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x+ y = y+ x

x+(y+ z) = (x+ y)+ z

x+ x = x

(x+ y) · z = x · z+ y · z
(x · y) · z = x · (y · z)

Table 1: BPA (Basic Process Algebra)

Modular structure of ACP
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Terminating stack
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Sλ = push(0).S0 + push(1).S 1

Sdσ = push(0).S0dσ + push(1).S 1dσ + pop(d).Sσ

(voor d = 0 of d = 1, en elke string σ)

infinite guarded BPA specification

    S = T.S

    T = push(0).T0 + push(1).T1

   T0 = pop(0) + T.T0

    T1 = pop(1) + T.T1

finite guarded BPA specification

Stack needs a terminating Stack for its definition
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The left merge is an auxiliary operator necessary for a 

finite axiomatization of merge.
 

Every process which is recursively defined in PA and has 

an infinite trace, has an eventually periodic trace.

PA has unique prime decomposition:

p = p1 ||... || pn

unique modulo permutation of ‘parallel primes’
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RN1 ρf (v) = f(v)

RN2 ρf (δ) = δ

RN3 ρf (x + y) = ρf (x) + ρf (y)

RN4 ρf (x · y) = ρf (x) · ρf (y)

BPA

δ
PA

communication

abstraction

renaming

priority

state

ready/
failure

time

abstraction rulerenaming axioms

renaming can be performed 
by communication
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ACP


 (D1)
 ∂H(a) = a
 if a ∉  H


 (D2)
 ∂H(a) = δ
 if a ∈  H


 (D3)
 ∂H(x + y) = ∂H(x) + ∂H(y)


 (D4)
 ∂H(x . y) = ∂H (x) . ∂H(y)

encapsulation operator

(C1)
 a|b = γ(a, b) if γ(a,b) 


 
 
 
 
 defined, 

else δ
 
 


(C2)
 (a|b)|c = a|(b|c)

(C3)
 δ|a = δ

communication on atoms

LL

LLLL

LL


 (CM1)
x || y = x  y + y  x + x|y


 (CM2)
a  x = a.x


 (CM3)
ax  y = a(x || y)


 (CM4)
(x + y)  z = x   z + y    z


 (CM5)
ax|b = (a|b)x


 (CM6)
a|bx = (a|b)x


 (CM7)
ax|by = (a|b)(x || y)


 (CM8)
(x + y)|z = x|z + y|z


 (CM9)
x|(y + z) = x|y + x|z

LL

LL LL

communication merge


 (A6) 
 x + δ = x
 
 



 (A7) 
 δ.x = δ


deadlock


 (A1) 
 x + y = y + x
 
 



 (A2) 
 x + (y + z) = (x + y) + z



 (A3) 
 x + x = x
 
 



 (A4) 
 (x + y) . z = x.z + y.z
 



 (A5) 
 x.(y.z) = (x.y).z

basic process algebra



PA

BPA

ACP

ACPτ

Stack

Bag

Queue

Turing machine

Modular structure of ACP

BPA

δ
PA

communication

abstraction

renaming

priority

state

ready/
failure

time

abstraction rule
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Thue-Morse sequence:

M =1001  0110   01101001   0110100110010110 ...
M =1001  0110   01101001   0110100110010110 ...

M = zip M inv(M)
M = 1:0:zip(tail(M), inv(tail(M))

M can be defined in ACP with renaming, or in ACP with 

ternary communication. With binary communication?

M cannot be defined in PA, since its one single trace is not 

eventually periodic.

Difference in expressiveness between PA and ACP



Bergstra-Tiuryn:

Queue cannot be defined in ACP with handshaking 
communication 

- but it can in ACP with renaming, 

- or in ACP with ternary communication

13

 The process BAG cannot be defined in BPA.



QUEUE
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Q
r1(d) s2(d)

Z

s3(d) | r3(d) = c3(d)

ρs2→s3 ρc3→s2

s3(d) c3(d)

Q = Σd∈D r1(d)(ρc3→s2 o ∂H)(ρs2→s3(Q)|| s2(d).Z)                                                

Z = Σd∈D r3(d).Z

actions: 
 
 
 
 
 r1(d), s2(d)
auxiliary actions: 
 r3(d),  s3(d), c3(d) 
communication: 
 
 r3(d) | s3(d) = c3(d)
ρs2 → s3 renaming:
 
 s2(d) → s3(d)
ρc3 →s2 renaming: 
 c3(d) → s2(d) 

encapsulation: 
 
 H = {s3(d), r3(d) | d ∈ D}

guard

18
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finite degree

a a a

d

c c c

b b b

c

no

yes

Z AZ AAZ AAAZ

DAAZDAZDZD

a a a

bbb

c c c c

d d d d

↔
bisimilar to



21

canonical

450 

Here we need the fundamental notion of D. PARK (see [13D, called bisimulation equivalence or 
bisimilarity. Two graphs g and h are bisimilar if there is a matching between their nodes (i.e. a 
binary relation with domain the set of nodes of g, and codomain the set of nodes of h) such that 
(1) the roots are matched; (2) ff nodes s,t in g,h respectively are matched and an a-step is possi- 
ble from s to some s' then in h an a-step is possible from t to some t' such that s' and t' again 
are matched ; O) likewise with the roles of g,h reversed. A matching satisfying (1-3) is a bisimu- 
lation. An example is given in Figure 2, where (part of) the matching is explicitly displayed; 

another example is given in Figure 3 where the matching is between each pair of nodes on the 
same horizontal level. 

og° !,° 

)b 

FmVgE 2 

g . "  

a 

c b 

a d 

(a) 

C C 

a d 

Fmvv~ 3 

We use the notation ge~h to express that g and h are bisimilar. Now one proves that e~ is not 

only an equivalence on G, but even a congruence on 8. Thus the quotient G=~/'--* is well- 

defined, and it is a model of BPA. (6 has constants a = a / ~  etc., and operations +,- defined 

by g+h=(g+h) / '~  for g = g / ~  and h=h/-~'>; likewise for .. (For typographical reasons we 
will not distinguish between the syntactic +,- and the semantic + ,. in our notation.) 

