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(i) Automatic sequences [3]. A stream o is called k-automatic if there exists a finite
automaton computing the letter o(1) at index 1 when fed the digits of 1 in base
k. E.g. the Thue-Morse sequence M:

M=0110100101101001 ...

is 2-automatic, obtainable by the automaton in Figure 2, where M(1) is the
number of the final state of the automaton.
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Figure 2: Thue—Morse is 2-automatic.



(ii) Morphic sequences [3, 53] subsume the automatic sequences. A morphic se-
quence is generated from a start word by a morphism (a letter to word sub-
stitution), followed by a letter to letter substitution applied to the limit word.
E.g. M is also obtained by:

0 — 01 1—10

from start word O.
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(iii) Toeplitz words [31, 8]. Let x be a finite word in (L U {?})*. The Toeplitz word
Tx is x* where the places of ‘?" are filled in with T itself. For example for
x = 101? we obtain

x*“=101?1012101?1012101210121017... and
T«=1011101010111011101110101011 .. ..

This stream, henceforth denoted by T, is called the ‘period doubling sequence’.
Also T is morphic.



(iv) Sturmian sequences [3, 6, 51]. Sturmian sequences can be viewed as discretiza-
tion of straight lines  in the plane with a unit grid. Write a 0 whenever
crosses a vertical line of the grid and 1 for every horizontal line.

Thus the Fibonacci sequence:

F=0100101001001010010100100101001001010...

is obtained by the straight line from the origin with slope % with the golden
ratio ¢ ~ 1.618.

F is also morphic, obtained by
0 — 01 10

from start word O.
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CHAPTER 2

Sturmian Words

2.0. Introduction

Sturmian words arc infinitc words over a binary alphabet that have
cxactly n 4 1 factors of length »n for each n > 0. It appears that these
words admit several equivalent definitions, and can even be described
sxplicitly in arithmetic form. This arithmetic description is a bridge
Sctween combinatorics and number theory. Moreover, the definition by
“actors makes Sturmian words define symbolic dynamical systems. The
arst detailed investigations of these words were done from this point of
wiew. Their numcrous properties and equivalent definitions, and also the
“act that the Fibonacci word is Sturmian, have led to a great development,
=ader various terminologies, of the research.

The aim of this chapter is to present basic propcrtics of Sturmian
words and of their transformation by morphisms. The style of exposition
w=lies basically on combinatorial arguments.

The first section is devoted to the proof of the Morse—Hedlund theo-
7=m stating thc cquivalence of Sturmian words with the set of balanced
2peniodic words and the set of mechanical words of irrational slope. Wec
=iso mention several other formulations of mechanical words, such as
motations and cutting sequences. We next give propcrties of the set of
“=ctors of one Sturmian word, such as closure under reversal, the mini.
mality of the associated dynamical system, the fact that the set depends
oaly on the slope, and we give the description of special words.

In the second section, we give a syslematic exposition of standard
sairs and standard words. We prove the characterization by the doublc
salindrome property, describe the connection with Fine and Wilf’s theo-
7=m. Then, standard sequences are introduced to connect standard words
-0 characteristic Sturmian words. The relation to Beatty sequences is in
22 Problems. This section also contains the enumeration formula for
~7ite Sturmian words. It ends with a short description of frequencies.
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sturmian streams
two-distance sequences
Beatty sequences
characteristic sequences
spectra

digitized straight lines
mechanical sequences
cutting sequences
musical sequences



4. Much studied in mathematics, for its implications for number theory, there
is the family of automatic sequences known as Sturmian sequences. The
most famous example here is the Fibonacci sequence F, which is also
a morphic sequence, obtainable by 0 — 01, 1 — 0 from start word 0,
resulting in 01001010.... This sequence F can be rendered in PSF as:

F g(tail(F))
g(0:0) g(o)
g(l:0) g(o)

Quite wondertfully, this sequence can also be obtained in a well-known di-
rect geometrical way (‘rotation sequences’ or ‘cutting sequences’), namely
by intersections with the unit grid in the plane and the straight line from
the origin with slope ¢, with ¢ the golden ratio.

