viewed’ as TRSs, as follows. We demonstrate this by the following example of a STS:

Let T = {(aba, bab)} be a one-rule STS. Then T corresponds to the TRS R with unary

function symbols a, b and a constant o, and the reduction rule a(b(a(x))) → b(a(b(x))). Now a

Topic 4: First-order Term Rewriting Systems- page 4

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

reduction step in T, e.g.: bbabaaa → bbbabaa, translates in R to the reduction step

b(b(a(b(a(a(a(o))))))) → b(b(b(a(b(a(a(o))))))). It is easy to see that this translation gives an

‘isomorphism’ between T and R (or more precisely (R)0, the restriction to ground terms).

4.4. Applicative Term Rewriting Systems. In some important TRSs there is a special binary

operator, called application (Ap). E.g. Combinatory Logic (CL), based on S, K, I, has the rewrite

rules

 Ap(Ap(Ap(S,x),y),z) → Ap(Ap(x,z), Ap(y,z))

 Ap(Ap(K,x),y) → x

 Ap(I,x) → x

Table 4.2

Here S, K, I are constants. Often one uses the infix notation (t.s) instead of Ap(t, s), in which case

the rewrite rules of CL read as follows:

 ((S.x).y).z → (x.z).(y.z)

 (K.x).y → x

 I.x → x

Table 4.3

As in ordinary algebra, the dot is mostly suppressed; and a further notational simplification is that

many pairs of brackets are dropped in the convention of association to the left. That is, one restores

the missing brackets choosing in each step of the restoration the leftmost possibility. Thus the three

rules become:

 Sxyz → xz(yz)

 Kxy → x

 Ix → x

Topic 4: First-order Term Rewriting Systems- page 5

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

 Table 4.4

The TRS CL has ‘universal computational power’: every (partial) recursive function on the

natural numbers can be expressed in CL. This feature is used in Turner [79], where CL is used to

implement functional programming languages. Actually, an extension of CL is used there, called

SKIM (for S,K,I-Machine); it is also an applicative TRS (see Table 4.5)

SKIM ___

Sxyz → xz(yz)

Kxy → x

Ix → x

Cxyz → xzy

Bxyz → x(yz)

Yx → x(Yx)

Uz(Pxy) → zxy

P0(Pxy) → x

P1(Pxy) → y

cond true xy → x

cond false xy → y

plus n m → n+m

times n m → n.m

eq n n → true

eq n m → false if n ≠ m

Table 4.5

Note that this TRS has infinitely many constants: apart from the constants S, K,, eq there is a

constant n for each n ∈ N. There are also infinitely many reduction rules, because the last four rules

are actually rule schemes; e.g. plus n m → n+m stands for all reduction rules like plus 0 0 → 0,

plus 0 1 → 1,, plus 37 63 → 100, (In fact, the extra constants in SKIM are there for reasons

Topic 4: First-order Term Rewriting Systems- page 6

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

of efficient implementation; they can all be defined using only S and K.)

It is harmless to mix the applicative notation with the usual one, as in the following TRS,

CL with test for syntactical equality:

Sxyz → xz(yz)

 Kxy → x

 Ix → x

D(x,x) → E

Table 4.6

However, some care should be taken: consider the following TRS

Sxyz → xz(yz)

 Kxy → x

 Ix → x

Dxx → E

Table 4.7

where D is now a constant (instead of a binary operator) subject to the rewrite rule, in full

notation, Ap(Ap(D, x), x) → E. These two TRSs have very different properties: the first TRS is

confluent, but the second is not.

4.5. Semantics of Term Rewriting Systems. Although we are almost always interested in

syntactic methods to prove CR or UN, sometimes a semantical excursion may be convenient. Here

is one:

Topic 4: First-order Term Rewriting Systems- page 7

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

4.5.1. THEOREM. Let A be an algebra ‘for’ the TRS R such that for all normal forms t, t' of R:

A |
__ t = t' ⇒ t ≡ t'

Then R has the property UN (uniqueness of normal forms).

Here the phrase ‘A is an algebra for the TRS R’ means that A has the same signature as R, and

that reduction in R is sound with respect to A, i.e. t →→R s implies A |= t = s. The terms t, s need

not be ground terms. The proof of the theorem is trivial.

4.6. Decidability of properties in Term Rewriting Systems.

We adopt the restriction in this subsection to TRSs R with finite alphabet and finitely many

reduction rules. It is undecidable whether for such TRSs the property confluence (CR) holds. (This

is so both for R, the TRS of all terms, and (R)0, the TRS restricted to ground terms.)

For ground TRSs, i.e.TRSs where in every rule t → s the terms t, s are ground terms (not to

be confused with (R)0 above), confluence is decidable (Dauchet & Tison [84], Dauchet et al. [87],

Oyamaguchi [87]).

For the termination property (SN) the situation is the same. It is undecidable for general

TRSs, even for TRSs with only one rule (see for a proof Dauchet [89]). For ground TRSs

termination is decidable (Huet & Lankford [78]).

For particular TRSs it may also be undecidable whether two terms are convertible, whether

a term has a normal form, whether a term has an infinite reduction. A TRS where all these properties

are undecidable is Combinatory Logic (CL), in Table 4.4.

For Recursive Program Schemes (RPSs), defined in Topic 5 as a subclass of the

orthogonal TRSs, the properties SN and WN are decidable. Also for a particular RPS R it is

decidable whether a term t ∈ Ter(R) has the property SN or WN (Khasidashvili [90]).

We now discuss one of the main applications of term rewriting, namely: solving the word

problem for structures defined by an equational specification. This involves also the introduction of

‘equational logic’.

4.7. Equational specifications. An equational specification is a pair (Σ, E) where the signature

(or alphabet) Σ is as in Section 4.1 for TRSs (Σ, R), and where E is a set of equations s = t between

terms s, t ∈ Ter(Σ).

Topic 4: First-order Term Rewriting Systems- page 8

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

If an equation s = t is derivable from the equations in E, we write (Σ, E) |– s = t or s =E t.

Formally, derivability is defined by means of the inference system “Equational Logic” of Table

4.8.

(Σ, E) |– s = t if s = t ∈ E

(Σ, E) |– s = t
_____________ for every substitution σ

(Σ, E) |– sσ = tσ

(Σ, E) |– s1 = t1 ,..., (Σ, E) |– sn = tn
______________________________ for every n-ary F ∈ Σ

(Σ, E) |– F(s1,...,sn) = F(t1,...,tn)

(Σ, E) |– t = t

(Σ, E) |– t1 = t2 , (Σ, E) |– t2 = t3

(Σ, E) |– t1 = t3

(Σ, E) |– s = t

(Σ, E) |– t = s

__

Table 4.8: Equational Logic

Let Σ be a signature. Then a Σ-algebra A is a set A together with functions FA: An → A for

every n-ary function symbol F ∈ Σ. (If F is 0-ary, i.e. F is a constant, then FA ∈ A.) An equation s

= t (s, t ∈ Ter(Σ)) is assigned a meaning in A by interpreting the function symbols in s,t via the

corresponding functions in A. Variables in s = t are (implicitly) universally quantified. If the

universally quantified statement corresponding to s = t (s, t ∈ Ter(Σ)) is true in A, we write

A |
__ s = t and say that s = t is valid in A. A is called a model of a set of equations E if every

Topic 4: First-order Term Rewriting Systems- page 9

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

equation in E is valid in A. Abbreviation: A |
__ E. The variety of Σ-algebras defined by an

equational specification (Σ, E), notation Alg(Σ, E), is the class of all Σ-algebras A such that

A |
__ E. Instead of ∀A ∈ Alg(Σ, E) A |

__ F, where F is a set of equations between Σ-terms, we

will write (Σ, E) |
__ F. There is the well-known completeness theorem for equational logic of

Birkhoff [35]:

4.7.1. THEOREM. Let (Σ, E) be an equational specification. Then for all s, t ∈ Ter(Σ):

(Σ, E) |– s = t ⇔ (Σ, E) |
__ s = t. �

Now the validity problem or uniform word problem for (Σ, E) is:

Given an equation s = t between Σ-terms, decide whether or not (Σ, E) |
__ s = t.

According to Birkhoff’s completeness theorem for equational logic this amounts to deciding

(Σ, E) |– s = t. Now we can state why complete TRSs (i.e. TRSs which are SN and CR) are

important. Suppose for the equational specification (Σ, E) we can find a complete TRS (Σ, R) such

that for all terms s, t ∈ Ter(Σ):

t =R s ⇔ E |– t = s (❉)

Then we have a positive solution of the validity problem. The decision algorithm is simple:

(1) Reduce s and t to their respective normal forms s', t'

(2) Compare s' and t': s =R t iff s' ≡ t'.

We are now faced with the question how to find a complete TRS R for a given set of equations E

such that (❉) holds. In general this is not possible, since not every E (even if finite) has a solvable

validity problem. The most famous example of such an E with unsolvable validity problem is the set

of equations obtained from CL, Combinatory Logic, in Tables 4.3, 4.4 above after replacing ‘→’ by

Topic 4: First-order Term Rewriting Systems- page 10

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

‘=’: see Table 4.9. (For a proof of the unsolvability see Barendregt [84].) So the validity

problem of (Σ, E) can be solved by providing a complete TRS (Σ, R) for (Σ, E). Note however, that

there are equational specifications (Σ, E) with decidable validity problem but without a complete

TRS (Σ, R) satisfying (❉), see Remarks 4.7.2 and 4.7.3 below.

 Sxyz = xz(yz)

 Kxy = x

 Ix = x

 Table 4.9

It is important to realize that we have considered up to now equations s = t between

possibly open Σ-terms (i.e. possibly containing variables). If we restrict attention to equations s = t

between ground terms s, t, we are considering the word problem for (Σ, E), which is the following

decidability problem:

Given an equation s = t between ground terms s, t ∈ Ter(Σ), decide whether or not

(Σ, E) |
__ s = t (or equivalently, (Σ, E) s = t).

Also for the word problem, complete TRSs provide a positive solution. In fact, we require less

than completeness (SN and CR) for all terms, but only for ground terms. (See Example 4.1.3 for an

example where this makes a difference.) It may be that a complete TRS for E cannot be found with

respect to all terms, while there does exist a TRS which is complete for the restriction to ground

terms.

4.7.2. REMARK. Let (Σ, E) be the specification given by the equations

x + 0 = x

x + S(y) = S(x + y)

x + y = y + x

Topic 4: First-order Term Rewriting Systems- page 11

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(i) Then there is no complete TRS R ‘for’ E, i.e. such that for all terms s, t ∈ Ter(Σ): s =R t ⇔

s =E t. (Consider in a supposed complete TRS R, the normal forms of the open terms x + y and y +

x.)

(ii) For the restriction to ground terms though, there does exist such a TRS. (Just orient the first

two equations.)

4.7.3. REMARK. In Klop [92] the following observation due to J.A.Bergstra is proved:

THEOREM. Let (Σ, E) be the specification with Σ = {0, +} and E = {x + y = y + x}. Then there

is no finite TRS R such that the restriction to ground terms, (R)0, is complete and such that =R and

=E coincide on ground terms.

4.8. Modularity. We will now consider what happens when TRSs are combined. For simplicity,

we will suppose that such a combination is in fact a disjoint union.

4.8.1. DEFINITION. Let R1 = (Σ1, R1) and R2 = (Σ2, R2). Then :

(i) R1 ∪ R2 = (Σ1 ∪ Σ2, R1 ∪ R2).

(ii) If Σ1, Σ2 are disjoint (i.e. they have no function or constant symbols in common), then R1 ∪

R2 is a disjoint union.

Further, we will say that a property P of TRSs is a modular property, if we have for disjoint

unions R1 ∪ R2:

R1 ∪ R2 |= P ⇔ R1 |
__ P & R2 |

__ P.

The first significant result about modularity of properties is the following fact:

4.8.1. THEOREM (Toyama (1987). CR is a modular property.

Topic 4: First-order Term Rewriting Systems- page 12

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

The main problem in theory about modularity is the presence of collapsing reduction steps.

A rewrite rule is collapsing if its RHS is a variable; application of such rules disturbs the layer

structure that terms in a combined TRS R1 ∪ R2 have. Figure 4.2 depicts such steps. In the picture

the terms from the one signature are white, from the other signature black. A collapsing step removes

one triangle of some color.

collapsing step collapsing step

Figure 4.2

So, confluence is a ‘modular’ property. One might think that the same is true for termination (SN),

but Toyama [87] gives a simple counterexample: take

R1 = {f(0,1,x) → f(x,x,x)}

R2 = {or(x,y) → x, or(x,y) → y}

then R1, R2 are both SN, but R1 ∪ R2 is not, since there is the infinite reduction:

f(or(0,1), or(0,1), or(0,1)) → f(0, or(0,1), or(0,1)) →

f(0, 1, or(0,1)) → f(or(0,1), or(0,1), or(0,1)) →

In this counterexample R2 is not confluent and thus one may conjecture that ‘confluent and

terminating’ (or CR & SN, or complete) is a modular property . Again this is not the case, as the

following counterexample shows R1 has the eleven rules

F(4,5,6,x) → F(x,x,x,x)

F(x,y,z,w) → 7

Topic 4: First-order Term Rewriting Systems- page 13

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

1 2 3

4 5 6

7

and R2 has the three rules

G(x,x,y) → x

G(x,y,x) → x

G(y,x,x) → x.

Now R1 and R2 are both complete, but R1 ∪ R2 is not:

F(G(1,2,3), G(1,2,3), G(1,2,3), G(1,2,3)) →→

F(G(4,4,3), G(5,2,5), G(1,6,6), G(1,2,3)) →→

F(4, 5, 6, G(1,2,3)) →

F(G(1,2,3), G(1,2,3), G(1,2,3), G(1,2,3)).

4.8.2. REMARK. A simpler counterexample to the modularity of completeness is given in Drosten

[89]: R1 consists of rules F(0, 1, x) → F(x, x, x), F(x, y, z) → 2, 0 → 2, 1 → 2 while R2 consists of

rules D(x, y, y) → x, D(x, x, y) → y. Now R1, R2 are complete; however, their disjoint sum is not.

To see this, consider the term F(M, M, M) where M ≡ D(0, 1, 1) and show that F(M, M, M) has a

cyclic reduction.

The last counterexample (and also that in Remark 4.8.2) involves a non-leftlinear TRS. This is

essential, as the following theorem indicates. First we define this concept:

4.8.3. DEFINITION. (i) A term is linear if it contains no multiple occurrences of the same variable,

Topic 4: First-order Term Rewriting Systems- page 14

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

non-linear otherwise. (E.g. G(x, x, y) is non-linear.)

(ii) A reduction rule t → s is left-linear if t is a linear term. (iii) A TRS is left-linear if all its

reduction rules are left-linear.

4.8.4. THEOREM (Toyama, Klop & Barendregt [89a,b]).

Let R1, R2 be left-linear disjoint TRSs. Then: R1 ∪ R2 is complete iff R1 and R2 are complete.

Some useful information concerning the inference of SN for R1 ∪ R2 from the SN property

for R1 and R2 separately is given in Rusinowitch [87] and Middeldorp [89b], in terms of

‘collapsing’ and ‘duplicating’ rewrite rules:

4.8.5. DEFINITION. (i) A rewrite rule t → s is a collapsing rule (c-rule) if s is a variable.

(ii) A rewrite rule t → s is a duplicating rule (d-rule) if some variable has more occurrences in s

than it has in t.

Example: F(x,x) → G(x,x) is not a d-rule, but F(x,x) → H(x,x,x) is. Also P(x) → G(x,x) is a d-rule.

4.8.6. THEOREM. Let R1 and R2 be disjoint TRSs both with the property SN.

(i) If neither R1 nor R2 contain c-rules, R1 ∪ R2 is SN.

(ii) If neither R1 nor R2 contain d-rules, R1 ∪ R2 is SN.

(iii) If one of the TRSs R1, R2 contains neither c- nor d-rules, R1 ∪ R2 is SN.

Statements (i) and (ii) are proved in Rusinowitch [87]; statement (iii) is proved in Middeldorp [89b].

4.8.7. REMARK. (i)An equivalent way (due to E. Ohlebusch) of stating the theorem of Middeldorp

and Rusinowitch is as follows: Let R1, R2 be two disjoint terminating TRSs such that their union

R1 ∪ R2 is non-terminating. Then R1 contains a duplicating rule and R2 contains a collapsing

rule, or vice versa.

(ii) Another useful fact, proved in Middeldorp [89a], is that UN is a modular property.

(iii) It is an instructive exercise to prove that WN is a modular property.

Topic 4: First-order Term Rewriting Systems- page 15

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

4.8.8. EXAMPLES.

(i) Consider CL ∪ {D(x,x) → E}, Combinatory Logic with binary test for syntactic equality as in

Table 4.6. Note that this is indeed a disjoint union. As we shall see in Topic 6, CL is confluent. By a

simple exercise: the one rule TRS {D(x,x) → E} is confluent. Hence, by Toyama’s theorem (4.8.1)

the disjoint sum is confluent.

(ii) By contrast, the union CL ∪ {Dxx → E}, Combinatory Logic with applicative test for

syntactic equality as in Table 4.7, is not confluent. (See Klop [80].) Note that this combined TRS is

merely a union and not a disjoint union, since CL and {Dxx → E} have the function symbol Ap in

common, even though hidden by the applicative notation.

(iii) Another application of Toyama’s theorem (4.8.1): let R consist of the rules

if true then x else y → x

if false then x else y → y

if z then x else x → x.

(Here true, false are constants and if - then - else is a ternary function symbol.) Then CL ∪ R is

confluent. Analogous to the situation in (ii), it is essential here that the if—then—else— construct is

a ternary operator. For the corresponding applicative operator, the resulting TRS would not be

confluent.

4.8.9. THEOREM (Middeldorp & Toyama [90]). Let R1 and R2 be constructor TRSs, possibly

sharing constructor symbols but not defined symbols. Then:

R1 ∪ R2 is complete ⇔ R1, R2 are complete.

