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4. Much studied in mathematics, for its implications for number theory, there
is the family of automatic sequences known as Sturmian sequences. The
most famous example here is the Fibonacci sequence F, which is also
a morphic sequence, obtainable by 0 → 01, 1 → 0 from start word 0,
resulting in 01001010 . . .. This sequence F can be rendered in PSF as:

F = 0 : 1 : g(tail(F))

g(0 : σ) = 0 : 1 : g(σ)

g(1 : σ) = 0 : g(σ)

Quite wonderfully, this sequence can also be obtained in a well-known di-
rect geometrical way (‘rotation sequences’ or ‘cutting sequences’), namely
by intersections with the unit grid in the plane and the straight line from
the origin with slope φ, with φ the golden ratio.
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 0,1 stream is balanced if subwords of the same length have a 

number of 1’s that differs at most 1.

 stream is sturmian if it is aperiodic and balanced

 morse stream 0110100110010110... is not balanced

 fibonacci stream (obtained by morphism 0 -> 01, 1 -> 0

01001010010010100101001... is balanced

 there are uncountably many sturmian streams.

They are not closed under diff; e.g. diff fibonacci is not 

balanced, being 011000110110001100011



for every finite balanced 0,1 word w there is a 

sturmian sequence containing w as factor (subword)

the structure of sturmian morphisms is exactly known, they 

form the monoid of Sturm and are composed of 3 basic ones.

Question: is every sturmian FST morphic?

sturmian streams can be defined as streams on {0,1} with 

subword complexity n+1

















Generalized Morse sequences (Keane)
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morse   1001011001101001

toeplitz   101110101011101110

toeplitz = diff morse

morse: DOL system 1 → 10, 0 → 01, start 1

toeplitz: DOL system 1 → 10, 0 → 11, start 1

toeplitz T is defined by

T = 1: zip(inv(T), ones)

101110101011101110
1  0 1  1  1  0  1  0  1 

THE MORSE AND TOEPLITZ SEQUENCE
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eventually periodic

diff matrix of 

   0511 1 0 
ω



not eventually periodic

diff matrix of 

morse stream

mirroring diff matrix yields 
again a diff matrix





Fingerprint of 

Kolakoski stream



... infamous Kolakoski stream, that verbally can be defined 
as the sequence that is equal to its own ‘runlength’ sequence. 
This mysterious description needs explanation. 

The alphabet in which the sequence is written, is {1,2}. 
We could have used 0,1 but for pychological reasons 
1,2 is more appropriate. If 111 22 1111 2 111 2222 ... 
is some 1,2-sequence, the sequence of its runlengths 
is 3,2,4,1,3,4,...; a run is the length of a maximal 
subword consisting of identical letters. So the 
Kolakoski sequence, described in 1965, is

22 11 2 1 22 1 22 11 2...



The Sierpinsky stream S





Mephisto WSierpinski S

spot the difference



S W

diff 2 S = diff 3 W







43

joerg
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morse als D0L systeem

regels 1 → 10, 0 → 01, 

startwoord 1

1

10

10  01

10 01 01 10

10 01 01 10 01 10 10 01

morphic sequence
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Abstract: 

In the first part we will give a survey on the landscape of infinite streams, presenting next to the well-known 

families such as morphic streams, automatic streams, sturmian streams also some less well-known families, 

such as generalized morse streams, streams defined by recurrence relations, and prime-generated streams. In 

the second part we present a definition of stream reducibility using FSTs, finite state transducers, leading to an 

interesting hierarchy of stream degrees whose structure is largely unexplored. We present some initial 

observations, and state our favourite conjecture about our favourite stream. 



Transducing streams

We transduce streams using deterministic Mealy automata (DMA).

! output words ∈ Σ
∗ along the edges

Example

The following automaton computes the diff of a stream:

1

0

2

0|ε

1|ε

0|0

1|10|1

1|0

Thus it reduces Morse to Toeplitz.

01101001 . . . → 1011101 . . .







q1

q0

q2

0|ε

1|ε

0|01

1|000|10

1|10

en heb voor de lol de FST getekend, zie attached.

Als pure stream functie is het ook makkelijk:

mfm(0:0:s) = 0:1:mfm(0:s)

mfm(0:1:s) = 0:0:mfm(1:s)

mfm(1:0:s) = 1:0:mfm(0:s)

mfm(1:1:s) = 1:0:mfm(1:s)

of, overkomend de FST:

mfm(0:s) = q1(s)

mfm(1:s) = q2(s)

q1(0:s) = 0:1:q1(s)

q1(1:s) = 0:0:q2(s)

q2(0:s) = 1:0:q1(s)

q2(1:s) = 1:0:q2(s)