1:
1:

0:
0:
0:



Sturmian Sequence

If a sequence has the property that the block growth function B (n) = n 4 | for all », then itis said to have
minimal block growth, and the sequence is called a Sturmian sequence. An example of this is the

sequence arising from the substitution map
0-01 (1)
10, (2)

yielding (0 - 01 - 010 - 01001 - 01001010 - ..., which gives us the Sturmian sequence
01001010....

Sturm functions are sometimes also said to form a Sturmian sequence.

Jacques Charles Frangois Sturm T - - RN
Born ' .
September 29, 1803 ALK LS AT . \
Geneva \ ) e

Died

December 15, 1855
Paris

Nationality

French

Fields
Mathematics
Institutions

-

Ecole Polytechnique
Known for

Sturm-—Liouville theory
Sturm's theorem
Speed of sound

Notable awards

Légion d'Honneur (1837)

Copley Medal (1840)



http://en.wikipedia.org/wiki/Geneva
http://en.wikipedia.org/wiki/Paris
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/%C3%89cole_Polytechnique
http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_theory
http://en.wikipedia.org/wiki/Sturm%27s_theorem
http://en.wikipedia.org/wiki/Speed_of_sound
http://en.wikipedia.org/wiki/L%C3%A9gion_d%27Honneur
http://en.wikipedia.org/wiki/Copley_Medal

Figure 27 Square lattice and straight line with golden-mean slope 3 generates the rabbit
sequence 10110 . . . . The lower straight line has the silver-mean slope /2 — 1 and generates

another self-similar binary sequence.



0,1 stream is balanced if subwords of the same length have a
number of 1’s that differs at most 1.

stream 1s sturmian if it 1s aperiodic and balanced

morse stream 0110100110010110... is not balanced

fibonacci stream (obtained by morphism 0 -> 01,1 ->0
01001010010010100101001... 1s balanced

there are uncountably many sturmian streams.
They are not closed under diff; e.q. diff fibonacci is not
balanced, being 011000110110001100011



for every finite balanced 0,1 word w there is a
sturmian sequence containing w as factor (subword)

the structure of sturmian morphisms 1s exactly known, they
form the monoid of Sturm and are composed of 3 basic ones.

Question: 1s every sturmian FST morphic?

sturmian streams can be defined as streams on {0,1} with
subword complexity n+1



ExaMpPLE 2.1.6. The height of x = 0100101 is 3, and its slope i1s 3/7.
The word x can be drawn on a grid by representing a O (resp. a 1) as
a horizontal (resp. a diagonal) unit scgment. This gives a polygonal line
from the origin to the point (|x|, h(x)), and the line from the origin to
this point has slope n(x). See Figure 2.1.

Figure 2.1. Height and slope of the word 0100101,
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Figure 2.6. Factor graphs for the Fibonacct word.



An alternative way of specifying T (actually inv(T)) is:
T(n) = (number of 2’s in the prime factorization of n) mod 2

We recently considered a generalization of this scheme as follows. Let P be the set
of prime numbers, and A C P. We define the stream o5 by: o4(n) is the number
of occurrences of factors in A in the prime factorization of n (modulo 2). E.g. for
A = {2,3} we obtain 07 1(90) = 012 3(2-3-3-5) =3 mod 2 = 1. We call such
streams prin-ze-generated; Thus o2 isT,and for A ={p € P|p = 3 (mod 4)} we
obtain D.



(v) Self-generating words [7, 10, 16, 13, 36]. Self-generating words such as the Ko-
lakoski word over the alphabet {1, 2} which is identical to the sequence of its
‘run-lengths’, that is, the length of blocks of equal consecutive symbols:

K =112211212212211211221211212211 %

Kolakoski is the source of many open problems, e.g.: is the density of 1’s in
this sequence %?