Topic 4: First-order Term Rewriting Systems- page 16

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Critical Pair Completion

In Topic 4 we have seen that complete TRSs (i.e. TRSs that have the properties of CR and SN)

are important for solving word problems. We continue with the question how to find a complete

TRS (for the case of open terms, henceforth) for an equational specification (Σ, E). This is in fact

what the Knuth-Bendix completion algorithm is trying to do. We will briefly explain the essential

features of the completion algorithm, by an informal, “intuition-guided”completion of the

equational specification of groups, the paradigm example treated extensively in Knuth & Bendix

[70]. This paper was the start of the development of the critical pair completion technology. The

following axioms E for groups are given.

E ___________________________

e.x = x

I(x).x = e

(x·y)·z = x·(y·z)

Table 5.1

First we give these equations a ‘sensible’ orientation:

1. e·x → x

2. I(x)·x → e

Topic 5: Critical Pair Completion - page 1

Logic Colloquium 99 - Utrecht

3. (x·y)·z → x·(y·z)

(Note that the orientation in rules 1, 2 is forced, by the restrictions on the format of rewrite rules as

defined in Topic 4. As to the orientation of rule 3, the other direction is just as ‘sensible’.) These

rules are not confluent, as can be seen by superposition of e.g. 2 and 3. Redex I(x)·x can be unified

(after variable renaming) with a non-variable subterm of redex (x·y)·z (the underlined subterm), with

result (I(x)·x)·z. This term is subject to two possible reductions: (I(x)·x)·z →2 e·z and (I(x)·x)·z →3

I(x)·(x·z). The pair of reducts 〈 e·z, I(x)·(x·z)〉 is called a critical pair, since the confluence property

depends on the reduction possibilities of the terms in this pair. Formally, we have the following

definition which at a first reading is not easily digested. The concept of a ‘most general unifier’ is

supposed to be known.

5.1. DEFINITION. Let α → β and γ → δ be two rewrite rules such that α is unifiable (after

renaming of variables) with a subterm of γ which is not a variable (a non-variable subterm). This

means that there is a context C[], a non-variable term t and a ‘most general unifier’ σ such that γ ≡

C[t] and tσ ≡ ασ. The term γσ ≡ C[t]σ can be reduced in two possible ways: C[t]σ → C[β]σ and γσ

→ δσ.

Now the pair of reducts 〈C[β]σ, δσ〉 is called a critical pair obtained by the superposition

of α → β on γ → δ. If α → β and γ → δ are the same rewrite rule, we furthermore require that α is

unifiable with a proper (i.e. not ≡ α) non-variable subterm of γ ≡ α.

5.2. DEFINITION. A critical pair 〈 s, t〉 is called convergent if s and t have a common reduct.

Our last critical pair 〈 e·z, I(x)·(x·z)〉 is not convergent: I(x)·(x·z) is a normal form and e·z

only reduces to the normal form z. So we have the problematic pair of terms z, I(x)·(x·z);

problematic because their equality is derivable from E, but they have no common reduct with respect

to the reduction available so far. Therefore we adopt a new rule

4. I(x)·(x·z) → z

Now we have a superposition of rule 2 and 4: I(I(y))·(I(y)·y) →4 y and I(I(y))·(I(y)·y) →2

I(I(y))·e. This yields the critical pair 〈 y, I(I(y))·e〉 which cannot further be reduced. Adopt new rule:

5. I(I(y))·e → y canceled later

As it will turn out, in a later stage this last rule will become superfluous. We go on searching for

Topic 5: Critical Pair Completion - page 2

Logic Colloquium 99 - Utrecht

critical pairs:

Superposition of 4, 1: I(e)·(e·z) →4 z and I(e)·(e·z) →1 I(e)·z.

Adopt new rule:

6. I(e)·z → z canceled later

Superposition of 3, 5: (I(Iy))·e)·x →3 I(I(y))·(e·x) and (I(Iy))·e)·x →5 y·x.

Adopt new rule:

7. I(Iy))·x → y·x canceled later

Superposition of 5, 7: I(I(y))·e →7 y.e and I(I(y))·e →5 y.

Adopt new rule:

8. y·e → y

Superposition of 5, 8: I(I(y))·e →5 y and I(I(y))·e →8 I(I(y)).

Adopt new rule

9. I(I(y)) → y cancel 5 and 7

(Rule 5 is now no longer necessary to ensure that the critical pair 〈 y, I(I(y))·e〉 has a common

reduct, because: I(I(y))·e →9 y·e →8 y. Likewise for rule 7.)

Superposition of 6, 8: I(e)·e →6 e and I(e)·e →8 I(e).

Adopt new rule

10. I(e) → e cancel 6

Superposition of 2, 9: I(I(y))·I(y) →2 e and I(I(y))·I(y) →9 y·I(y).

Adopt new rule

11. y·I(y) → e

Superposition of 3, 11: (y·I(y))·x →3 y·(I(y)·x) and (y·I(y))·x →11 e·x.

Adopt new rule

12. y·(I(y)·x) → x

Superposition (again) of 3, 11: (x·y)·I(x·y) →11 e and (x·y)·I(x·y) →3 x·(y·I(x·y)).

Adopt new rule

13. x·(y·(y·I(x·y)) → e canceled later

Superposition of 13, 4: I(x)·(x·(y·I(x·y))) →4 y·I(x·y) and I(x)·(x·(y·I(x·y))) →13 I(x)·e.

Adopt new rule

14. y·I(x·y) → I(x) canceled later

cancel 13

Superposition of 4, 14: I(y)·(y·I(x·y)) →4 I(x·y) and I(y)·(y·I(x·y)) →14 I(y)·I(x).

Topic 5: Critical Pair Completion - page 3

Logic Colloquium 99 - Utrecht

Adopt new rule

15. I(x·y) → I(y)·I(x) cancel 14

At this moment the TRS has only convergent critical pairs, e.g.:

I(y·I(y)) →15 I(I(y))·I(y)

↓9

↓11 y·I(y)

↓11

I(e) →10 e

The significance of this fact is stated in the following lemma. The proof is a matter of a

straightforward case analysis, as suggested in Figure 5.1.

5..3. CRITICAL PAIR LEMMA (Knuth & Bendix [70], Huet [80]).

A TRS R is WCR iff all critical pairs are convergent.

__

1. e·x → x

2. I(x)·x → e

3. (x·y)·z → x·(y·z)

4. I(x)·(x·z) → z

8. y·e → y

9. I(I(y)) → y

10. I(e) → e

11. y·I(y) → e

12. y·(I(y)·x) → x

15. I(x·y) → I(y)·I(x)

Table 5.2

Topic 5: Critical Pair Completion - page 4

Logic Colloquium 99 - Utrecht

(a) disjoint redexes (b) nested redexes

(c) overlapping redexes

(d) repeated variables

Figure 5.1

So the TRS Rc with rewrite rules as in Table 5.4 is WCR.

Furthermore, one can prove SN for Rc by the recursive path ordering technique explained in

Topic 7. (In fact we need the extended lexicographic version, due to the presence of the associativity

rule.) According to Newman’s Lemma Rc is therefore CR and hence complete. We conclude that

the validity problem for the equational specification of groups is solvable.

The following theorem of Knuth and Bendix is an immediate corollary of the Critical Pair

Lemma 5.3 and Newman’s Lemma:

Topic 5: Critical Pair Completion - page 5

Logic Colloquium 99 - Utrecht

5.4. COROLLARY (Knuth & Bendix [70]). Let R be a TRS which is SN. Then R is CR iff all

critical pairs of R are convergent.

The completion procedure above by hand was naive, since we were not very systematic in

searching for critical pairs, and especially since we were guided by an intuitive sense only of what

direction to adopt when generating a new rule. In most cases there was no other possibility (e.g. at 4:

z → I(x)·(x·z) is not a reduction rule due to the restriction that the lefthand-side is not a single

variable), but in case 15 the other direction was at least as plausible, as it is even length-decreasing.

However, the other direction I(y)·I(x) → I(x·y) would have led to disastrous complications

(described in Knuth & Bendix [70]).

The problem of what direction to choose is solved in the actual Knuth-Bendix algorithm

and its variants by preordaining a ‘reduction ordering’ on the terms.

5.5. DEFINITION. A reduction ordering > is a well-founded partial ordering among terms, which is

closed under substitutions and contexts, i.e. if s > t then sσ > tσ for all substitutions σ, and if s > t

then C[s] > C[t] for all contexts C[].

We now have immediately the following fact (noting that if R is SN, then →R
+ satisfies the

requirements of Definition 5.5):

5.6. PROPOSITION. A TRS R is SN iff there is a reduction ordering > such that α > β for every

rewrite rule α → β of R.

In Figure 5.2 a simple version of the Knuth-Bendix completion algorithm is presented.

The program of Figure 5.2 has three possibilities: it may (1) terminate successfully, (2) loop

infinitely, or (3) fail because a pair of terms s,t cannot be oriented (i.e. neither s > t nor t > s). The

third case gives the most important restriction of the Knuth-Bendix algorithm: equational

specifications with commutative operators cannot be completed.

In case (1) the resulting TRS is complete. To show this requires a non-trivial proof,

see e.g. Huet [81], or for a general method for such correctness proofs, Bachmair, Dershowitz &

Hsiang [86].

Topic 5: Critical Pair Completion - page 6

Logic Colloquium 99 - Utrecht

__

Simple version of the Knuth-Bendix completion algorithm

Input: - an equational specification (Σ, E)

- a reduction ordering > on Ter(Σ) (i.e. a program which computes >)

Output: - a complete TRS R such that for all s,t ∈ Ter(Σ): s =R t ⇔ (Σ, E) |– s = t

R := Ø;

while E ≠ Ø do

choose an equation s = t ∈ E;

reduce s and t to respective normal forms s' and t' with respect to R;

if s' ≡ t' then

E := E - {s = t}

e l se

if s' > t' then

α := s'; β := t'

else if t' > s' then

α := t'; β := s'

e l se

failure

fi;

CP := {P = Q | 〈 P, Q〉 is a critical pair between the rules in R and α → β};

R := R ∪ {α → β};

E := E ∪ CP - {s = t}

f i

od;

success

__

Figure 5.2

5.7. EXAMPLE. Knuth & Bendix [70] contains completions of two specifications which closely

resemble the specification of groups (see Table 5.3), called ‘L-R theory’ and ‘R-L theory’.

Using the completions, it is easy to see that x·e = x is not derivable in L-R theory and that in

R-L theory the equations e·x = x and x·I(x) = e are not derivable. Furthermore, in L-R theory the

equation x·e = x is not derivable. Hence the three theories are different, i.e. determine different

varieties of algebras.

In fact, the variety of groups is the intersection of both the variety of L-R algebras and that

of R-L algebras, and the latter two varieties are incomparable with respect to set inclusion. (See

Figure 5.3.)

Topic 5: Critical Pair Completion - page 7

Logic Colloquium 99 - Utrecht

L-R

R-L

GR

Figure 5.3

group theory L-R theory: R-L theory:

e·x = x e·x = x x·e = x

I(x)·x = e x·I(x) = e I(x)·x = e

(x·y)·z = x·(y·z) (x·y)·z = x·(y·z) (x·y)·z = x·(y·z)

completion: completion: completion:

e·x → x e·x → x

x·e → x x·e → x

I(x)·x → e I(x)·x → e

x·I(x) → e x·I(x) → e

(x·y)·z → x·(y·z) (x·y)·z → x·(y·z) (x·y)·z → x·(y·z)

I(e) → e I(e) → e I(e) → e

I(x·y) → I(y)·I(x) I(x·y) → I(y)·I(x) I(x·y) → I(y)·I(x)

x·(I(x)·y) → y x·(I(x)·y) → y

e·x → I(I(x))

I(x)·(x·y) → y I(x)·(x·y) → y

x·I(I(y) → x·y

I(I(x)) → x

x·e → I(I(x))

I(I(I(x))) → I(x) I(I(I(x))) → I(x)

x·(y·I(y)) → x

I(I(x))·y → x·y

x·(I(I(y))·z) → x·(y·z)

x·(y·(I(y)·z)) → x·z

I(x)·(x·y) → I(I(y))

Table 5.3

Topic 5: Critical Pair Completion - page 8

Logic Colloquium 99 - Utrecht

Orthogonal term rewriting systems

In the preceding sections we have considered general properties of TRSs and how these properties

are related; among them the most important property, confluence, with its consequence of

uniqueness of normal forms. We will now consider a special class of TRSs, the orthogonal ones,

which all have the confluence property as well as various other desirable properties concerned with

reduction strategies.

6.1. DEFINITION. (i) A TRS R is orthogonal if R is left-linear and there are no critical pairs

(Definition 5.1).

(ii) R is weakly orthogonal if R is left-linear and R contains only trivial critical pairs, i.e. if 〈 t, s 〉

is a critical pair then t ≡ s.

Left-linear means that the lefthand-sides of the rewrite rules contain no duplicated variables

(Definition 4.8.3.) One problem with non-left-linear rules is that their application requires a test

for syntactic equality of the arguments substituted for the variables occurring more than once. As

terms may be very large, this may be very laborious. Another problem is that the presence of non-

left-linear rules may destroy the CR property, as noted in Topic 4.

In Definition 5.1 we have already defined the notion of ‘critical pair’. Since that definition

Topic 6: Orthogonal Term Rewriting Systems - page 1

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

is often found difficult, we will now explain the absence of critical pairs in a more ‘intuitive’ way.

Let R be the TRS as in Table 6.1:

__

r1 F(G(x, S(0)), y, H(z)) → x

r2 G(x, S(S(0))) → 0

r3 P(G(x, S(0))) → S(0)

__

Table 6.1

Call the context F(G(❒, S(0)), ❒, H(❒)) the pattern of rule r1. (Earlier, we defined a context as a

term with exactly one hole ❒, but it is clear what a context with more holes is.) In tree form the

pattern is the shaded area as in Figure 6.1.

F

G y H

x S z

0

Figure 6.1

Topic 6: Orthogonal Term Rewriting Systems - page 2

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

F

G F H

G S G 0 0 P

x S 0 F S P

S G 0 H S G

0 0 S x 0 0 S

0 0

Figure 6.2

For a left-linear rule it is only its pattern that ‘counts’.

The TRS R in Table 6.1 has the property that in no term patterns can overlap, i.e. R has

the non-overlapping or non-ambiguity property. Figure 8.2 shows a term in R with all patterns

indicated, and indeed they do not overlap.

Overlap can already occur in one rule, e.g. in the rule L(L(x)) → 0; see Figure 6.3(a). An

overlap at the root (of the tree corresponding to a term), arising from the rules F(0,x,y) → 0,

F(x,1,y) → 1, is shown in Figure 6.3(b). Another overlap at the root, arising from the rules for the

non-deterministic or: or(x,y) → x, or(x,y) → y, is shown in Figure 6.3(c).

Topic 6: Orthogonal Term Rewriting Systems - page 3

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

L

L

L

x

F

0 1 y

or

x y

(a) (b) (c)

Figure 6.3

We will now formulate and sketch the proofs of the basic theorems for orthogonal TRSs.

To that end, we need the notion of ‘descendant’ in a reduction. Somewhat informally, this notion

can be introduced as follows:

Let t be a term in a orthogonal TRS R, and let s ⊆ t be a redex whose head symbol we will

give a marking, say by underlining it, to be able to ‘trace’ it during a sequence of reduction

(rewrite) steps. Thus if s ≡ F(t), it is marked as F(t). First consider the rewrite step t →s' t',

obtained by contraction of redex s' in t. We wish to know what has happened in this step to the

marked redex s. The following cases can be distinguished, depending on the relative positions of s

and s' in t:

Case 1. The occurrences of s' and s in t are disjoint. Then we find back the marked redex s,

unaltered, in t'.

Case 2. The occurrences of s and s' coincide. Then the marked redex has disappeared in t'; t' does

not contain an underlined symbol.

Case 3. s' is a proper subterm of the marked redex s (so s' is a subterm of one of the arguments

of s). Then we find back the marked redex, with some possible change in one of the arguments.

(Here we need the orthogonality of R; otherwise the marked redex could have stopped being a

redex in t' after the ‘internal’ contraction of s'.)

Case 4. s is a proper subterm of s'. Then the marked redex s is n times multiplied for some n ≥ 0;

if n = 0 s is erased in t'. The reduct t' now contains n copies of the marked redex, all of them still

marked.

Now the marked redexes in t' are called the descendants of s ⊆ t in the reduction step

t →s' t'. It is obvious how to extend this definition by transitivity to sequences of rewrite steps

Topic 6: Orthogonal Term Rewriting Systems - page 4

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

t →s' t' →s" t" → ... t(n-1) →s(n) t(n).

6.2. PROPOSITION. Let R be a orthogonal TRS, t ∈ Ter(R). Let t contain, possibly among

others, the mutually disjoint redexes s1,...,sn. Let these redexes be marked by underlining their

head symbol.

Furthermore, suppose that t t' is the sequence of n rewrite steps obtained by contraction of

all redexes si (in some order), and let t →s t" be a rewrite step obtained from contracting redex s.

(See Figure 64(a).)

Then a common reduct t"' of t', t" can be found by contracting in t" all marked redexes

(which still are mutually disjoint). The reduction t' →→ t"' consists of the contraction of all

descendants of s in t' after the reduction t →→ t'. ❒

redex s

t t"

t' t"'

descendants of redex s,

mutually disjoint

t s t"

t' t"'

marked,
disjoint

marked,

disjoint

(a) (b)

Figure 6.4

The proof is a matter of easy casuistics, left to the reader. An immediate corollary is the ‘Parallel

Moves Lemma’:

6.3. PARALLEL MOVES LEMMA. We consider reductions in an orthogonal TRS. Let t →→ t", and

let t →s t' be a one step reduction by contraction of redex s. Then a common reduct t"' of t', t" can

be found by contraction in t" of all descendants of redex s, which are mutually disjoint. (See

Figure 64(b).) ❒

By repeated application of the Parallel Moves Lemma we now have

Topic 6: Orthogonal Term Rewriting Systems - page 5

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

6.4. THEOREM. Every orthogonal TRS is confluent.

Figure 6.5

In fact, an analysis of the Parallel Moves Lemma yields more than mere confluence; it also

asserts that common reducts can be found by means of a certain procedure, as suggested in Figure

6.5, namely by repeatedly adjoining ‘elementary reduction diagrams’. We encountered this tiling

procedure also in Topic 2 and 3; but this time the success of the tiling procedure is due to the

orthogonality, not the decreasingness property. The shaded arrows in Figure 6.5 suggest how

reduction steps propagate through the diagram (in an orthogonal fashion), corresponding to the

notion of descendant.

By the same arguments we can also prove the confluence theorem for weakly orthogonal

TRSs, including the strong version of confluence referring to diagram construction as just

described.

The earliest proof of Theorem 8.4 is probably that of Rosen [73]; but earlier proofs of the

confluence of CL (Combinatory Logic), work just as well for orthogonal TRSs in general. The

confluence theorem for (weakly) orthogonal TRSs is also a special case of a theorem of Huet.

We need a definition first:

Topic 6: Orthogonal Term Rewriting Systems - page 6

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

8.5. DEFINITION. (Parallel reduction) t →→ || s if t →→ s via a reduction of disjoint redexes.

8.6. THEOREM (Huet [80]). Let R be a left-linear TRS. Suppose for every critical pair 〈 t,s〉 we

have t →→ || s. Then →→ || is strongly confluent, hence R is confluent. ❒

(For the definition of ‘strongly confluent’ see Topic 2, Example 2.1.) Note that confluence for

orthogonal TRSs is a corollary by absence of critical pairs. Likewise for weakly ortogonal TRSs,

by the triviality of their critical pairs.

8.7. EXAMPLES. (i) Combinatory Logic (Table 4.4) has rule patterns as in Figure 8.6; they cannot

overlap. As CL is left-linear, it is therefore orthogonal and hence confluent.

Ap

Ap z

Ap Ap

Ap y I x

Ap y K x

S x

CL patterns

Figure 8.6

(ii) SKIM, in Table 4.5, is orthogonal.

(iii) Combinatory Logic with parallel or, CL ∪ or(x, true) → true, or(true, x) → true, is weakly

orthogonal: the only critical pair is <true, true>, hence confluent.

(iv) Combinatory Logic with nondeterministic choice, CL ∪ or(x, y) → x, or(x, y) → y, is

weakly orthogonal: the only critical pair is 〈 x, x〉 , hence confluent.

(iv) A Recursive Program Scheme (RPS) is a TRS with

Topic 6: Orthogonal Term Rewriting Systems - page 7

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

- a finite set of function symbols F ={F1,...,Fn} (the ‘unknown’ functions), where Fi has

arity mi ≥ 0 (i = 1,...,n), and

- a finite set G = {G1,...,Gk} (the ‘known’ or ‘basic’ functions), disjoint from F, where Gj

has arity pj ≥ 0 (j = 1,...,k).

- The reduction rules of R have the form

Fi(x1,...,xmi
) → ti (i = 1,...,n)

where all the displayed variables are pairwise different and where ti is an arbitrary term built

from operators in F,G and the displayed variables. For each Fi (i = 1,...,n) there is exactly

one rule.

Example: F1(x) → G1(x,F1(x),F2(x,x))

F2(x,y) → G2(F2(x,x),F1(G3))

Every RPS is orthogonal, hence confluent.

Apart from confluence, many interesting facts can be proved for orthogonal TRSs.

6.8. DEFINITION. (i) A TRS is non-erasing if in every rule t → s the same variables occur in t and

in s. (E.g. CL is not non-erasing, due to the rule Kxy → x.)

(ii) A TRS is weakly innermost normalizing (WIN) if every term has a normal form which can

be reached by an innermost reduction. (In an innermost reduction a redex may only be

‘contracted’ if it contains no proper subredexes.)

The next theorem was proved in Church [41] for the case of the non-erasing version of λ-

calculus, the λI-calculus, where the restriction on term formation is adopted stating that in every

abstraction term λx.M the variable x must have a free occurrence in M.

6.9. THEOREM. Let R be orthogonal and non-erasing. Then: R is WN iff R is SN. ❒

Another useful theorem, which also reduces the burden of a termination (SN) proof for

orthogonal TRSs, is:

Topic 6: Orthogonal Term Rewriting Systems - page 8

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

6.10. THEOREM (O'Donnell [77]). Let R be an orthogonal TRS. Then: R is WIN iff R is SN. ❒

The last two theorems can be refined to terms: call a term WN if it has a normal form, SN if

it has no infinite reductions, WIN if it has a normal form reachable by an innermost reduction.

The ‘local’ version of Theorem 6.9 then says that for a term in an orthogonal, non-erasing TRS

the properties WN and SN coincide. Likewise there is a local version of Theorem 6.10. Thus, if in

CL a term can be normalized via an innermost reduction, all its reductions are finite.

6.11. EXERCISE. In this exercise we sketch a proof of ‘Church’s Theorem’ 6.9 and O’Donnell’s

Theorem 6.10.

(i) The following proposition has an easy proof:

6.11.1. PROPOSITION. Let t be a term in an orthogonal TRS, containing mutually disjoint redexes

s1,...,sn, and a redex s. Let t →→ t' be the n-step reduction obtained by contraction, in some order,

of the redexes s1,...,sn. Suppose s has after the reduction t →→ t' no descendants in t'.

Then for some i ∈ {1,...,n}: s ⊆ si. This means that either s coincides with some si, or is

contained in an argument of some si.

(ii) We write “∞(t)” if the term t has an infinite reduction t → →... . So ∞(t) iff t is not SN.

Using Proposition 6.11.1 one can now prove (the proof is non-trivial):

6.11.2. ERASURE LEMMA. Let t be a term in an orthogonal TRS such that ∞(t). Let t →s t' be a

reduction step such that ¬ ∞(t'). Then the redex s must contain a proper subterm p with ∞(p)

that is erased in the step t →s t' (i.e. has no descendants in t').

(iii) Using the Lemma it is now easy to prove Theorem 6.10: ‘critical’ steps t → t' in which ∞(t)

but ¬ ∞(t'), cannot occur in a non-erasing TRS.

(iv) Also Theorem 6.11 follows immediately from the Lemma 6.11.2 by observing that an

innermost contraction cannot erase a proper subterm which admits an infinite reduction, since

otherwise the contracted redex would not have been innermost.

Topic 6: Orthogonal Term Rewriting Systems - page 9

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

6.12. Reduction strategies. Terms in a TRS may have a normal form as well as admitting infinite

reductions. So, if we are interested in finding normal forms, we should have some strategy at our

disposal telling us what redex to contract in order to achieve that desired result. We will in this

section present some strategies which are guaranteed to find the normal form of a term whenever

such a normal form exists. We will adopt the restriction to orthogonal TRSs.

The strategies below will be of two kinds: one-step or sequential strategies (which point in

each reduction step to just one redex as the one to contract) and many-step or parallel strategies (in

which a set of redexes is contracted simultaneously). Of course all strategies must be computable.

Apart from the objective of finding a normal form, we will consider the objective of finding

a ‘best possible’ reduction even if the term at hand does not have a normal form.

6.12.1. DEFINITION. Let R be a TRS.

(i) A sequential reduction strategy F for R is a map F: Ter(R) → Ter(R) such that

(1) t ≡ F(t) if t is a normal form,

(2) t → F(t) else.

(ii) A parallel reduction strategy F for R is a map F: Ter(R) → Ter(R) such that

(1) t ≡ F(t) if t is a normal form,

(2) t →+ F(t) else.

Here →+ is the transitive (but not reflexive) closure of →. Instead of ‘sequential’ and ‘parallel’

we will also say ‘one-step’ and ‘many-step’, respectively.

6.12.2. DEFINITION. (i) A reduction strategy (one step or many step) F for R is normalizing if for

each term t in R having a normal form, the sequence {Fn(t) | n ≥ 0} contains a normal form.

(ii) F is cofinal if for each t the sequence {Fn(t) | n ≥ 0} is cofinal in G(t), the reduction graph

of t. (See Topic 1, Ex.13.8 for ‘cofinal’ and see Figure 6.7.)

A normalizing reduction strategy is good, but a cofinal one is even better: it finds, when

applied on term t, the best possible reduction sequence starting from t (or rather, a best possible) in

the following sense. Consider a reduction t → s as a gain in information; thus normal forms have

Topic 6: Orthogonal Term Rewriting Systems - page 10

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

maximum information. In case there is no normal form in G(t), one can still consider infinite

reductions as developing more and more information. Now the cofinal reductions t ≡ t0 → t1 → t2

→ ... are optimal since for every t' in G(t) they contain a tn with information content no less than

that of t' (since t' →→ tn for some tn, by definition of ‘cofinal’).

>
>

t

G(t) F

(t)

(t)

F
2

>>
t'

tn

 Figure 6.7

We now present some well-known reduction strategies.

6.12.3. DEFINITION. (i) The leftmost-innermost (one step) strategy is the strategy in which in each

step the leftmost of the minimal or innermost redexes is contracted.

(ii) The parallel-innermost (many step) strategy contracts simultaneously all innermost

redexes. Since these are pairwise disjoint, this is no problem.

(iii) The leftmost-outermost (one step) strategy: in each step the leftmost redex of the maximal

(or outermost) redexes is contracted. Notation: Flm.

(iv) The parallel-outermost (many step) strategy contracts simultaneously all maximal redexes;

since these are pairwise disjoint, this is no problem. Notation: Fpo.

(v) The full substitution rule (or Kleene reduction, or Gross-Knuth reduction): this is a many-

Topic 6: Orthogonal Term Rewriting Systems - page 11

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

step strategy in which all redexes are simultaneously contracted. Notation: FGK.

Strategies (i)-(iv) are well-defined for general TRSs. Strategy (v) is only defined for

orthogonal TRSs, since for a general TRS it is not possible to define an unequivocal result of

simultaneous reduction of a set of possibly nested redexes. The five strategies are illustrated by

Figure 6.8, for the following TRS:

and(true, x) → x

and(false, x) → false

or(true, x) → true

or(false, x) → x

Topic 6: Orthogonal Term Rewriting Systems - page 12

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

 and

and or

true and and or

true false true false false true

 and

and or

true and and or

true false true false false true

 and

and or

true and and or

true false true false false true

 and

and or

true and and or

true false true false false true

 and

and or

true and and or

true false true false false true

leftmost-innermost

parallel-innermost

leftmost-outermost

parallel-outermost

full substitution rule

Figure 6.8

We will be mainly interested here in the strategies (iii)-(v), for a reason that will be clear by

Topic 6: Orthogonal Term Rewriting Systems - page 13

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

inspection of Table 3.2 below. We have the following facts (for proofs see O’Donnell [77] or

Klop [80]):

6.12.4. THEOREM. For orthogonal TRSs:

(i) FGK is a cofinal reduction strategy.

(ii) Fpo is a normalizing reduction strategy.

6.12.5. REMARK. For λ-calculus this theorem also holds. Moreover, F lm is there also a

normalizing strategy, just as it is for the orthogonal TRS CL (Combinatory Logic). However, in

general Flm is not a normalizing strategy for orthogonal TRSs.

Even though Flm is in general for orthogonal TRSs not normalizing, there is a large class of

orthogonal TRSs for which it is:

6.12.6. DEFINITION. (O’Donnell [77]). An orthogonal TRS is left-normal if in every reduction

rule t → s the constant and function symbols in the left-hand side t precede (in the linear term

notation) the variables.

6.12.6.1. EXAMPLE. (i) CL (Combinatory Logic) is left-normal. (ii) RPSs (Recursive Program

Schemes) as defined in Examples 8.7(iii) are all left-normal. (iii) F(x, B) → D is not left-normal;

F(B, x) → D is left-normal.

6.12.6.2. THEOREM. (O’Donnell [77]).

Let R be a left-normal orthogonal TRS. Then Flm is a normalizing reduction strategy for R.

6.12.7. Relaxing the constraints in Fl m, FGK and Fp o.

In the reduction strategy FGK (full substitution) every redex is ‘killed’ as soon as it arises, and

this repeatedly. Suppose we relax this requirement, and allow ourselves some time (i.e. some

number of reduction steps) before getting rid of a particular redex—but with the obligation to deal

with it eventually. The reductions arising in this way are all cofinal.

6.12.7.1. DEFINITION. (i) Let R = t0 → t1 → ... be a finite or infinite reduction sequence. Consider

Topic 6: Orthogonal Term Rewriting Systems - page 14

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

some redex s in some term tn of R. We say that s is secured in R if eventually there are no

descendants of s left, i.e.

∃m>n (tm contains no descendants s', s", ... of s ⊆ tn).

(ii) R is fair if every redex in R is secured.

6.12.7.2. THEOREM. For reductions R in orthogonal TRSs:

R is fair ⇒ R is cofinal.

Note that Theorem 6.12.4(i) is a corollary of the present theorem, since evidently reductions

obtained by applying FGK are fair.

A similar relaxation of constraints applies to the other two strategies Fpo and Flm:

6.12.7.3. DEFINITION. (i) A reduction R is leftmost-fair if R ends in a normal form or infinitely

many times the leftmost outermost redex is contracted in R.

(ii) R = t0 → t1 → ... is outermost-fair if R does not contain a term tn with an outermost redex

which infinitely long stays an outermost redex but which is never contracted.

6.12.7.4. THEOREM. Let R be an orthogonal TRS. Then:

(i) Outermost-fair reductions are normalizing.

(ii) If R is moreover left-normal, then leftmost-fair reductions are normalizing.

We will now summarize some of the main properties of the various reduction strategies

(and their ‘relaxed’ versions) in Table 9.1. Before doing so, we introduce one more property of

strategies:

6.12.7.5. DEFINITION. A reduction strategy F for R is perpetual, if for all t: ∞(t) ⇒ ∞(F(t)).

Here ∞(t) means that t has an infinite reduction, i.e. ¬SN(t). So a perpetual strategy is the opposite

of a normalizing one; it tries to avoid normal forms whenever possible, and could therefore also be

called ‘anti-normalizing’.

In Table 9.1 p, n, c stand for perpetual, normalizing, cofinal respectively. In case a property

Topic 6: Orthogonal Term Rewriting Systems - page 15

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

is not mentioned, it does not hold generally. Note that for the leftmost-outermost strategy, when

applied to orthogonal TRSs in general, none of the three properties holds generally. Proofs that

leftmost-outermost reduction is normalizing for left-normal orthogonal TRSs and that parallel-

outermost reduction is normalizing for all orthogonal TRSs can be found in O’Donnell [77].

leftmost-innermost

parallel-innermost

leftmost-outermost
(leftmost-fair)

full substitution
(fair)

orthogonal
TRSs

orthogonal
left-normal
TRSs

parallel-outermost
(outermost-fair)

orthogonal
non-erasing
TRSs

p p p n

p p p n

 n p n

n n p n

n c n c p n c

Table 9.1

For results regarding optimality (with respect to the number of steps) of orthogonal

reduction strategies we refer to Khasidashvili [90b].

6.12.8. Computable reduction strategies. A strategy is recursive or computable if it is, after a

coding of the terms into natural numbers, a recursive function. Obviously we are primarily

interested in computable strategies; and indeed all five strategies in Definition 9.3 are computable.

We may now ask whether there is always for an orthogonal TRS a computable one-step

normalizing reduction strategy. A priori this is not at all clear, in view of TRSs such as the

following one: CL extended with rules for the Berry-Kleene function F:

FABx → C

FBxA → C

FxAB → C

which is an orthogonal TRS. This TRS seems to require a parallel reduction strategy (so, not a

one-step or sequential strategy), because in a term of the form FMNL we have no way to see the

Topic 6: Orthogonal Term Rewriting Systems - page 16

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

‘right’ argument for computation: a step in the third argument may be unnecessary, namely if the

first and second argument evaluate to A and B respectively (which is undecidable due to the

presence of CL); likewise a step in the other arguments may be unnecessary.

We can consider the same problem for the weakly orthogonal TRS obtained by extending

CL with Parallel-or:

or(true, x) → true

or(x, true) → true.

It might be thought that such TRSs require a parallel evaluation. However, there is the following

surprising fact.

6.12.8.1. THEOREM (Kennaway [89]).

For every weakly orthogonal TRS there exists a computable sequential normalizing reduction

strategy.

In fact, Kennaway [89] proves this theorem for the larger class of weakly orthogonal

Combinatory Reduction Systems; these are TRSs with bound variables, such as λ-calculus.

6.12.9. Standard reductions in orthogonal TRSs. For λ-calculus and CL there is a very

convenient tool: the Standardization Theorem (see Barendregt [84], Klop [80]). For orthogonal

TRSs there is unfortunately not a straightforward generalization of this theorem. The obstacle is

the same as for the normalizing property of the leftmost reduction strategy, discussed in the

previous section. When we restrict ourselves again to left-normal orthogonal TRSs, there is a

straightforward generalization.

6.12.9.1. DEFINITION. (Standard reductions)

Let R be a TRS and R = t0 → t1 → ... be a reduction in R. Mark in every step of R all symbols to

the left of the head symbol of the contracted redex, with ‘*’. Furthermore, markers are persistent

in subsequent steps.

Then R is a standard reduction if in no step a redex is contracted with a marked head

operator. (So the action in R moves literally from left to right, and an increasing left part of the

Topic 6: Orthogonal Term Rewriting Systems - page 17

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

term is ‘frozen’.)

6.12.9.2. STANDARDIZATION THEOREM for left-normal orthogonal TRSs.

Let R be a left-normal orthogonal TRS. Then: if t →→ s there is a standard reduction in R from t

to s.

For a proof see Klop [80]. A corollary is our earlier theorem stating that F lm is a

normalizing strategy for left-normal orthogonal TRSs; this fact is in λ-calulus and CL literature

also known as the Normalization Theorem.

9.10.3. EXAMPLE. (Primitive recursive functions.)

The primitive recursive functions from N to N are defined by the following inductive definition

(Shoenfield [67]):

(i) The constant functions Cn,k, the projection functions Pn,i and the successor function S are

primitive recursive. (Here Cn,k(x1,...,xn) = k; Pn,i(x1,...,xn) = xi; S(x) = x+1.)

(ii) If G, H1,...,Hk are primitive recursive, then F defined by

F(x) = G(H1(x),...,Hk(x))

(where x = x1,...,xn) is primitive recursive.