(vi) Recurrence equations [54, 11]. Often the sequences in the families above are
expressible by a set of recurrence equations; e.g. for M we have

M(0) =0
M(2n) = M(n)
M2n+1)=1—M(n)

An interesting infinite stream given by Conway is:



Even more general definitions, involving dependencies of stream entries on
previous and even future entries, are the subject of the NWO project LaPro,
mentioned in Section 2.

(vii) Generalized Morse sequences, introduced by Keane [33], an uncountable family
of streams, containing morphic words over {0, 1} where the morphism is of
the form 0 — w, 1 — W for some word w, where W is obtained from w by
flipping zeros and ones. An example is the Mephisto Waltz W, see Table 1.



Thue-Morse M=0:zip, 1(’inv(M),taiI(M))
Zip;, o) = 0’(0) ..... o(n—1):zipy (7, tail" (o))
tail(x: o) =
inv(’O:o)—l inv(o)
inv(1:0)=0:inv(o)
Period doubling T =zip3(wt, T)
wr=1:0:1:wt
Mephisto Waltz W = hy(0: tail(W))
hw(0:0)=0:0:1:hy(0o)
hw(l:0)=1:1:0:hyl(0o)
Kolakoski K=2:2:f(tail(K))
f1(1:0)=1:f2(0)
f1(2:0)=1:1:12(0)
fo(1:0)=2:1(0)
fr(2:0)=2:2:14(0)
Fibonacci F = hg(1:tail(F))
he(1:0)=1:0:hg(0)
he(0:0) = 1:hg(0)
Dragon curve D =zip;,(A,D) [14,1]
A=0:1:A




Generalized Morse sequences (Keane)

Using the notation, we may define the well-known Morse sequence x (see
e.g. [4], [7], [8]) as an infinite “‘product™ of blocks: set b = (01) and x = b x b
X b X +++. In words, this rule says: first write down 01, and then at each
succeeding step write the mirror image of the complete previous production to
the right of the same. The first 32 members of z are

01|10 1001 | 10010110 |1001011001101001 | ... .

Let us denote by {2 the space of two-sided sequences of zeroes and ones, and
by T' the shift transformation on £2. The following results were announced by
S. KAKUTANT in [4]. If the Morse sequence « is continued to the left in a suitable
manner to produce a point of {2, then the orbit closure @, of this point under 7'
is a strictly ergodic subsystem of (2, 7). Furthermore, 7' possesses partly contin-
uous and partly discrete spectrum on @, with respect to the uniquely determined
probability measure on 0, and the group %, of eigenvalues of 7' on @, coincides
with the group of all 2%-th roots of unity.

In this paper we consider the infinite sequences which can be produced by the
above-mentioned method of generating new sequences from old ones. For instance,
if we set b = (00]), then x = b X b X b x ... defines a “ternary” sequence

x = (001 001 110 001 001 11¢ 110 110 001 ...),




[Keab68] M. Keane. Generalized Morse Sequences. Zeitschrift fiir Wahrschein-
lichkeitstheorie und Verwandte Gebiete, 10(4):335-353, 1968.

We investigate Keane words, introduced as recurrent sequences in [Kea68].

Definition 1. Let 2 = {0,1}. For a word x € 2%, we write X for its inverse,
obtained by changing Os into 1s and vice versa. The operation x : 2% x 2 — 2"
is defined by:

ux0=u uxl=u
for all u € 2%, and is extended to 2* x 2*° — 2* by:
WX E =€ Xiao = (U a)[ixo)

forallu e 2%, 0:e 2% and a2

A word u € 2" is called a block if uw = Ov for some non-empty word v € 27,
Let p = uo,uy,uz,... be an infinite sequence of blocks u;. Then, the Keane
word generated by 3, denoted by kg, is defined as the infinite product:

Kg =Up X U] XUp X - (1)



So, the product u x v is formed by concatenation of |v| copies of either u or
its inverse 1, so that |u x v| = |u| - |v|, taking the i-th copy as wif v(i) =0, and as
wifv(i) =1, for 0 <1 < |v| — 1. Note that 0 is the identity element with respect
to the x-operation: 0 x u = u = u x 0. Hence, if u is a block, then u x vis a
proper extension of u.