(iii) If G and H are primitive recursive, then F defined by

F(0, x) = G(x)

F(S(y), x) = H(F(y, x), y, x)

is primitive recursive. Here x = x1,...,xn.

Observe that, by replacing every ‘=’ by ‘→’ in the defining equations, every primitive recursive

Topic 6: Orthogonal Term Rewriting Systems - page 18

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

function is defined by a terminating, left-normal, orthogonal constructor TRS.

We conclude with an important theorem of Huet and Lévy about needed redexes and

needed reduction, a normalizing strategy.

6.10.1. DEFINITION. Let t ∈ Ter(R), R orthogonal. Let s ⊆ t be a redex. Then s is a needed redex

(needed for the computation of the normal form, if it exists) iff in all reductions t → ... → t° such

that t° is a normal form, some descendant of s is contracted.

(So, trivially, any redex in a term without normal form is needed.)

6.10.2. THEOREM (Huet & Lévy [79]). Let t be a term in an orthogonal TRS R.

(i) If t is not in normal form, t contains a needed redex.

(ii) Repeated contraction of a needed redex leads to the normal form, if it exists.

(So, needed reduction is normalizing.)

(iii) Let t have a normal form. Then there does not exist an infinite reduction in R of t

containing infinitely many steps in which a needed redex is contracted.

Part (iii) says that needed reduction is not only normalizing, but even ‘hyper-normalizing’, in the

sense that in between performing needed reduction steps we can relax from this requirement and

perform (finitely many) arbitrary reductions.

As it stands, these facts are not yet useful, since it is in general undecidable whether a redex

is needed. But there are decidable subcases of great importance. We will not pursue this here.

Topic 6: Orthogonal Term Rewriting Systems - page 19

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Transfinite rewriting

In this topic we will consider infinite terms over a first order signature. We follow work reported

in Kennaway, Klop, Sleep & de Vries [KKSV95a], Klop & de Vrijer [KV91]. A complete formal

treatment, including full proofs, can be found in [KKSV95a]. This work was stimulated by earlier

studies of infinite rewriting by Dershowitz, Kaplan & Plaisted [DKP89] and Farmer & Watro

[FW89].

In many functional programming languages (e.g. Miranda ([Tur85]), Haskell (Hud88]),

Clean ([PvE93]) one can express such infinite terms, e.g. ‘streams’ of natural numbers, or infinite

trees. Recently such infinite objects also receive much attention from the point of view of

coinductive techniques. In lambda calculus one is used to working with infinite objects in the form

of Böhm Trees; we will discuss these in a later topic. For now the signature is first-order, so there

are no bound variables as in lambda calculus.

So, our starting point is an ordinary TRS (Σ, R). In fact, we will suppose throughout that

our TRSs are orthogonal. Now it is obvious that the rules of the TRS (Σ, R) just as well apply to

infinite terms as to the usual finite ones. First, let us explain the notion of infinite term that we have

in mind. As before, let Ter(Σ) be the set of finite Σ-terms. Then Ter(Σ) can be equipped with a

distance function d such that for t, s ∈ Ter(Σ), we have d(t, s) = 2-n if the n-th level of the terms s, t

(viewed as labeled trees) is the first level where a difference appears, in case s and t are not identical;

furthermore, d(t, t) = 0. It is well-known that this construction yields (Ter(Σ), d) as a metric space.

Topic 7: Transfinite Rewriting - page 1

Logic Colloquium 99 - Utrecht

Now infinite terms are obtained by taking the completion of this metric space, and they are

represented by infinite trees. We will refer to the complete metric space arising in this way as

(Ter∞ (Σ), d), where Ter∞ (Σ) is the set of finite and infinite terms over Σ.

A natural consequence of this construction is the emergence of the notion of Cauchy

convergence as a possible basis for infinite reductions which have a limit: we say that t0 → t1 → t2

→ ... is an infinite reduction sequence with limit t, if t is the limit of the sequence t0, t1, ... in the

usual sense of Cauchy convergence. See Figure 7.1 for an example, based on a rewrite rule F(x) →

P(x, F(S(x)) in the presence of a constant 0.

F(0) P

0 F

S

0

P

P

P

P

0

S

0 S

S

0

.....

Limit: infinite sequence of natural numbers

Figure 7.1

In the sequel we will however adopt a stronger notion of converging reduction sequence which

turns out to have better properties. First, let us argue that it makes sense to consider not only

reduction sequences of length ω, but even reduction sequences of length α for arbitrary ordinals α.

Given a notion of convergence, and limits, we may iterate reduction sequences beyond length ω and

consider e.g.

t0 → t1 → t2 → ... → tn → ...

s0 → s1 → s2 → s3 → ... r

where limn→∞ tn = s0 and limn→∞ sn = r. See Figure 7.2 for such a reduction sequence of

length ω + ω, which may arise by evaluating first the left part of the term at hand, and next the right

part. Of course, in this example a ‘fair’ evaluation is possible in only ω many reduction steps, but

we do not want to impose fairness requirements at the start—even though we may (and will)

consider it to be a desirable feature that reductions of length α could be ‘compressed’ to reductions

Topic 7: Transfinite Rewriting - page 2

Logic Colloquium 99 - Utrecht

of length not exceeding ω steps, yielding the same ‘result’.

P

F F

0 0

P

F

0

P

P

P

P

P

0

S

0 S

S

0

P

P

P

P

P

0

S

0 S

S

0

P

P

P

P

P

0

S

0 S

S

0

Pω ω

Transfinite reduction sequence of length ω + ω

Figure 7.2

We will give a formal definition now.

7.1. DEFINITION. Let (Σ, R) be a TRS. A (Cauchy-) convergent R-reduction sequence of length α

(an ordinal) is a sequence 〈 tβ | β ≤ α〉 of terms in Ter∞(Σ), such that

(i) tβ →R tβ+1 for all β < α,

(ii) tλ = limβ<λ for every limit ordinal λ ≤ α).

Here (ii) means: ∀n ∃µ < λ ∀ν (µ≤ν≤λ ⇒ d(tν, tλ) ≤ 2-n).

Notation: If 〈 tβ | β ≤ α〉 is a Cauchy-convergent reduction sequence we write t0 →αc tα (‘c’ for

‘Cauchy’).

The notion of normal form as a final result has to be considered next. We simply

generalize the old finitary notion of normal form to the present infinitary setting thus: a (possibly

infinite) term is a normal form when it contains no redexes. The only difference with the finitary

case is that here a redex may be itself an infinite term. But note that a redex is still so by virtue of a

finite prefix, that was called in Topic 4 the redex pattern—this is so because our rewrite rules are

orthogonal and hence contain no repeated variables.

Topic 7: Transfinite Rewriting - page 3

Logic Colloquium 99 - Utrecht

C A A A A

C A A

A

A

ω
≡

C A

....

Limit: not an infinitary normal form

Figure 7.3

So, in Figure 7.3 we have, with as TRS {C → A(C), A(x) → x}, a (Cauchy-) converging

reduction sequence with as limit the infinite term A(A(A(A..., abbreviated as Aω ; this limit is not a

normal form: Aω reduces to itself: Aω → Aω , a nd only to itself. (Note that this step can be

performed in infinitely many different ways, since every A in Aω is the root of a redex.) Normal

forms are shown in Figures 7.1, 7.2 as the rightmost terms (if no other reduction rules are present

than the one mentioned above). Henceforth we will often drop the reference ‘infinite’ or

‘infinitary’. Thus a term, or a normal form, may be finite or infinite. The notion of Cauchy

converging reduction sequence that was considered so far, is not quite satisfactory. We would like

to have the compression property:

 t0 →αc tα ⇒ t0 →≤ωc tα.

That is, given a reduction t0 →αc tα, of length α, the result tα can already be found in at most ω

many steps. (‘At most’, since it may happen that a transfinite reduction sequence can be

compressed to finite length, but not to length ω.) Unfortunately, →αc lacks this property:

7.2. COUNTEREXAMPLE. Consider the orthogonal TRS with rules {A(x) → A(B(x)), B(x) →

E(x)}. Then A(x) →ω A(Bω) → A(E(Bω)), so A(x) →ω+1 A(E(Bω)). However, we do not have

A(x) →≤ω A(E(Bω)), as can easily be verified.

Topic 7: Transfinite Rewriting - page 4

Logic Colloquium 99 - Utrecht

R

R 'projection

Parallel Moves Lemma

Rinfinite reduction

R 'projection

(a)

(b)

t
0

s

t'

tn

s'

s"

s"'

t*

Figure 7.4

Another obstacle for →αc is that the well-known Parallel Moves Lemma resists a

generalization to the present transfinite case. We recall the PML in Figure 7.4(a): setting out a finite

reduction R: t0 →→ tn against a one step reduction t0 →s t' (where s is the contracted redex), one

can complete the reduction diagram in a canonical way, thereby obtaining as the righthand side of

the diagram a reduction tn →→ t* which consists entirely out of contractions of all the descendants

of s along R. Furthermore, the reduction R': t' →→ t* arising as the lower side of this reduction

diagram, is called the projection of R over the reduction step t0 →s t'. Notation: R' = R/ (t0 →s t').

We would like to have a generalization of PML where R is allowed to be infinite, and

converging to a limit. In this way we would have a good stepping stone towards establishing

infinitary confluence properties. However, it is not clear at all how such a generalization can be

established. The problem is shown in Figure 7.5. First note that we can without problem generalize

the notion of ‘projection’ to infinite reductions, as in Figure 7.4(b): there R' is the projection of the

infinite R over the displayed reduction step. This merely requires an iteration of the finitary PML,

no infinitary version is needed. Now consider the two rule TRS {A(x, y) → A(y, x), C → D}. Let R

Topic 7: Transfinite Rewriting - page 5

Logic Colloquium 99 - Utrecht

be the infinite reduction A(C, C) → A(C, C) → A(C, C) → ... , in fact a reduction cycle of length 1.

Note that R is converging, with limit A(C, C). The projection R' of R over the step A(C, C) → A(D,

C), however, is no longer converging. For, this is A(D, C) → A(C, D) → A(D, C) → ..., a ‘two

cycle’. So, the class of infinite converging reduction sequences is not closed under projection. This

means that in order to get some decent properties of infinitary reduction in this sense, one has to

impose further restrictions.

.

C

A(D, C) A(C, D)

A(C, C) A(C, C) A(C, C)

A(D, C)

Cauchy converging reduction

Projection: not Cauchy converging

C C

Figure 7.5

As the last example shows, there is a difficulty in that we loose the notion of descendants

which is so clear and useful in finite reductions. Indeed, after the infinite reduction A(C, C) → A(C,

C) → A(C, C) → ... , with Cauchy limit A(C, C), what is the descendant of the original underlined

redex C in the limit A(C, C)? There is no likely candidate.

We will now describe the stronger notion of converging reduction sequence that does

preserve the notion of descendants in limits. If we have a converging reduction sequence t0 →s0 t1

→s1 ... t, where si is the redex contracted in the step ti → ti+1 and t is the limit, we now moreover

require that

limi→∞ depth(si) = ∞. (*)

Here depth(si), the depth of redex si, is the distance of the root of ti to the root of the subterm si.

If the converging reduction sequence satisfies this additional requirement (*), it is called strongly

convergent. The difference between the previous notion of (Cauchy) converging reduction sequence

and the present one, is suggested by Figure 7.6. The circles in that figure indicate the root nodes of

the contracted redexes; the shaded part is that prefix part of the term that does not change anymore

in the sequel of the reduction. The point of the additional requirement (*) is that this growing non-

changing prefix is required really to be non-changing, in the sense that no activity (redex

Topic 7: Transfinite Rewriting - page 6

Logic Colloquium 99 - Utrecht

contractions) in it may occur at all, even when this activity would by accident yield the same prefix.

Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations

Figure 7.6

Note that there is now an obvious definition of descendants in the limit terms; the precise

formulation is not hard to make explicit.

In fact, we define strongly converging reductions of length α for every ordinal α, by

imposing the additional condition (*) whenever a limit ordinal λ ≤ α is encountered. (It will turn

out however that only countable ordinals may occur.) More formally:

7.3. DEFINITION. Let (Σ, R) be a TRS. A strongly convergent R-reduction sequence of length α

is a sequence 〈 tβ | β ≤ α〉 of terms in Ter∞(Σ), such that

(i) tβ →R tβ+1 for all β < α,

(ii) for every limit ordinal λ ≤ α: ∀n ∃µ < λ ∀ν (µ≤ν≤λ ⇒ d(tν, tλ) ≤ 2-n & depth(sν) ≥ n).

Here sν is the redex contracted in the step tν → tν+1. (See Fig. 7.7.)

Notation: If 〈 tβ | β ≤ α〉 is a strongly convergent reduction sequence we write t0 →α tα.

Topic 7: Transfinite Rewriting - page 7

Logic Colloquium 99 - Utrecht

0 ω ω·2 ω·3 ω2

depth of contracted redex tends to infinity
at each limit ordinal

Figure 7.7

Henceforth all our infinitary reductions will be strongly convergent. Now we can state the

benefits of this notion.

7.4. COMPRESSION LEMMA. In every orthogonal TRS:

t →α t' ⇒ t →≤ω t'.

(Note that the counterexample 7.2 to compression for Cauchy converging reductions was not

strongly converging.)

7.5. INFINITARY PARALLEL MOVES LEMMA. In every orthogonal TRS:

t
0 α

s

t'
β

t*

γ

t α

sdescendants of

That is, whenever t0 →α tα and t0 →s t', where s is the contracted redex (occurrence), there are

infinitary reductions t' →β t* and tα →γ t*. The latter reduction consists of contractions of all

Topic 7: Transfinite Rewriting - page 8

Logic Colloquium 99 - Utrecht

descendants of s along the reduction t0 →α tα.

Actually, by the Compression Lemma we can find β, γ ≤ ω.

As a side-remark, let us mention that in every TRS (even with uncountably many symbols

and rules), all transfinite reductions have countable length. All countable ordinals can indeed occur

as length of a strongly convergent reduction. (For ordinary Cauchy convergent reductions this is

not so: the rewrite rule C → C yields arbitrarily long convergent reductions C →αc C. However,

these are not strongly convergent.)

The infinitary PML is “half of the infinitary confluence property”. The question arises

whether full infinitary confluence (CR∞)holds. That is, given t0 →α t1, t0 →β t2, is there a t3 such

that t1 →γ t3, t2 →δ t3 for some γ, δ? Using the Compression Lemma and the PML all that remains

to prove is: given t0 →ω t1, t0 →ω t2, is there a t3 such that t1 →≤ω t3, t2 →≤ω t3? Surprisingly, the

answer is negative: full infinitary confluence for orthogonal rewriting does not hold. The

counterexample is in Figure 7.8, consisting of an orthogonal TRS with three rules, two of which are

‘collapsing rules’. (A rule t → s is collapsing if s is a variable.) Indeed, in Figure 7.8(a) we have C

→ω Aω, C →ω Bω but Aω , Bω have no common reduct as they only reduce to themselves. Note

that these reductions are indeed strongly convergent. (Figure 7.8(b) contains a rearrangement of

these reductions that we need later on.)

However, the good news is that in spite of the failure of CR∞we do have unicity of

(possibly infinite) normal forms (UN∞).

7.6. THEOREM. For all orthogonal TRSs: Let t →α t', t →β t" where t', t" are (possibly infinite)

normal forms. Then t' ≡ t".

Here ≡ denotes syntactical equality. Note that in the ABC counterexample in Figure 7.8 the

terms Aω and Bω are not normal forms.

This Unique Normal Form property, by the way, also holds for Cauchy converging

reductions, that is, with →α replaced by →αc and likewise for β. The reason is that we have:

t →αc t' & t' is a normal form ⇒ t →≤ω t'.

(For α = ω this is easy to prove; in fact a converging reduction of length ω to a normal form is

already strongly convergent. For general α, the proof of the statement requires some work.)

Topic 7: Transfinite Rewriting - page 9

Logic Colloquium 99 - Utrecht

A(x) x
B(x) x
C A(B(C))→

→
→

C

A(B(C))

A(C) B(C)

A(A(B(C))) B(A(B(C)))

A(A(C)) B(B(C))

A(A(A(B(C)))) B(B(A(B(C))))

A(A(A(C))) B(B(B(C)))

A B

↓

↓ ↓

↓ ↓

↓ ↓

↓↓

↓↓

......

......
ω ω

C

ABC

ABABC

ABABABC

ABABABABAB...

A Bω ω

↓

↓

↓

↓

...

ωω

(a) (b)

Failure of infinitary confluence

Figure 7.8

We will now investigate the extent to which infinitary orthogonal rewriting lacks full

confluence. It will turn out that non-confluence is only marginal, and that terms which display the

bad behaviour are included in a very restricted class. The following definition is inspired by a

classical notion in λ-calculus; see Barendregt [84].

7.7. DEFINITION. (i) The term t is in head normal form (hnf) if t ≡ C[t1,...,tn] where C[t1,...,tn] is

a non-empty context (prefix) such that no reduction of t can affect the prefix C[,...,]. More

precisely, if t →→ s then s ≡ C[s1,...,sn] for some si (i =1,...,n), and every redex of s is included in

one of the si (i =1,...,n).

Topic 7: Transfinite Rewriting - page 10

Logic Colloquium 99 - Utrecht

(ii) t has a hnf if t →→ s and s is in hnf.

Actually, this definition is equivalent to one of DKP[89]; there a term t is called ‘top-

terminating’ if there is no infinite reduction t → t' → t" → ... in which infinitely many times a redex

contraction at the root takes place. So: t is top-terminating ⇔ t has a hnf. We need one more

definition before formulating the next theorem.

7.8. DEFINITION. If t is a term of the TRS R, then the family of t is the set of subterms of reducts

of t, i.e. {s | t →→R C[s] for some context C[]}.

7.9. THEOREM. For all orthogonal TRSs: Let t have no term without hnf in its family. Then t is

infinitary confluent.

Just as in λ-calculus, one can now formulate some facts about “Böhm trees”, which are

(possibly infinite) terms where the subterms without hnf are replaced by a symbol Ω for

‘undefined’. As in λ-calculus, each term in an orthogonal TRS has a unique Böhm tree. It is also

possible to generalize much of the usual theory for finitary orthogonal rewriting to the infinitary

case. We mention the theory of Huet & Lévy about ‘needed redexes’, and results about reduction

strategies (such as the parallel-outermost strategy). For more information we refer to KKSV[95a].