For Keane words defined by an infinite product u x u x u x --- of a single
block w — uniform Keane words as we call them — there is a simple recursive
definition:

Ku =W X Ky (2)

Now, in order to see that this equation indeed defines an infinite word, define
w™ by ul® = 0and u™*tY = u x ul™. Then, by definition of u being a
block (begins with a 0, has length [u| > 2), larger and larger prefixes stabilize.
Indeed, we observe that ul™ is a proper prefix of w1, for all n € N. Hence,
the solution of the equation (2) is a unique and infinite sequence.

However, orienting the equation (2), and the defining rules for x, from left
to right, does not yield a productive rewrite system. Explain why! But, using a
simple trick, we can find a productive rewrite system for uniform Keane words.
To turn (2) into a productive specification we replace the occurrence of k., in
the right-hand side with (0:tail(k,, )), which is justified because all Keane words
begin with a 0, and obtain:

Ku — u X (0:tail(ky)) (3)



The operation x is left-distributive over word concatenation:
Lemma2. uxvw=(uxv)(uxw),forallu,ve 2 andwe 2%, []
Lemma 3. On finite words, the operation x is associative.

Proof. Let u,v,w € 2*. We prove (u x v) x w = u x (v x w) by induction on
w. The base case w = ¢ is trivial. So let w = aw’ for some a € 2 and W 2%,
Then we get (u X v) x w = ((u X v) X a)((u x v) x W), and u x (v x w) =
ux((vxa)(vxw')) = (ux(vxa))(u x (v x w)) by Lemma 2, and we conclude
by the induction hypothesis for w'. O]

Crazy syntax in the following definition.

Definition 4. Let u = cons,(ap,cons,(ay,...)) be a block. Then the iTRS 7,
is defined by 7,, = (L,,R,) where L,, = {K,,nil, cons,, cons,, , mult;, mult,,,
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THE MORSE AND TOEPLITZ SEQUENCE

morse 1001011001101001
toeplitz 01110101011 101110

toeplitz = diff morse

morse: DOL system | — 10,0 — 01, start |

toeplitz: DOL system | — 10,0 — | I, start |
toeplitz T is defined by
T = 1:zip(inv(T), ones)

I(il I(I)IOIOI 101110

|
olIr1r 10101



Term rewriting does not only allow to specify individual streams, but more-
over facilitates defining operations on streams. One well-known transformation, to
which we return later, is the “first difference operator’ §, for 01-streams o:

d(x:y:0) = (x+y):d(y:0)

where + is addition modulo 2. For example, we have T = §(M), that is, the period
doubling sequence T is the first difference of Thue-Morse M.



Figure 3: From Thue—Morse (M) to the period doubling sequence (T).

31
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mirroring diff matrix yields

again a diff matrix

not eventually periodic
diff matrix of

morse stream




Fibonacci

F = he(1 : tail(F))
heg(1:0)=1:0:hg(o)
he(0:0) =1:hg(o)
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Fingerprint of
Kolakoski stream
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Figure 6: A turtle trajectory for the
Kolakoski sequence K for a prefix of
2 - 10° entries.
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... infamous Kolakoski stream, that verbally can be defined
as the sequence that is equal to its own ‘runlength’ sequence.
This mysterious description needs explanation.

The alphabet in which the sequence is written, is {1,2}.
We could have used 0,1 but for pychological reasons
1,2 is more appropriate. If 111 22 1111 2 111 2222 ...

is some 1,2-sequence, the sequence of its runlengths

is 3,2,4,1,3,4,...; a run is the length of a maximal
subword consisting of identical letters. So the
Kolakoski sequence, described in 1965, is

2211212212211 2...



The Sierpinsky stream S S =Zipg;(Ws, S)
Wg=1:1:0:0:0:0:1:1:Inv(wg)

£
A4

A2 v
S & A A A

Figure 8: Construction of the Sierpiniski triangle.

As far as we know, the Sierpinski stream S does not occur in the literature:
S =110000111001111001 110000110001111000 110000110 ...