Here we want to reconsider the last theorem. Actually, it can be much improved. Consider

again the ABC example in Figure 7.8. Rearranging the reductions C →ω Aω , C →ω Bω as in

Figure 7.8(b) into reductions C →ω (AB)ω →ω Aω and C →ω (AB)ω →ω Bω makes it more

perspicuous what is going on: (AB)ω is an infinite ‘tower’ built from two different collapsing

contexts A(❒), B(❒), and this infinite tower can be collapsed in different ways.

Topic 7: Transfinite Rewriting - page 11

Logic Colloquium 99 - Utrecht

Sxyz xz(yz)
Kxy x

→
→

→
→

@(@(@(S, x), y), z) @(@(x, z), @(y, z))
@(@(K, x), y) x

@

@ K

K

@

@ S

K

@

@ K

K @

@ S

K @

@ K

K @

@ S

K @

@

@ S

K @

@ S

K @

@ S

K @

@ S

K @

@

@ K

K @

@ K

K @

@ K

K @

@ K

K @

ω ω

collapsing contexts

Failure of infinitary confluence for Combinatory Logic

Figure 7.9

The ABC example (Figure 7.8) is not merely a pathological example; the same

phenomenon (and therefore failure of infinitary confluence) occurs in Combinatory Logic, as in

Figure 7.9, where an infinite tower built from the two different collapsing contexts K❒K and K❒S

is able to collapse in two different ways. (Note that analogous to the situation in Figure 7.8, the

middle term, built alternatingly from K❒K and K❒S, can be obtained after ω steps from a finite

term which can easily be found by a fixed point construction.) Also for λ-calculus one can now

Topic 7: Transfinite Rewriting - page 12

Logic Colloquium 99 - Utrecht

easily construct a counterexample to infinitary confluence.

Remarkably, it turns out that the collapsing phenomenon is the only cause of failure of

infinitary confluence. (The full proof is in KKVS[95a].) Thus we have:

7.10. THEOREM. (i) Let the orthogonal TRS R have no collapsing rewrite rules t(x1,...,xn) → xi.

Then R is infinitary confluent.

(ii) If R is an orthogonal TRS with as only collapsing rule: I(x) → x, then R is infinitary

confluent.

Call an infinite term C1[C2[...Cn[...]...]], built from infinitely many non-empty collapsing

contexts Ci[], a hereditarily collapsing (hc) term. (A context C[] is collapsing if C[] contains one

hole ❒ and C[] →→ ❒.) Also a term reducing to a hc term is called a hc term. E.g. C from the ABC

example in Figure 7.8 is a hc term. Clearly, hc terms do not have a hnf.

7.11. THEOREM. Let t be a term in an orthogonal TRS, which has not a hc term in its family.

Then t is infinitary confluent.

This theorem can be sharpened somewhat, as follows. Let us introduce a new symbol ● (black

hole) to denote hc terms, with the rewrite rule:

t →● ● if t is a hc term.

Of course this rule is not ‘constructive’, i.e. the reduction relation →● may be undecidable (as it

is in CL, Combinatory Logic). However, we now have that orthogonal reduction extended with →●

is infinitary confluent.

REFERENCES.

[Bar84] H.P. BARENDREGT. The Lambda Calculus, its Syntax and Semantics. 2nd ed., 1984.

North-Holland 1984.

[DKP89] N. Dershowitz, S. Kaplan, and D.A. Plaisted. Infinite normal forms. In ICALP ‘89,

volume 372 of Springer LNCS, p. 249-262, 1989.

[FW89] W.M. Farmer and R.J. Watro. Redex capturing in term graph rewriting. Technical report,

M89-59, MITRE, 1989.

Topic 7: Transfinite Rewriting - page 13

Logic Colloquium 99 - Utrecht

[Hud88] P. Hudak. Report on the functional programming language Haskell. Draft Proposed

Standard, 1988.

[KKSV93] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. An infinitary Church-

Rosser property for non-collapsing orthogonal term rewriting systems. In M.R. Sleep, M.J.

Plasmeijer, and M.C.J.D. van Eekelen, editors, Term Graph Rewriting - theory and practice, p. 47-

59. Wiley, 1993.

[KKSV95a] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries.Infinitary lambda calculus

and Böhm models. In Proceedings of RTA95, Kaiserslautern, Springer LNCS 914, p.257-270, 1995.

[KKSV95b] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Transfinite reductions in

orthogonal term rewriting systems. Information and Computation, 119(1):18-38, 1995.

[KKSV97] J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus.

Theoretical Computer Science, 175(1):93-125, 1997.

[KV91] J.W. Klop and R.C. de Vrijer. Extended rewriting systems. In S. Kaplan and M. Okada,

editors, Proceedings of the Workshop on Conditional and Typed Rewriting systems, Springer LNCS

516, p.26-50, Montreal, 1991.

[PvE93] M.J. Plasmeijer and M.C.J.D. van Eekelen. Functional Programming and Parallel Graph

Rewriting. Addison Wesley, 1993.

[Tur85] D.A. Turner. Miranda: a non-strict functional language with polymorphic types. In J.-P.

Jouannaud, editor, Proceedings of the ACM Conference on Functional Programming Languages and

Computer Architecture, Springer LNCS 201, p.1-16, 1985.

Topic 7: Transfinite Rewriting - page 14

Logic Colloquium 99 - Utrecht

Recursive Path Orders with Stars

In the chapters thus far we have seen several methods to prove CR, but the equally important

property SN (strong Normalization) has not yet received much attention. In this chapter we will introduce

a powerful method to prove SN, called Recursive Path Orders. It was developed by Dershowitz on the

basis of a beautiful theorem of Kruskal. (See also the similar concept of ‘path of subterm ordering’ in

Plaisted [78], discussed in Rusinowitch [87].)

We will in fact demonstrate not the usual formulation, but one “with stars”. For general

references on termination methods, see Huet & Oppen [80], Dershowitz [85].

8.1. DEFINITION. (i) Let T be the set of commutative finite trees with nodes labeled by natural numbers.

Example: see Figure 7.1. This tree will also be denoted by: 3(5, 7(9), 8(0(1, 5))). Commutativity means

that the ‘arguments’ may be permuted; thus 3(8(0(5, 1)), 5, 7(9)) denotes the same commutative tree.

3

5 7 8

9 0

1 5

Figure 7.1

In order to introduce the next notion of ‘embedding’, we must make the definition of trees t ∈ T

somewhat more precise. An element t ∈ T is a pair (〈D, ≤, α0〉 , l) where D is a finite set {α0, β, γ, ...}

with distinguished element α0, called the root or the top of t, and partially ordered by ≤. We require that

(i) α0 ≥ β for all β ∈ D,

(ii) β ≤ γ and β ≤ δ ⇒ γ ≤ δ or δ ≤ γ, for all β, γ, δ ∈ D.

Topic 8: Recursive path orders with stars - page 1
numbering in this chapter to be corrected

The set D is also called NODES(t), the set of nodes of t. Furthermore, l : D → N is a map assigning labels

(natural numbers) to the nodes of t. Finally, we use the notation α ∧ β for the supremum (least upper

bound) of α, β ∈ D. (The actual names α, β, ... of the nodes are not important, which is why they were

suppressed in Figure 8.1.)

8.2. DEFINITION. Let t, t' ∈ T. We say that t is (homeomorphically) embedded in t', notation

t p– t', if there is a map ϕ: NODES(t) → NODES(t') such that:

(i) ϕ is injective,

(ii) ϕ is monotonic (α ≤ β ⇒ ϕ(α) ≤ ϕ(β)),

(iii) ϕ is sup preserving (ϕ(α ∧ β) = ϕ(α) ∧ ϕ(β)),

(iv) ϕ is label increasing (l(α) ≤ l'(ϕ(α)), where l, l' are the labeling maps of t, t' respectively; ≤ is

the ordering of natural numbers).

8.3. REMARK. Actually, (ii) is superfluous as it follows from (iii).

8.4. EXAMPLE.

(i) 2(9, 7(0, 4)) p– 1(3(8(8(5, 1)), 9, 5(9)), 2) as the embedding in Figure 8.2 shows.

(ii) Note that we do not have 1(0, 0) p– 1(0(0, 0)).

2

9 7

0 4

1

3 2

8 9 5

8 9

5 1

ϕ

homeomorphic embedding

Figure 8.2

8.5. REMARK. A more elegant and equivalent definition of s p– t can be given in terms of rewriting, as

follows: on T we define the reduction ➳:

(1) n(t) ➳ m(t) if n > m,

(2) n(s, t) ➳ s.

Topic 8: Recursive path orders with stars - page 2
numbering in this chapter to be corrected

(3) n(s, t) ➳ t

(Here t is t1,..., tk, k ≥ 0.) Let ➳* be the transitive reflexive closure of ➳. Then:

s p– t ⇔ t ➳* s.

8.6. EXAMPLE. (See also Figure 7.2)

1(3(8(8(5, 1)), 9, 5(9)), 2) ➳

 3(8(8(5, 1)), 9, 5(9)) ➳

 3(8(5, 1), 9, 5(9)) ➳

 3(7(5, 1), 9, 5(9)) ➳ ➳

 3(7(4, 0), 9, 5(9)) ➳

 2(7(4, 0), 9, 5(9)) ➳

 2(7(4, 0), 5(9)) ➳

 2(7(4, 0), 9) = 2(9, 7(0, 4)).

Clearly, p– is a partial order on T. Moreover it satisfies the following remarkable property:

8.6. KRUSKAL’S TREE THEOREM.

Let t0, t1, t2,... be a sequence of trees in T. Then for some i < j: ti p– tj.

The proof of this theorem as given in Kruskal [60] is very complicated. In Dershowitz [79] a short proof

is given for a restricted case, namely for trees whose branching degree is uniformly bounded by some

natural number N. In Dershowitz & Jouannaud [90] a proof sketch is given, using Ramsey’s theorem

and Higman's Lemma. We will now give a detailed proof of the theorem, first for the restricted case as in

Dershowitz [79], then upgrading it to the general case (without restriction on the branching degree, other

than this must be finite). Higman’s Lemma will be found along the way, as a simple case of the first

proof. All proofs are originally due to Nash-Williams [63].

8.7. DEFINITION. (i) The branching degree of a node s in t ∈ T is the number of immediate successor

nodes of s.

(ii) TN is the subset of T consisting of trees where all nodes have branching degree ≤ N.

8.8. PROPOSITION. Each infinite sequence of natural numbers n0, n1, n2, ... has a weakly ascending

infinite subsequence.

PROOF. We have to prove that there is a subsequence nf(0), nf(1), nf(2), ... with f(0) < f(1) < f(2) < ... such

that nf(0) ≤ nf(1) ≤ nf(2) ≤ For the sake of exposition we will give three proofs.

The first and simplest proof is as follows. Let nf(0) be a minimal element in the sequence, i.e. nf(0)

≤ ni for all i = 0,1,2,... . Now find in the sequence nf(0)+1, nf(0)+2, nf(0)+3,... again a minimal element; this

Topic 8: Recursive path orders with stars - page 3
numbering in this chapter to be corrected

is nf(1). And so on.

The second proof is more sophisticated and presents an argument used later on. It is easy to see

that every infinite sequence of natural numbers n0, n1, n2, ... must contain a pair ni, nj (i < j) such that ni ≤

nj (*). Now consider all weakly ascending subsequences (we will call these: chains) of the infinite

sequence under consideration. If one of them is infinite, we are done. Otherwise, we can find infinitely

many finite chains, each maximally prolonged to the right, and such that the next chain starts after the end

of the previous chain. Consider the sequence of final elements of these chains. This infinite sequence

contains again, by (*), a chain of length 2. But then some chain was not maximal, contradiction.

The third proof is even more sophisticated, and uses the infinite version of Ramsey’s Theorem.

Consider the partition of [N]2 into subsets X and Y defined as follows:

{i,j} ∈ X if i < j and ni ≤ nj

{i,j} ∈ Y if i < j and ni > nj.

Then, according to Ramsey’s theorem, there is an infinite A ⊆ N such that either [A]2 ⊆ X or [A]2 ⊆ Y.

In the first case we have found our infinite chain (the weakly ascending subsequence). The second case

cannot occur, as it would entail the existence of an infinite descending subsequence. ❑

8.9. DEFINITION. (1) Let t ∈ T. Then |t | is the number of nodes of t.

(2) Notation: an infinite sequence of trees t0, t1, ... will be written as t. The initial segment t0,...,tn-1 is (t)n.

The set of infinite sequences of trees from T is Tω .

(3) Let D ⊆ Tω . Then the sequence t ∈ D is minimal in D if ∀s∈D (s)n = (t)n ⇒ |sn| ≥ |tn|.

(4) Furthermore, we say that s, t ∈ D have distance 2-n if (s)n = (t)n but (s)n+1≠ (t)n+1. This induces a

metric on Tω . We say that is D closed if it is so with respect to this metric.

8.10. PROPOSITION. Let D ⊆ Tω be non-empty and closed. Then D contains a minimal element (with

respect to D).

PROOF. Choose a s ∈ D such that |s0| is minimal. Choose from the set D1 = {t ∈ D | s0 = t0} an s'

such that |s1'| is minimal (in D1). And so on: from the set Dn = {t ∈ Dn-1 | (s)n = (t)n}we choose an

s(n) such that | s(n)
n| is minimal (in Dn). Clearly, the sequence of sequences s, s',..., s(n),... converges with

respect to the metric of Definition 9; its limit can easily be shown to be minimal as required. ❑

8.11. EXERCISE. Give an example showing that the closure requirement cannot be missed in Proposition

8.10.

Topic 8: Recursive path orders with stars - page 4
numbering in this chapter to be corrected

8.12. NOTATION. (1) Let s, t ∈ Tω . Then s ⊆ t means that s is a subsequence of t.

(2) Let t = t0, t1, ... and let s = sf(0), sf(1), ... be a subsequence of t, such that for all i, sf(i) is a proper

subtree of tf(i). Then we write s ⊆⊆ t and call s a subsubsequence of t. (See Figure 8.4.)

8.13. DEFINITION. s = s0, s1, s2, ... is a chain if s0 p– s1 p– s2 p– ... , where p– is the embedding relation as

in Kruskal’s Tree Theorem.

8.14. KRUSKAL’S TREE THEOREM (restricted case)

Let t0, t1, t2,... be a sequence of trees in TN. Then for some i < j: ti p– tj.

PROOF.We will suppose, for a proof by contradiction, that there is a counterexample sequence to the

restricted version of Kruskal’s Tree Theorem that we want to prove. That is, the set C ⊆ TN
ω of

sequences s such that for no i < j we have si p– sj, is supposed to be non-empty.

CLAIM. Let t be a minimal element from C. Suppose s ⊆⊆ t.

(1) Then for some i < j: si p– sj.

(2) Even stronger, s contains a subsequence which is a chain.

Proof of the claim. (Note that a minimal element t exists by the assumption C ≠ Ø and by Proposition 10;

C can easily be shown to be closed.) Let s, t be as in the claim. Let s0 be a proper subtree of tf(0) = tk.

Consider the sequence t0,...,tk-1, s0, s1, s2, ... , that is, (t)k followed by s. By minimality of t, this sequence

is not in C. Hence it contains an embedded pair of elements (the earlier one embedded in the later one).

The embedded pair cannot occur in the prefix (t)k because t ∈ C. It can also not be of the form ti p– sj,

since then t would contain the embedded pair ti p– tf(j). So, the embedded pair must occur in the postfix s.

As to part (2) of the claim, suppose s does not contain an infinite chain as subsequence. We now

apply the same argument as in the second proof of Proposition 8: Then s contains an infinite number of

finite chains, each starting to the right of the end of the previous finite chain and each maximal in the

sense that it cannot be prolonged by an element occurring to the right of it in s. Now consider the last

elements of these finite chains. These last elements constitute an infinite subsubsequence of t, containing

by (1) of the claim an embedded pair. But that means that one of the maximal finite chains can be

prolonged, a contradiction. This proves the claim.

Topic 8: Recursive path orders with stars - page 5
numbering in this chapter to be corrected

......

......

......

......

t

t

s

s

™
™

™

subsequence

subsubsequence

Figure 8.4

We will now apply a sieve procedure to the minimal counterexample sequence t ∈ C. By

Proposition 8 we can take a subsequence t' of t such that the root labels are weakly ascending. Of t' we

take a subsequence t* with the property that the branching degrees of the roots are a weakly ascending

sequence. By the claim every subsubsequence of t* still contains an infinite embedding chain.

Let us ‘freeze’ the elements in t', that is, we impose an ordering of the successors of each node in

some arbitrary way. So the frozen trees in t' are no longer commutative trees, and we can speak of the

first, second etc. ‘arguments’ of a node. (An argument of a node α is the subtree with as root a successor

node β of α.)

The next step in the sieve procedure is done by considering the sequence of first arguments of

(the roots of) the elements in t*. As this is a subsubsequence, it contains an infinite chain. Accordingly,

we thin t* out, to the subsequence t**. This sequence has the property that its first arguments form a

chain. Next, t** is thinned out by considering the sequence of the second arguments of t**. Again, this

sequence contains a chain, and thinning t** accordingly yields the subsequence t***.

After at most N steps of the last kind, we are through. The result is then a chain, since the roots

already satisfied the embedding condition (they form a weakly ascending chain), and the arguments are

also related as chains. (See Figure 5.) However, this contradicts the assumption that t contains no

embedded pair. Hence C is empty, and the restricted version of Kruskal’s Tree Theorem is proved. ❑

Topic 8: Recursive path orders with stars - page 6
numbering in this chapter to be corrected

weakly ascending sequence of root labels

chain of first

arguments

chain of second

arguments

embedding chain in minimal counterexample sequence

.....

Figure 8.5

In the case that the branching degrees of the trees are not restricted, the above argument is not

sufficient as the final part of the proof would not be applicable. However, the theorem and its proof above

are ‘self-enhancing’, and we will now show how with little extra effort we can extend the theorem. To do

this, we first introduce the terminology of well-quasi-orders and well-partial-orders.