The Sierpiriski arrowhead curve is obtained back from S by interpreting its entries
as turtle drawing instructions (turning angle 0 — —mt/3, 1 — 7t/3).



Figure 8: A turtle trajectory for the
Mephisto Waltz, the stream which can
be obtained from the morphism 0 —
001, 1 — 110 on the initial word 0.



spot the difference
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We also give an example showing how significant information can be detected
from a consideration of these ‘fingerprint’ patterns exhibited by the 6-orbits, dis-
played as matrices as in Figures 9, and 10.

Namely, in an experiment it turned out (see Figure 10) that the 6-matrix of the
Sierpinski stream S and the Mephisto Waltz W of Keane [33] are after the first cou-
ple of rows exactly the same. In this way we find that

5%(S) = &3(W)

a curious fact that seems hard to find or guess otherwise, because S and W seem
totally unrelated in their definition. So S ¢ W: thus the graphical analysis yields
information about the degree hierarchy of Section 6.2.

joerg
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This shows M > T. The reverse direction T > M holds as well. So M and T are “twin
brothers’, belonging to the same degree in our hierarchy of streams.

as

-

descending sequence
of degrees

ending sequence
of degrees

prime degree

eventually periodic streams

Figure 4: Uncountable partial order of stream degrees. The darker, countable part consists
of morphic degrees.



two failing experiments to cut the morse diamond
into smaller nontrivial (i.e. not evt periodic) pieces

morse = |001011001101001...

3-morse = |001011001101001...

0/1

1/0

1/0

0/0

W

1/1

morse/3 = [00I011001101001...
=100t itortirtnto..




Speakers: Dimitri Hendriks, Joerg Endrullis, Jan Willem Klop
Title: Classifying streams

Abstract:
In the first part we will give a survey on the landscape of infinite streams, presenting next to the well-known

families such as morphic streams, automatic streams, sturmian streams also some less well-known families,
such as generalized morse streams, streams defined by recurrence relations, and prime-generated streams. In
the second part we present a definition of stream reducibility using FSTs, finite state transducers, leading to an
interesting hierarchy of stream degrees whose structure is largely unexplored. We present some initial
observations, and state our favourite conjecture about our favourite stream.



Transducing streams

We transduce streams using deterministic Mealy automata (DMA).
» output words € > * along the edges

Example

The following automaton computes the diff of a stream:
0/0

Thus it reduces Morse to Toeplitz.

01101001... —1011101...






A A

A
.ev;.
A A A 8

Figure 8: Construction of the Sierpinski triangle.



en heb voor de lol de FST getekend, zie attached.

=
[=)
=

Als pure stream functie is het ook makkelijk:

T~

Ole
/ou: 1100 mfm(0:0:s) = 0:1:mfm(0:s)
i mfm(0:1:s) = 0:0:mfm(1:s)

mfm(1:0:s) = 1:0:mfm(0:s)

mfm(1:1:s) = 1:0:mfm(1:s)

__—

(®

o

of, overkomend de FST:

mfm(0:s) = q1(s)
mfm(1:s) = q2(s)
q1(0:s) = 0:1:q1(s)
ql(1:s) = 0:0:q2(s)
q2(0:s) = 1:0:q1(s)
q2(1:s) = 1:0:q2(s)



time between the pulses. Every time a 1 is read. the clock is synchronized.
However, for a long sequence of Os, clock error accumulates, which may
cause the data to read incorrectly. To counteract this effect the encoded

sequence is required to have no long stretches of Os.
A common coding scheme called modified frequency modulation (MFM)
inserts a () between each two symbols unless they are both Os, in which case

it inserts a 1. For example, the sequence

10100110001
is encoded for storage as

100010010010100101001.

This requires twice the length of the track. but results in fewer read/write

errors. The set of sequences produced by the MFM coding is a sofic system
(Exercise 3.8.3).
There are other considerations for storage devices that impose additional

conditions on the secnences nsed to encode data For examnle the total



Figure 6: A turtle trajectory for the
Kolakoski sequence K for a prefix of
2 - 10© entries.