8.15. DEFINITION. The binary relation ≤ is a quasi-order (qo) if it is reflexive and transitive. (So the

relation →→ in a TRS is a qo.) If in addition ≤ is anti-symmetric (i.e. x≤y & y≤x ⇒ x=y for all x,y) then

≤ is a partial order (po). For a qo ≤ we define: x < y iff x ≤ y & ¬ y ≤ x. (For a po it is equivalent to

define x < y iff x ≤ y & x ≠ y, as usual.)

8.16. DEFINITION. Let 〈X, ≤〉 be a qo. A subset Y ⊆ X is called a cone if x ∈ Y & x ≤ y ⇒ y ∈ Y for

all x,y ∈ X. The cone generated by Y ⊆ X, notation Y↑, is the set {x ∈ X | ∃y∈Y y ≤ x}. (It is the

intersection of all cones containing Y.) A cone Z is finitely generated if Z = Y↑ for some finite Y.

8.17. DEFINITION. Let 〈X, ≤ 〉 be a qo (po, respectively). Then 〈X, ≤ 〉 is a well-quasi-order (wqo) or

well-partial-order (wpo) respectively, if every cone of X is finitely generated.

8.18. DEFINITION. Let 〈X, ≤〉 be a qo. A subset Y ⊆ X is an anti-chain if the elements of Y are pairwise

incomparable, i.e. for all x,y ∈ Y such that x≠y we have neither x≤y nor y≤x.

8.19. PROPOSITION. Let 〈X, ≤〉 be a qo. Then the following conditions are equivalent:

(i) 〈X, ≤〉 is a wqo;

(ii) X contains no infinite descending chains x0 > x1 > x2 > ... and all anti-chains of X are finite;

(iii) for every infinite sequence of elements x0, x1, x2, ... in X there are i, j such that

 i < j and xi ≤ xj.

PROOF. Exercise. ❑

Topic 8: Recursive path orders with stars - page 7
numbering in this chapter to be corrected

8.19.1. EXAMPLE.

(i) The natural numbers with the usual ordering is a wqo (even a wpo).

(ii) The natural numbers with the discrete ordering is not a wqo.

(iii) Any finite set with the discrete ordering is a wqo.

8.19.2. REMARK. Another definition of wpo is: a wpo is a po such that every extension of it to a linear

order is a well-ordering.

Now our first and easy upgrading of Theorem 8.14 is as follows. As labels at the nodes of trees

we now admit the elements of some wqo. The definition of embedding (see Definition 8.2) generalizes by

replacing the ordering of the natural numbers by that of the present wqo.

8.20. PROPOSITION. Each infinite sequence of elements n0, n1, n2, ... in a wqo has a weakly ascending

infinite subsequence.

PROOF. Cf. the three proofs of Proposition 8. The first proof doesn’t apply anymore. The second proof

carries over verbatim. The third proof is slightly more complicated now. Define the partition of [N]2 into

sets X, Y, Z as follows:

{i,j} ∈ X if i < j & ni p– nj

{i,j} ∈ Y if i < j & nj p– ni

{i,j} ∈ Z if i < j & ni , nj are unrelated.

Now we find an infinite homogeneous set A. If its is homogeneous for X, we are done. For Y is

impossible, as a wqo does not have infinite descending chains. For Z is also impossible, as a wqo does

not have infinite anti-chains. ❑

8.20. KRUSKAL’S TREE THEOREM (restricted case; for wqo as label set)

Let t0, t1, t2,... be a sequence of trees in TN. Then for some i < j: ti p– tj.

Rephrased: 〈TN, p– 〉 is again a wqo.

PROOF. Verbatim as the proof of Theorem 14 above, now using Proposition 20 instead of 8. ❑

Next, we will upgrade the theorem by removing the restriction on branching degrees.

8.21. DEFINITION (embedding of words over a wqo)

Let 〈 S, p– 〉 be a wqo. Then 〈 S*, p– * 〉 , the qo of words over S, is defined by: S* is the set of words

over S; s1...sm p– * t1...tn iff there is a 1-1 monotonic function f: {1,...,m} → {1,...,n} such that si p– tf(i)

for each i = 1,...,m.

Topic 8: Recursive path orders with stars - page 8
numbering in this chapter to be corrected

8.22. COROLLARY (Higman’s Lemma). The set of words over a wqo is again a wqo.

PROOF. Just turn a word 90 degrees, so that it is a unary-branching tree labeled from top to bottom with

the elements from left to right making up the word. (See Figure 6.) Now apply Theorem 20. ❑

8.22.1. EXAMPLE. Consider words over the alphabet {a,b,c}. Then any infinite sequence of such words

will contain an embedding pair of words, the first embeddable in the later one.

8.22.2. EXERCISE. Show that the set of words over a wpo is again a wpo.

8.22.2. REMARK. Define the ordinal associated to a wpo to be the sup of the ordinals of all linear

extensions of that wpo. (A linear extension of a wpo is a well-founded po, hence it ‘is’ an ordinal.). A

theorem of D. de Jongh asserts that if the ordinal of a wpo is α, then the ordinal of the wpo of words over

the first wpo is ≤ ωβ, β = ωα+1. (See Schmidt [78], De Jongh [77].)

element from S word over P

unary tree with P-labeling

3

5

1 1

7

0

8

2 2

5

1 1

7

0

8

2 2

5

1 1

7

0

8

2 2

Figure 6

8.23. KRUSKAL’S TREE THEOREM (general case; for wqo as label set)

Let t0, t1, t2,... be a sequence of trees in T. Then for some i < j: ti p– tj.

Rephrased: 〈T, p– 〉 is again a wqo.

PROOF. Consider again a minimal element s in the counterexample set C, as in the proof of Theorem 14.

Now consider all proper subterms of elements sn of s. Call this set P. We claim that P is a wqo. For

suppose not, then there would be a sequence of elements in P, t = t0, t1,... without embedded pair. Now let

t0 be a subterm of sk. Remove from t all elements (except possibly t0) that are subterms of s0,...,sk-1. Call

the result t'; this is still an infinite sequence without embedding pair. Now append t' behind (s)k. As in the

proof of Theorem we show that this sequence still cannot have an embedded pair; but this contradicts the

minimality of s. This ends the proof of the claim.

Topic 8: Recursive path orders with stars - page 9
numbering in this chapter to be corrected

By Corollary 8.22, the set of words over P is again a wqo. Now consider the minimal

counterexample s, and (as in the proof of Theorem 14) filter out a subsequence s* such that the root

labels form an embedding chain. Then consider of each element of s* the tuple (word) of its immediate

subterms (see Figure 8.6). These must have, as words, an embedded pair, since P is a wqo. But together

with the embedding of the root labels, this precisely constitutes an embedding of the corrsponding total

elements in s*. ❑

8.24. EXERCISE. Prove that 〈T, p– 〉 with labels a wpo is in fact a partial order; so Kruskal’s theorem

then states that 〈T, p– 〉 is a well-partial-order.

8.25. EXERCISE. Give a simple example showing that the well-partial-order 〈T, p– 〉 , with natural

numbers as labels, is not a linear order.

8.26. EXERCISE.

Show that ➪+ is a linear order. As it is well-founded, it corresponds to an ordinal. For connections with

the ordinal Γ0, the first impredicative ordinal, see Dershowitz [85]. For more about Kruskal’s Tree

Theorem and the connection with large ordinals, as well as a version of the Tree Theorem which is

independent from Peano’s Arithmetic, see Smorynski [82] and Gallier [87].

Note that the inverse of ➪+ is a linearization of p– , therefore it is well-founded.

8.27. EXERCISE.

Every element of 〈T, p– 〉 labeled with natural numbers corresponds with an ordinal, namely its place in

the well-founded ordering given by ➪+. Place the elements of 〈T, p– 〉 along the sequence of ordinals as

far as possible.

7.7. DEFINITION. Let T* be the set of trees as above where now some of the nodes may be marked with

(a single) *. So T ⊆ T*. Example: see Figure 7.3(b); this tree will be denoted by 3*(5,7(9*),8*(0(1,5))).

7.8. NOTATION. As before, n(t1,...,tk) will be written as n(t). The ti (i = 1,...,k) are now elements of T*.

Further, if t ≡ n(t1,...,tk) then t* stands for n*(t1,...,tk).

7.9. DEFINITION. On T* we define a reduction relation ➪ as follows.

(i) place marker at the top:

n(t) ➪ n*(t) (t = t1,...,tk; k ≥ 0)

(ii) make copies below lesser top:

if n > m, then n*(t) ➪ m(n*(t),...,n*(t)) (j ≥ 0 copies of n*(t))

(iii) push marker down:

n*(s,t) ➪ n(s*,...,s*,t) (j ≥ 0 copies of s*)

(iv) select argument:

Topic 8: Recursive path orders with stars - page 10
numbering in this chapter to be corrected

n*(t1,...,tk) ➪ ti (i ∈ {1,...,k}, k ≥ 1)

It is understood that these reductions may take place in a context, i.e.

if t ➪ s, then n(---, t,---) ➪ n(---, s,---).

3

5 7 8

9 0

1 5

3

5 7 8

9 0

1 5

*

*

*

(a) (b)

Figure 7.3

We write ➪+ for the transitive (but not reflexive) closure of ➪.

7.10. EXAMPLE. (i) Figure 7.4 displays a reduction in T*.

t ≡ 5

6 7

8

5

6 7

8

*

5

6 7

8

*
5

6 7

8

*

5

6 7

8

* 5

6 7

8

* 5

6 7

8

*

4

4

4

6

4

6 5 4

6 8 6 7

8

5

6 7

8

*

Í Í Í
+

Í
+

➪➪ ➪

➪

Topic 8: Recursive path orders with stars - page 11
numbering in this chapter to be corrected

Figure 7.4

(ii) n(t) ➪+ m(t) if n > m.

(iii) n(s, t) ➪+ n(t).

(iv) 0* is a normal form with respect to ➪.

Intuitively, attaching a marker as in rule (1) signifies a command to make the term smaller. The other rules

express one step of the execution of this command, which is fully executed if all *-markers have dis-

appeared.

Now we have the following proposition (of which (i) is nontrivial to prove):

7.11. PROPOSITION. (i) ➪+ is a strict partial order on T, (ii) if s p– t, then t ➪* s.

(Here ➪* is the transitive-reflexive closure of ➪ .) Note that the reverse of (ii) does not hold; for, if t ➪* s,

then s may have more nodes than t (see e.g. the example in Figure 7.4 above), hence: not s p– t. Note also

that clause (iii) in Definition 7.2 (sup preserving) is necessary: we do not have, e.g., 1(0(0, 0)) ➪* 1(0, 0)

(without clause (iii) 1(0, 0) could be embedded in 1(0(0, 0))). The proof of (ii) is trivial, using Remark

7.5.

Clearly, the reduction ➪ is not SN in T*; for, consider the second step in Figure 7.4: there the

right hand side contains a copy of the left-hand side. However:

7.12. THEOREM. The relation ➪+, restricted to T, is a well-founded partial ordering. Or, rephrased, the

relation ➪+, restricted to T, is SN.

PROOF. Suppose there is an infinite sequence of trees t0, t1, t2, ... in T such that

t0 ➪+ t1 ➪+ t2 ➪+ ... ➪+ ti ➪+ ... ➪+ tj ➪+ ...

then by Kruskal’s Tree Theorem for some i < j we have ti p– tj, hence tj ➪* ti. But then we have

ti ➪+ ... ➪+ tj ➪* ti, so ti ➪+ ti,

which is impossible as ➪+ is a strict partial order.

7.13. APPLICATION (Dershowitz [87]). Let a TRS R, computing disjunctive normal forms, as in Table 7.1

be given. To prove that R is SN.

Topic 8: Recursive path orders with stars - page 12
numbering in this chapter to be corrected

 ¬¬x → x

¬(x ∨ y) → (¬x ∧ ¬y)

¬(x ∧ y) → (¬x ∨ ¬y)

x ∧ (y ∨ z) → (x ∧ y) ∨ (x ∧ z)

(y ∨ z) ∧ x → (y ∧ x) ∨ (z ∧ x)

Table 7.1

Choose a ‘weight’ assignment ∨ → 1, ∧ → 2, ¬ → 3. Now a reduction in R corresponds to a ➪+

reduction in T (and hence it is also SN) using the fact that we have LHS ➪+ RHS for each rule LHS →

RHS of R:

3(3(t)) ➪+ t

3(1(t,s)) ➪+ 2(3(t),3(s))

3(2(t,s)) ➪+ 1(3(t),3(s))

2(t,1(s,r)) ➪+ 1(2(t,s),2(t,r))

2(1(s,r),t) ➪+ 1(2(s,t),2(r,t))

E.g. the second rule:

3(1(t,s)) ➪ 3*(1(t,s)) ➪ 2(3*(1(t,s)), 3*(1(t,s))) ➪+

2(3(1*(t,s)), 3(1*(t,s))) ➪+ 2(3(t),3(s)).

7.14. REMARK. It is also possible to formulate Kruskal’s Tree Theorem in a form somewhat closer to the

terminology of term rewriting. The difference is that we now work with function symbols having fixed

arities, that the ‘term trees’ are not commutative, and that the embedding relation looses the aspect of label

increasingness (clause (iv) of Definition 7.2). First define the following relation:

7.14.1. DEFINITION. Let t, s ∈ Ter(Σ). We say that t is embeddable in s, notation t << s, if s →→S t with

respect to the TRS (Σ, S) consisting of the rules F(t1, ..., tn) → ti for all 1 ≤ i ≤ n and all n-ary F ∈ Σ. (S

stands for simplification.)

7.14.2. KRUSKAL’S TREE THEOREM. Let t1, t2, ... be a a sequence of terms, such that in the sequence

only finitely many symbols (function symbols, constants, variables) appear. Then for some i, j with i < j

we have ti << tj.

(Note that the finiteness condition is now necessary,. Otherwise the infinite sequence of different variables

x0, x1, x2, ... would refute the theorem.)

Topic 8: Recursive path orders with stars - page 13
numbering in this chapter to be corrected

7.14.3. The recursive path ordering is now defined as follows, using the auxiliary signature Σ* = Σ ∪ {F*

| F ∈ Σ} (F a function or constant symbol from Σ; F* has the same arity as F). So Ter(Σ) ⊆ Ter(Σ*).

Now suppose Σ finite and suppose that function and constant symbols of Σ are partially ordered by >.

We define a reduction relation ➪ on Ter(Σ*), with the following reduction rules.

(1) F (t) ➪ F*(t)

(2) F*(t) ➪ G(F*(t) , ..., F*(t)) if F > G

(3) F*(t) ➪ ti (i = 1, ..., n)

(4) F*(p, G(s), q) ➪ F (p, G*(s), q)

Table 7.2

Here t = t1, ..., tn and s = s1, ..., sm with ti, si ∈ Ter(Σ*). Furthermore, F, G ∈ Σ are function symbols with

arities n, m ≥ 0 respectively (so in rule (2) there are in the right-hand side m copies of F*(t)). In rule (1),

(2) the arity of F may be 0; in rule (3), (4) it is clear that the arity of F has to be at least 1. In (4), p, G(s),

q is a sequence of n elements from Ter(Σ*), where p, q may be empty sequences. With ➪* we denote the

transitive reflexive closure of ➪, with ➪+ the transitive closure. Note that the simplification reduction →→S

is contained in ➪*, i.e. if s →→St then s ➪* t. The rest is analogous to the case of commutative trees

above.

 So ➪+ is a well-founded ordering on Ter(Σ). This ordering is called the recursive path

ordering. The recursive path ordering can be used for termination proofs of TRSs as follows.

7.14.3. THEOREM. Let (Σ, R) be a TRS with finite Σ. Suppose the function and constant symbols of Σ can

be partially ordered in such a way that for the corresponding recursive path order ➪+ we have, for every

reduction rule s → t of R, that s ➪+ t. Then R is SN.

The proof follows immediately since s ➪+ t implies C[sσ] ➪+ C[tσ] for every context C[] and

instantiation σ.

7.15. EXAMPLE. Consider the string rewrite system (or Semi-Thue System), see section 4.3 in chapter 4,

given as an example in Dershowitz & Jouannaud [90], over the alphabet {0, 1} and with the rules:

(1) 10 → 0001

(2) 01 → 1

(3) 11 → 0000

Topic 8: Recursive path orders with stars - page 14
numbering in this chapter to be corrected

(4) 00 → 0

So in proper TRS format these rules stand for 1(0(x)) → 0(0(0(1(x)))), etc.With the ordering 1 > 0 we

have (dropping all brackets in the convention of association to the right):

(1) 10x ➪+ 000x, since 10x ➪ 1*0x ➪ 01*0x ➪ 001*0x ➪ 0001*0x ➪ 00010*x ➪ 0001x.

Likewise for rules (2-4). Hence this STS is SN.

7.16. REMARK. (i) The termination proof method above does not work when a rule is present of which

the left-hand side is embedded (in the sense of Definition 7.14.1) in the right-hand side, as in f(s(x)) →

g(s(x), f(p(s(x)))). (For, if it would, then we would have a contradiction with the acyclicity of ➪+). For an

extension of Kruskal's Theorem, leading to a method which also can deal with this case, see Kamin &

Lévy [80] and Puel [86].

(ii) Another example that resists a direct application of RPO as above, is:

g(x,y) → h(x,y)

h(f(x),y) → f(g(x,y)).

There are several ways to deal with such cases though, but not treated here.

(iii) A third example were the proof method above does not work, is when an associativity rule

(x.y).z → x.(y.z)

is present.

(iv) The same problem occurs in the TRS for Ackermann’s function:

A(0,x) → S(x)

A(S(x),0) → A(x,S(0))

A(S(x),S(y)) → A(x,A(S(x),y))

What we need here is the lexicographic path ordering of Kamin and Lévy, see Dershowitz [85].

Essentially this says that a reduction in complexity in the first argument of A outweighs an increase

(strictly bounded by the complexity of the original term) in the second argument. In fact, an ordering with

the same effect can easily be described in the framework of reduction with markers * as follows. Add to

the rules in definition 7.14.3:

(5) simplify left argument

n*(t) ➪ n(t1*, n*(t),..., n*(t)) (t = t1,...,tk (k ≥ 1); k-1 copies of n*(t))

Topic 8: Recursive path orders with stars - page 15
numbering in this chapter to be corrected

Example: A(S(x),S(y)) ➪

A*(S(x),S(y)) ➪

A(S*(x),A*(S(x),S(y))) ➪

A(x,A*(S(x),S(y))) ➪

A(x,A(S(x),S*(y))) ➪

A(x,A(S(x),y)).

7.17. REMARK. Nested multisets. Nested multisets over (N, <) arise (roughly) as follows. First take the

multisets over (N, <), result (N µ, <µ). Ιterating this we have multisets of multisets, (Nµµ, <µµ). Iterating

this ω times and taking the limit we have the nested multisets over N, notation (Nµ*, <µ*); they can be

represented as finite commutative trees ∈ T with natural numbers at terminal nodes and 0 at all non-

terminal nodes. The nested multiset ordering <µ* is now just the recursive path order ➪+. Replacing the

natural number n by the multiset of n copies of 0, {0,...,0}, we see that the nested multiset order over N is

the same as that over {0}. Hence we can take all labels of trees ∈ T equal to 0. Figure 7.5 contains a

comparison of two such nested multisets by means of a ➪-reduction. Note that ➪ now uses all clauses in

Definition except (ii).

7.18. REMARK. Higman’s Lemma.

Í +Í Í*

*

Í +

**

α

β

➪➪

➪

➪+

+

Figure 7.5

7.18. REMARK. ➪+ is a linear order. As it is well-founded, it corresponds to an ordinal. For connections

with the ordinal Γ0, the first impredicative ordinal, see Dershowitz [85]. For more about Kruskal’s Tree

Topic 8: Recursive path orders with stars - page 16
numbering in this chapter to be corrected

Theorem and the connection with large ordinals, as well as a version of the Tree Theorem which is

independent from Peano’s Arithmetic, see Smorynski [82] and Gallier [87].

Topic 8: Recursive path orders with stars - page 17
numbering in this chapter to be corrected

Higher-order rewriting

In this topic we introduce a new syntactic feature to term rewriting, that is, new as compared to the

first-order TRSs that we have dealt with so far; namely bound variables. Of course bound variables

are familiar already from lambda calculus and predicate logic. Roughly, we will take the union of

the syntax of lambda calculus and of first-order TRSs, in order to arrive at an encompassing

framework for term rewriting. The original idea stems from an unpublished note of P. Aczel (Aczel

[78]), who proved the Church-Rosser theorem for ‘consistent reduction schemes’. In this topic we

will explain this notion, under the name of Combinatory Reduction Systems (CRSs), by several

examples. A closely related approach to ‘higher-order rewriting’ as the terminology is nowadays,

was given by T. Nipkow (Nipkow [91]), on the basis of simply typed lambda calculus as the

underlying substitution mechanism (Higher-order Rewrite Systems, HRSs). Still other higher-order

rewrite frameworks have been introduced, e.g. Khasidashvili [90] (Expression Reduction Systems).

The theory of higher-order rewriting was further developed by Van Raamsdonk [96, 99] and Van

Oostrom[94, 99]. For a survey on higher-order rewriting, see Van Raamsdonk [99]. We start with a

sequence of examples before presenting the formal definitions.

9.1. EXAMPLE. λ-calculus. The only rewrite rule is the β-reduction rule:

(λx.Z1(x))Z2 → Z1(Z2),

presented in an informal notation; the formal notation would use a substitution operator [:=] and

we would write (λx.M)N → M [x := N]. Still, this informal notation has a direct appeal, and in the

sequel we will make it formal; this is essential for the syntax definition of CRSs.

Topic 9: Higher-order rewriting- page 1

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

9.2. EXAMPLE.Polyadic λ-calculus. Here we have n-ary λ-abstraction and reduction rules (βn)

for every n ≥ 1:

(βn) (λx1x2...xn. Z0(x1,x2,...,xn))Z1Z2...Zn → Z0(Z1,Z2,...,Zn).

9.3. EXAMPLE.µ-calculus. This is the well-known notation system designed to deal with

recursively defined objects (processes, program statements, ...) with as basic rewrite or reduction

rule:

µx.Z(x) → Z(µx.Z(x)),

which would read in the usual notation: µx.Z(x) → Z([x := µx.Z(x)].

9.4. EXAMPLE.Proof Normalization.

P(LZ0)(λx.Z1(x))(λy.Z2(y)) → Z1(Z0)

P(RZ0)(λx.Z1(x))(λy.Z2(y)) → Z2(Z0)

The operational meaning of this pair of rewrite rules should be self-explaining: according to

whether Z0 is prefixed by L or R it is substituted in the left or the right part of the ‘body’ of the

redex headed by P, for all the free occurrences of x respectively y. The rules occur as

normalization procedures for proofs in Natural Deduction (Prawitz [71], p.252), Girard [87]),

albeit not in the present linear notation. The rules concer “v-reduction”. (For more explanation see

Klop [80].)

9.5. EXAMPLE. λ-calculus with δ-rules of Church. This is an extension of λ-calculus with a

constant δ and a possibly infinite set of rules of the form

δM1...Mn → N

where the Mi (i = 1,...,n) and N are closed terms and the Mi are moreover in “βδ-normal form”,

i.e. contain no β-redex and no subterm as in the left-hand side of a δ-rule. To ensure orthogonality

(defined below) there should moreover not be two left-hand sides of different δ-rules of the form

Topic 9: Higher-order rewriting- page 2

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

δM1...Mn and δM1...Mm, m ≥ n. (So every left-hand side of a δ-rule is a normal form with respect

to the other δ-rules.)

The account below follows Klop [80] (see also Klop, Van Oostrom & Van Raamsdonk

[93]). The concept of a CRS was first suggested in Aczel [78], where a confluence proof for a

subclass of the orthogonal CRSs was given, the ‘consistent reduction schemes’. We will now give

the formal definitions.

9.6. Alphabet of a Combinatory Reduction System.

The alphabet of a CRS consists of

(i) a set Var = {xn | n ≥ 0} of variables (also written as x,y,z,...);

(ii) a set Mvar of metavariables {Zn
k | k,n ≥ 0}; here k is the arity of Zn

k;

(iii) a set of function symbols F, G,..., each with a fixed arity; sometimes these function

symbols have a familiar notation such as λ, µ, ∃, ... ;

(iv) a binary operator for abstraction, written as [-].-;

(v) improper symbols () and [].

The arities k of the metavariables Zn
k can always be read off from the term in which they

occur—hence we will often suppress these superscripts. E.g. in (λx.Z0(x))Z1 the Z0 is unary and

Z1 is 0-ary.

9.7. Term formation in a Combinatory Reduction System.

9.7.1. DEFINITION. The set Mter of meta-terms of a CRS with alphabet as in 9.6 is defined

inductively as follows:

(i) constants and variables are meta-terms;

(ii) if t is a meta-term, x a variable, then ([x]t) is a meta-term, obtained by abstraction;

(iii) if F is an n-ary function symbol (n ≥ 0) and t1,...,tn are metaterms, then F(t1,...,tn) is a

metaterm;

(iv) if t1,...,tk (k ≥ 0) are meta-terms, then Zn
k(t1,...,tk) is a meta-term (in particular the Zn

0

are meta-terms).

Note that meta-variables Zn
k+1 are not meta-terms; they need arguments. Meta-terms in which no

metavariable Z occurs, are terms. Ter is the set of terms.

9.7.2. NOTATION.

Topic 9: Higher-order rewriting- page 3

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(i) An iterated abstraction meta-term [x1](...([xn-1]([xn]t))...) is written as [x1,...,xn]t or [x]t for

x = x1,...,xn. For a unary function symbol F, the meta-term F([x]t) will be written as F[x].t. For

instance, λx.t abbreviates λ ([x]t).

(iii) We will not be very precise about the usual problems with renaming of variables, α-

conversion etc. That is, this is treated like in λ-calculus when one is not concerned with

implementations. Thus we will adopt the following conventions:

- All occurrences of abstractors [xi] in a meta-term are different; e.g. λxx.t is not legitimate,

nor is λx.(tλx.t').

- Furthermore, terms differing only by a renaming of bound variables are considered

syntactically equal. (The notion of ‘bound’ is as in λ-calculus: in [x]t the free occurrences of

x in t (hence by (i) all occurrences) are bound by the abstractor [x].)

9.7.3. DEFINITION. A term is closed if every variable occurrence is bound.

9.8. Rewrite rules of a Combinatory Reduction System.

A rewrite (or reduction) rule in a CRS is a pair (t, s), written as t → s, where t,s are meta-terms

such that:

(i) t has the form F(t1,...,tn);

(ii) t, s are closed meta-terms;

(iii) the metavariables Zn
k that occur in s, also occur in t;

(iv) the metavariables Zn
k in t occur only in the form Zn

k(x1,...,xk) where the xi (i = 1,...,k) are

variables (no meta-terms). Moreover, the xi are pairwise distinct.

If, moreover, no metavariable Zn
k occurs twice or more in t, the rewrite rule t → s is called left-

linear.

In order to generate actual rewrite steps from the rewrite rules, we have to define

substitution:

9.9. Extracting the reduction relation. It requires some subtlety to extract from the rewrite rules

the actual rewrite relation that they generate. First we define substitutes (we adopt this name from

KAHRS [92]).

9.9.1. DEFINITION. Let t be a term in a CRS.

Topic 9: Higher-order rewriting- page 4

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(i) Let x1,...,xn be a string of pairwise distinct variables. Then λ(x1,...,xn).t is an n-ary

substitute. We use λ as a 'meta-λ' to distinguish it from the one of λ-calculus.

(ii) The variables x1,...,xn occurring in t are bound in the substitute λ (x1,...,xn).t. They may be

renamed in the usual way, provided no name clashes occur. Renamed versions of a substitute are

considered identical. The free variables in λ (x1,...,xn).t are the free variables of t except x1...xn.

(iii) An n-ary substitute λ (x1,...,xn).t may be applied to an n-tuple (t1,...,tn) of terms from the

CRS, resulting in the following simultaneous substitution:

(λ (x1,...,xn).t) (t1,...,tn) = t[x1:= t1,..., xn:= tn]

9.9.2. DEFINITION. A valuation is a map σ assigning to an n-ary metavariable Z an n-ary substitute:

σ(Z) = λ (x1,...,xn).t

Valuations are extended to a homomorphism on metaterms as follows:

(i) σ(x) = x for x ∈ Var;

(ii) σ([x]t) = [x] σ(t);

(iii) σ(F(t1,...,tn)) = F(σ(t1),..., σ(tn))

(iv) σ(Z(t1,...,tn)) = σ(Z) (σ(t1),..., σ(tn)).

(So if σ(Z) = λ (x1,...,xn).t, then σ(Z(t1,...,tn)) = t[x1:=σ(t1),...,xn:=σ(tn)].)

We will now formulate some 'safety conditions' for instantiating rewrite rules to actual

rewrite steps. Intuitively, we could comprise their description as follows: rename bound variables

as much as possible, in order to avoid name clashes, i.e. free variables x being captured

unintentionally by abstractors [x].

9.9.3. DEFINITION. (i) Let t → s be a rewrite rule. A renaming of that rule (by renaming the bound

variables in t, s) will be called a variant of the rule.

(ii) Let σ be a valuation. Then a variant of σ originates by renaming the bound variables in the

substitutes σ(Z).

(iii) Let t → s be a rewrite rule and σ a valuation. Then t → s is called safe for σ, if for no Z in t,

the substitute σ(Z) has a free variable x occurring in an abstraction [x] of t.

Topic 9: Higher-order rewriting- page 5

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(iv) Furthermore, σ is called safe (with respect to itself) if there are no two substitutes σ(Z) and

σ(Z') such that σ(Z) contains a free variable x which appears also bound in σ(Z').

Note that for every rewrite rule t → s and valuation σ there are variants σ' and t'→ s' such

that σ' is safe and t'→ s'is safe for σ'.

Example. The η-reduction rule variant λx. Zx → Z, or in full notation λ([x]@(Z, x)) → Z, is not

safe for σ with σ(Z) = x. The variant λy. Zy → Z is safe for σ.

9.9.4. DEFINITION. Let t be a term of a CRS and let s be a subterm occurrence in t. Then the result

of replacing the occurrence of s by ø, indicating an open place, is called a context. We write C[] for

a context. The result of replacing ø by a term s in C[] is C[s].

9.9.5. DEFINITION. (i) Let t → s be a rewrite rule version which is safe for the safe valuation σ.

Then σ(t) → σ(s) is called a rewrite. The term σ(t) is called a redex.

(ii) Let σ(t) → σ(s) be a rewrite, and C[] a context. Then C[σ(t)] →C[σ(s)] is called a rewrite

step (reduction step).

(iii) As always, ÿ is the transitive reflexive closure of the one step rewrite relation → on terms.

9.9.6. REMARK. (i) We need t → s to be safe for σ, in (i) above, to prevent variable capture when

evaluating the lefthand-side of the rule.

(ii) We need σ to be safe (with respect to itself) because otherwise undesired variable captures take

place in evaluating the righthand-sides of rules. E.g. consider Z(Z') with σ such that σ(Z) = λy.

(λx.xy) and σ(Z') = x (so σ is not safe). Then σ(Z(Z')) = σ(Z)(σ(Z')) = (λy.(λx.xy))(x) = λx.xx,

with variable capture.

(iii) Note that free variables in the rewrite σ(t) → σ(s) may be captured by the context C[] in which

it is embedded to form a rewrite step C[σ(t)] → C[σ(s)]; but that is intended!

9.9.7. EXAMPLE. In this example we write tσ instead of σ(t). We reconstruct a step according to the

β-reduction rule of λ-calculus (written in the usual, applicative, notation):

(λx. Z(x))Z' → Z(Z').

Let the valuation Zσ = λx. yxx, Z'σ = ab be given. Then we have the reduction step (in boldface):

Topic 9: Higher-order rewriting- page 6

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

((λx. Z(x))Z')σ

= (λx. Z(x)σ)Z'σ

= (λx. Zσ (xσ))Z'σ

= (λx.(λx.yxx)(x))(ab)

= (λx. yxx)(ab) →

(Z(Z'))σ

= Zσ (Z'σ)

= (λx.yxx)(ab)

= y(ab)(ab).

9.9.8. REMARK. (i) Note that in the CRS format there is no need for explicitly requiring that some

variables are not allowed to occur in instances of metavariables. For instance, in F([x]Z), an

instance of Z is not allowed to contain freee occurrences of x. In λ-calculus such a requirement

cannot be made in the system itself; it has to be stated in the meta-language, as is done for the η-

rule. In this sense the CRS formalism is more expressive than that of λ-calculus.

(ii) The requirement discussed in (i) is necessary: for, consider e.g. the rule τx. xZ → Z. Suppose

we would not require that Z cannot have free x's. Then τx. xx → x; but that would mean that a

closed term rewrites to an open term, i.e. free variables appear out of the blue, which of course is

disallowed. One may ask why this is not the case for the rule τx. xZ(x) → Z(x); the answer is that

this is not a legitimate rule because the righthand-side is not a closed metaterm.

We will now give a more precise definition of overlap and orthogonality.

9.9.9. DEFINITION. Let R be a CRS containing rewrite rules {ri = ti → si | i ∈ I}.

(i) R is non-overlapping if the following holds:

(1) Let the left-hand side ti of ri be in fact ti(Z1(x1),...,Zm(xm)) where all metavariables

in ti are displayed. Now if the ri-redex σ(ti(Z1(x1),...,Zm(xm)) contains an rj-redex (i ≠ j), t hen

this rj-redex must be already contained in one of the σ(Zp(xp)).

(2) Likewise if the ri-redex properly contains an ri-redex.

(ii) R is left-linear if all ti are linear. A metaterm is linear if it does not contain multiple

occurrences of the same metavariable. (Example: ρx. xZ(x) is linear; αxy. F(Z(x), Z(y)) is not

Topic 9: Higher-order rewriting- page 7

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

linear.)

(iii) R is orthogonal if it is non-overlapping and left-linear.

 Above, all CRSs had an unrestricted term formation by some inductive clauses. However, often

one will be interested in CRSs where some restrictions on term formation are present. A typical

example is λI-calculus, where the restriction is that in a subterm λx. t there must be at least one

occurrence of x in t. (This requirement makes the λI-calculus non-erasing, and Church proved that

a λI-term is SN iff it is WN. (Cf. Topic 6, Theorem 6.9). As a consequence, if a λI-term t has a

normal form then also every subterm of t has a normal form; this fact was Church’s primary

motivation for considering λI-calculus.)

Other typical examples of restricted term formation arise when types are introduced, as in

typed λ-calculus (λτ-calculus) or typed Combinatory Logic (CLτ) (see Hindley & Seldin [86]). In

a simple way a type restriction occurs already when one considers many-sorted TRSs (not treated

here). This leads us to the following definition:

9.9.10. DEFINITION. (i) Let (R, →R) be a CRS as defined above. Let T be a subset of Ter(R), which

is closed under →R . Then (T, →R |T), where →R|T is the restriction of →R to T, is a substructure

of (R, →R) .

(ii) If (R, →R) is orthogonal, so are its substructures.

A large part of the theory for orthogonal TRSs carries over to orthogonal CRSs (see Klop

[80]). The main fact is:

9.10. THEOREM. All orthogonal CRSs are confluent.

Just as for the case of first-order TRSs, one can define critical pairs. (See Nipkow [91] for

doing so in the framework of HRSs.) When all critical pairs of a CRS are trivial and the CRS is

left-linear, it is called weakly orthogonal. The paradigm example of a weakly orthogonal CRS is

λβη-calculus. Now there is the following strengthening of Theorem 9.10 (see (Van Oostrom & van

Raamsdonk [94b]):

Topic 9: Higher-order rewriting- page 8

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

9.11. THEOREM. All weakly orthogonal CRSs are confluent.

9.12. REMARK. (i) Also Church’s Theorem (cf. Theorem 6.9) generalizes to orthogonal CRSs.

Here the definition of ‘non-erasing’ reduction rule for CRSs generalizes from that for TRSs as

follows: A rule t → s is non-erasing if all metavariables Z occurring in t, have an occurrence in s

which is not in the scope of a metavariable (i.e. not occurring in an argument of a metavariable).

Without this proviso, which for TRSs is vacuously fulfilled since there all metavariables in the

rewrite rules are 0-ary, also rules like the β-reduction rule of λ-calculus (λx.Z(x))Z' → Z(Z') would

be non-erasing, which obviously is not the intention.

(ii) As to reduction strategies: here the situation resembles again that of TRSs. In fact, in Table

6.2 (Topic 6) one may replace “TRSs” everywhere by “CRSs”. Similar for standardization and

normalization: in general there is no standardization of reductions possible, but for left-normal

CRSs (cf. Definition 6.12.6), among which λ-calculus, there is.

We conclude this topic with some examples of ‘important’ lambda calculi.

9.13. EXAMPLE. (Aczel [78]). λ-calculus extended with constants D0, D1, Rn, J, 0, S and rules as in

Table 9.1 is a left-normal orthogonal CRS.

Pairing: D0(DZ1Z2) → Z1

D1(DZ1Z2) → Z2

Definition by cases: RnQ1Z1...Zn → Z1

.....

RnQnZ1...Zn → Zn

Iterator: J0Z1Z2 → Z2

J(SZ0)Z1Z2 → Z1(JZ0Z1Z2)

__

Table 9.1

9.14. EXAMPLE. PCF, a programming language for computable functions (Plotkin [77]), is the

following CRS (see Table 9.2). PCF is a left-normal CRS (cf. Definition 6.12.6), hence the

Standardization Theorem holds for PCF, and hence the Normalization Theorem (stating that

Topic 9: Higher-order rewriting- page 9

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

leftmost reduction is normalizing.) PCF is an extension of simply typed lambda calculus.

__

Types: (i) INT, BOOL are types (ground types)

(ii) if σ, τ are types, then (σ → τ) is a type

Constants: true : BOOL

false : BOOL

condINT: BOOL → (INT → (INT → INT))

condBOOL : BOOL → (BOOL → (BOOL → BOOL))

Yσ : (σ → σ) → σ

n (for each n ∈ N) :INT

succ : INT → INT

pred : INT → INT

zero : BOOL → INT

Variables: xn
σ (n ∈ N) : σ

Terms: (i) xn
σ is a term

(ii) constants are terms

(iii) if t, s are terms of type σ→ τ and σ respectively,

then (ts) is a term of type τ

(iv) if t is a term of type τ, then λxn
σ.t is a term of type σ → τ

` Reduction rules:condINT true Z1 Z2 → Z1

condINT false Z1 Z2 → Z2

condBOOL true Z1 Z2 → Z1

condBOOL false Z1 Z2 → Z2

YσZ → Z(YσZ)

Topic 9: Higher-order rewriting- page 10

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(λxσ.Z1(xσ))Z2 → Z1(Z2)

succ n → n+1 (n ∈ N)

pred n+1 → n (n ∈ N)

zero 0 → true

zero n+1 → false (n ∈ N)

Table 9.2

9.15. EXAMPLE. Gödel’s T (or: Gödel’s functions of finite type, or: primitive recursive functionals

of finite type) is a CRS playing an important role in Proof Theory (see Hindley, Lercher & Seldin

[72], p.127 and Barendregt [84], p.568.) It is the following extension of typed λ-calculus (see Table

9.3).

Types: (i) INT is a type

(ii) if σ, τ are types, then (σ → τ) is a type

Constants: 0 : INT

succ : INT → INT

Rσ : σ → ((σ → (INT → σ)) → (INT → σ))

Variables: xn
σ : σ (n ∈ N)

Terms: (i) xn
σ is a term

(ii) constants are terms

(iii) if t, s are terms of type σ → τ and σ respectively,

then (ts) is a term of type τ

(iv) if t is a term of type τ, then λxn
σ. t is a term of type σ → τ

Reduction rules:Rσ Z1 Z2 0 → Z1

Rσ Z1 Z2 (succ Z3) → Z2 (Rσ Z1 Z2 Z3) Z3

Topic 9: Higher-order rewriting- page 11

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

(λxσ. Z1(xσ)) Z2 → Z1(Z2)

Table 9.3

(i) Gödels’s T is an orthogonal CRS, hence confluent.

(ii) Note that it is not left-normal. But it is easy to formulate a variant of Gödel’s T which is

left-normal (by changing the order of the arguments of the Rσ), so for this variant the

Standardization and Normalization Theorem hold.

Topic 9: Higher-order rewriting- page 12

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Topic 9: Higher-order rewriting- page 13

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

Topic 9: Higher-order rewriting- page 14

Ten Topics in Term Rewriting - Logic Colloquium 99 Utrecht

References

ACZEL, P. (1978). A general Church-Rosser theorem. Preprint, Univ. of Manchester.

ARTIN, E.(1926). Theorie der Zöpfe. Abh. math. Semin. Hamburg Univ. 4 (1926), 47-72.

ARTIN, E.(1947). Theory of braids. Ann. of Math. (2) 48 (1947) 101-126

ARTIN, E.(1947a). Braids and permutations. Ann. of Math. vol. 48 (1947), 643-649

BACHMAIR, L. & DERSHOWITZ, N. (1986). Commutation, transformation, and termination. Proc. of 8th
International Conference on Automated Deduction (ed. J.H. Siekmann), Oxford, Springer LNCS 230, 5-20.

BACHMAIR, L., DERSHOWITZ, N. & HSIANG, J. (1986). Orderings for equational proofs. In: Proc. of the IEEE
Symp. on Logic in Computer Science, Cambridge, Massachusetts, 346-357.

BACHMAIR, L. & PLAISTED, D.A. (1985). Associative path orderings. In: Proc. of 1st Intern. Conf. on
Rewriting Techniques and Applications (ed. J.-P. Jouannaud), Dijon, Springer LNCS 202, 241-254.

BARENDREGT, H.P. (1984). The Lambda Calculus, its Syntax and Semantics, 2nd ed. North-Holland 1984.

BEZEM, M., KLOP, J.W. & VAN OOSTROM, V., (1996) Diagram Techniques for Confluence. Information and
Computation, Vol.141, No.2, p.172-204, 1998.

BIRKHOFF, G. (1935). On the structure of abstract algebras. In: Proc. of the Cambridge Philosophical Society 31,
433-454.

DE BRUIJN, N.G. (1978). A note on weak diamond properties. Memorandum 78-08,
Eindhoven University of Technology, August 1978.

DAUCHET, M., TISON, S., HEUILLARD, T. & LESCANNE, P. (1987). Decidability of the confluence of ground

term rewriting systems. In: Proc. of the 2nd Symp. on Logic in Computer Science, Ithaca, NY, 1987,
353-359.

DERSHOWITZ, N. (1979). A note on simplification orderings. Information Processing Letters, Vol.9, No.5,
1979, 212-215.

DERSHOWITZ, N. (1987). Termination of rewriting. J. of Symbolic Computation 3 (1&2), 69-115, 1987.
Corrigendum: Vol.4, No.3, 409-410.

References - page 1

Ten Topics in Term Rewriting - Logic Colloquium 99, Utrecht

DERSHOWITZ, N. & JOUANNAUD, J.-P. (1990). Rewrite systems. In: Formal models and semantics, Handbook
of Theoretical Computer Science, Vol.B (J. van Leeuwen, editor), Elsevier - The MIT Press, Chapter 6, p.243-320.

[DKP89] N. Dershowitz, S. Kaplan, and D.A. Plaisted. Infinite normal forms. In ICALP ‘89, volume 372 of
Springer LNCS, p. 249-262, 1989.

DROSTEN, K. (1989). Termersetzungssysteme. Informatik-Fachberichte 210, Springer-Verlag.

[FW89] W.M. Farmer and R.J. Watro. Redex capturing in term graph rewriting. Technical report, M89-59, MITRE,
1989.

GALLIER, J.H. (1987). What’s so special about KruskalÆs Theorem and the ordinal Γ0. Techn. Rep. MS-CIS-87-

27, Univ. of Pennsylvania, Philadelphia, PA, 1987.

GARSIDE, F.A. (1969). The braid group and other groups. Quart. J. Math. 20 (1969) 235-254.

GIRARD, J.-Y. (1987). Proof theory and logical complexity. Vol.I, Bibliopolis, Napoli, 1987.

HINDLEY, J.R. (1964). The Church-Rosser property and a result in combinatory logic. Ph.D.
Thesis, Univ. Newcastle-upon-Tyne, 1964.

[Hud88] P. Hudak. Report on the functional programming language Haskell. Draft Proposed Standard, 1988.

HUET, G. (1980). Confluent reductions: Abstract properties and applications to term rewriting

systems. JACM, Vol.27, No.4 (1980), 797-821.

HUET, G. & LÉVY, J.-J. (1979). Call-by-need computations in non-ambiguous linear term rewriting systems.
Rapport INRIA nr.359.

HUET, G. & OPPEN, D.C. (1980). Equations and rewrite rules: A survey. In: Formal Language Theory:
Perspectives and Open Problems (ed. R. Book), Academic Press, 1980, 349-405.

JANTZEN, M. (1988). Confluent string rewriting. EATCS (European Association for Theoretical
ComputerScience) Monographs on Theor. Comp. Sci., No.14, Springer Verlag, 1988.

KAMIN, S. & LÉVY, J.-J. (1980). Two generalizations of the recursive path ordering. Unpublished manuscript,
University of Illinois.

NEWMAN, M.H.A. (1942). On theories with a combinatorial definition of "equivalence". Annals of
Mathematics, 43(2):223-243, April 1942.

KAHRS, S. (1991). λ-rewriting. Ph.D. Thesis, Universität Bremen.

KAHRS, S. (1992b). Compilation of Combinatory Reduction Systems. Preprint, University of Edinburgh.

KENNAWAY, J.R. (1989). Sequential evaluation strategies for parallel-or and related systems. Annals of Pure and
Applied Logic, 43: 31-56.

References - page 2

Ten Topics in Term Rewriting - Logic Colloquium 99, Utrecht

KENNAWAY, J.R., KLOP, J.W., SLEEP, M.R. & DE VRIES, F.J. (1993). An infinitary Church-Rosser

property for non-collapsing orthogonal term rewriting systems. In M.R. Sleep, M.J. Plasmeijer and M.C.J.D. van
Eekelen, editors, Term -Graph Rewriting - theory and practice, p.47-59, Wiley, 1993.

KENNAWAY, J.R., KLOP, J.W., SLEEP, M.R. & DE VRIES, F.J. (1995). Transfinite reductions in orthogonal

term rewriting systems. Information and Computation, 119(1):18-38, 1995.

KHASIDASHVILI, Z. (1990). Expression reduction systems. In: Proc. of I. Vekua Institute of Applied
Mathematics, University of Tiblisi, Georgia, 1990.

KHASIDASHVILI, Z. (1992). Church-Rosser Theorem in Orthogonal Combinatory Reduction Systems. Preprint,
INRIA Rocquencourt, 1992.

KNUTH, D.E. & BENDIX, P.B. (1970). Simple word problems in universal algebras. In: Computational Problems
in Abstract Algebra (ed. J. Leech), Pergamon Press, 1970, 263-297.

KLOP, J.W. (1992). Term rewriting systems. In Vol.2 of Handbook of Logic in Computer Science
(eds. S. Abramsky, D. Gabbay & T. Maibaum), Oxford University Press 1992, p.1-116

KLOP, J.W. (1980). Combinatory Reduction Systems. Mathematical Centre Tracts Nr.127, CWI, Amsterdam.

KLOP, J.W., VAN OOSTROM, V. & VAN RAAMSDONK, F. (1993). Combinatory reduction systems,

introduction and survey. Theoretical Computer Science, 121:279-308,1993.

KLOP, J.W., DE VRIJER, R.C. & VAN OOSTROM, V., (1999) A Geometric Proof of Confluence

by Decreasing Diagrams Tech. Report Vrije Universiteit Amsterdam, 1999 (www.cs.vu.nl/~rdv/recent
publications)

KRUSKAL, J.B. (1960). Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi’s Conjecture. Transactions of the
AMS 95, 210-225.

KRUSKAL, J.B. The theory of well-quasi-ordering: A frequently discovered concept. J. Combinatorial Theory A13
(1972), 297-305.

MIDDELDORP, A. (1990). Modular properties of term rewriting systems. Ph.-D. Thesis, Vrije Universiteit
Amsterdam, 1990.

MIDDELDORP, A. (1989). Modular aspects of properties of term rewriting systems related to normal forms. In:
Proc. of 3rd Intern. Conf. on Rewriting Techniques and Applications, Chapel Hill, Springer LNCS 355, 263-277.

MIDDELDORP, A. (1989). A sufficient condition for the termination of the direct sum of term rewriting systems.
In: Proc. of 4th IEEE Symposium on Logic in Computer Science, Pacific Grove, 396-401.

NASH-WILLIAMS, C.St.J.A. (1963). On well-quasi-ordering finite trees. In: Proc. of the Cambridge Philosophical
Society 59 (4), 833-835.

NEDERPELT, R.P. (1973). Strong normalization for a typed lambda calculus with lambda structured types. Ph.D.
Thesis, Eindhoven 1973.

References - page 3

Ten Topics in Term Rewriting - Logic Colloquium 99, Utrecht

NEWMAN, M.H.A. (1942). On theories with a combinatorial definition of “equivalence”. Annals of Math. 43, Nr.2
(1942), 223-243.

NIPKOW, T. (1991). Higher-order critical pairs. In: Proc. of LICS 91 (Sixth Annual Symposium on Logic in
Computer Science), p.342-349, Amsterdam 1991.

NIPKOW, T. & BAADER, F. (1998). Term Rewriting and all that. Cambridge University Press, 1998.
NIPKOW, T. (1992). Orthogonal Higher-Order Rewrite Systems are Confluent. Preprint, TU München.

O’DONNELL, M.J. (1977). Computing in systems described by equations. Springer LNCS 58.

VAN OOSTROM, V. (1994a). Confluence by decreasing diagrams. Theoretical Computer Science 126. p.259-280.

VAN OOSTROM, V. (1994). Confluence for Abstract and Higher-Order Rewriting. Ph.-D. thesis, Vrije
Universiteit, Amsterdam, March 1994.

VAN OOSTROM, V. & VAN RAAMSDONK, F. (1994). WEak orthogonality implies confluence: The higher-
order case. In A. Nerode and Yu. V. Matiyasevich, editors, Proc. third Symp. on Logical Foundations of Computer
Science, Springer LNCS 813, p. 379-392, 1994.

OYAMAGUCHI, M. (1987). The Church-Rosser property for ground term rewriting systems is decidable.
Theoretical Computer Science 49 (1), 1987.

PLAISTED, D.A. (1978). A recursively defined ordering for proving termination of term rewriting systems. Report
R-78-943, Univ. of Illinois, Urbana, IL.

PLOTKIN, G.D. (1977). LCF as a programming language. TCS 5, 223-257.

PvE93] PLASMEIJER, M.J. & VAN EEKELEN, M.C.J.D. (1993). Functional Programming and Parallel Graph
Rewriting. Addison Wesley, 1993.

PRAWITZ, D. (1971). Ideas and results in proof theory. In: Proc. 2nd Scandinavian Logic Symposium (ed. J.E.
Fenstad), North-Holland, 235-307.

PUEL, L. (1986). Using unavoidable sets of trees to generalize Kruskal's theorem. Rapport de Récherche du LIENS
(Laboratoire d'Informatique de l'Ecole Normale Supérieure), Paris. (To appear: J. of Symbolic Computation,
1989.)

VAN RAAMSDONK, F. (1999). Higher-Order Rewriting. In: Proceedings RTA 99, Springer LNCS 1631, p.220-
239.

ROSEN, B.K. (1973). Tree-manipulating systems and Church-Rosser theorems. JACM, Vol.20 (1973), 160-187.

RUSINOWITCH, M. (1987). On termination of the direct sum of term rewriting systems. Information Processing
Letters 26, 65-70.

RUSINOWITCH, M. (1987a). Path of Subterms Ordering and Recursive Decomposition Ordering Revisited. J.
Symbolic Computation (1987) 3, 117-131.

References - page 4

Ten Topics in Term Rewriting - Logic Colloquium 99, Utrecht

SHOENFIELD, J.R. (1967). Mathematical Logic. Addison-Wesley 1967.

SCHMIDT, G. & STRÖHLEIN, T. (1991). Relations and Graphs - Discrete Mathematics for

Computer Scientists. Springer-Verlag, EATCS Monographs on Theoretical Computer Science, 1991

SMORYNSKI, C. (1982). The variety of arboreal experience. The Mathematical Intelligencer, Vol.4, No.4, 182-
189, 1982.

STAPLES, J. (1975). Church-Rosser theorems for replacement systems. In: Algebra and Logic (ed. J. Crosley),
Springer Lecture Notes in Mathematics 450, 291-307.

TOYAMA, Y. (1987). Counterexamples to termination for the direct sum of Term Rewriting Systems. Information
Processing Letters 25, 141-143.

TOYAMA, Y. (1987). On the Church-Rosser property for the direct sum of term rewriting systems. JACM, Vol.34,
No.1, 1987, 128-143.

TOYAMA, Y., KLOP, J.W. & BARENDREGT, H.P. (1989a). Termination for the direct sum of left-linear term

rewriting systems. In: Proc. of 3rd Intern. Conf. on Rewriting Techniques and Applications, Chapel Hill, Springer
LNCS 355, 477-491.

TURNER, D.A. (1979). A new implementation technique for applicative languages. Software Practice and
Experience, Vol.9, 1979, 31-49.

TURNER, D.A. (1985). Miranda: a non-strict functional language with polymorphic types. In J.-P. Jouannaud,
editor, Proceedings of the ACM Conference on Functional Programming Languages and Computer Architecture,
volume 201 of Springer LNCS , p.1-16.

ZANTEMA, H. (1994). Termination of term rewriting: Interpretation and type elimination. J. of Symbolic
Computation, 17:23-50, 1994.

References - page 5

Ten Topics in Term Rewriting - Logic Colloquium 99, Utrecht