Even more, G is a very nice model of BPA: all systems of recursion equations in the syntax 

yes no
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normed
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In, Out

In(s, 4) Out(s, 4)
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infinite connected component (icc)
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Out(r,  6) is a not connected graph with 5 icc’s
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x+ y = y+ x

x+(y+ z) = (x+ y)+ z

x+ x = x

(x+ y) · z = x · z+ y · z
(x · y) · z = x · (y · z)

Table 1: BPA (Basic Process Algebra)

why is BPA interesting?



S → aB | bA

          A →a | aS | bAA

B → b | bS | aBB

context-free grammar in standard form (Greibach 

normal form)

S = aB + bA
A = a + aS + bAA
B = b + bS + aBB

guarded nonlinear recursion system over BPA

language equality undecidable

process equality decidable27
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Sλ = 0·S0 +1·S1
Sdσ = 0·S0dσ +1·S1dσ +d·Sσ

(for d = 0 or d = 1, and any string σ )

S = T·S
T = 0·T0 +1·T1
T0 = 0+T·T0
T1 = 1+T·T1

Table 2: Stack, an infinite linear and a finite non-linear BPA-specification

00 0
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1111
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0 0

0 00 0
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1

1111

1

Figure 1: Tree-like periodic

Stack

periodicity!
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 X = bY + dZ


 
 Y = b + bX + dYY


 
 Z = d + dX + bZZ.

context free language of words

with just as many b’s as d’s

KITE

normed
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 X = a + bY + fXY


 
 Y = cX + dZ


 
 Z = gX + eXZ.

0

1

2

3

4

5

6

7

a

f

g
c

b

a

d
e a

X = a + bU 

U = cX + dZX 

Y = c + dZ 

Z = aY + bUY

RAILS

BUTTERFLY

normed



fragment structure of kites

α

β γ
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TEMPLE

surprise! not linear 

or exponential density 



fragment structure of  TEMPLE

β

α
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equivalent notations

system of BPA equations

process rewrite system
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Theorem (BBK 1986)

(i) BPA graphs have a periodic decomposition

(ii) normed BPA graphs have decidable equality

Theorem (Hüttel, Stirling)

All BPA graphs have decidable equality

Theorem (Caucal 1990)

The class of normed BPA graphs is closed 

under minimization.

NB (BCS)

normed is necessary here

NB (Caucal)

the reverse of (i) fails: a graph with periodic 

decomposition need not be a BPA graph.





ZXYX

XYX

ε

interpolation
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b
b

bb

b b

b

bb

b b

a

a

a

a

a

a

d

d

d

d

d

d

c

c

c

c

c

c

TOWER

XYX

XYX

ZXYX

periodically

decomposable, 

still not a BPA 

graph



Z AZ AAZ AAAZ

DAAZDAZDZD

a a a

bbb

c c c c

d d d d

a a a

d

c c c

b b b

c

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.

The (obvious) link between CFG’s and BPA-definable processes was first mentioned in

Z = aAZ + cD

A = aAA + cD + b

D = dD

not normed !

G is BPA-graph ⇒ G is BPA-definable,

not v.v.



B =  0(0 || B) + 1(1 || B)

40BAG
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class-room question:

is this graph a BPA-graph?

canonical, not normed



42

triangle

BPA graph?

L = {anbncn}, not a CFL
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0

1

2

3

4

5

6

7

a

f

g
c

b

a

d
e a

linear density

exponential

density λn. #In(r, n, G)

NB: density is uniform
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connectivity:    limn→∞ # icc’s of Out(r, n, G)
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connectivity: number of ways to infinity



47

two equivalent ways to infinity 
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two non-equivalent ways to infinity: c = 2
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density = exponential

connectivity = 1



connectivity versus density for BPA graphs

c

d
const linear polynom exponen

0

n > 0

∞

queuebag

rings

triangle

temple stack

kites

butterfly

rails

tower
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Corollary 2.3. The possible connectivity-density value pairs 〈c,d〉 for context-
free graphs (in the sense of Muller and Schupp) are described by Table 1.

Corollary 2.4. The possible connectivity-density value pairs 〈c,d〉 or regular
graphs (rooted pattern graphs) of finite degree are also described by Table 1.

BasClemens
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Hans Freudenthal

1905- 1990

Lincos;: Design of a language for 
cosmic intercourse (Studies in logic 
and the foundations of 
mathematics) 

Mathematics as an 
Educational Task 
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THEOREM

 Let G be a normed canonical graph of finite degree

that is not a BPA-graph.

   Then G is not BPA-definable.

PROOF. Let G be a normed canonical graph of finite 

degree that is not a BPA-graph. Suppose G is BPA-

definable. That is, for some BPA-graph G’: G ↔ G’.

Then G’ is also normed and of finite degree. And 

can(G’) = G. So can(G’) is not a BPA-graph. However, 

by Caucal’s theorem can (G’) is again a BPA-graph.

Contradiction. Hence  G is not BPA-definable.
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THEOREM

 Let G be a normed canonical graph of finite degree

that is not a BPA-graph.

   Then G is not BPA-definable.

TRIANGLE, tBAG, Tower
are not even BPA-definable

APPLICATION.

b
b

bb

b b

b

bb

b b

a

a

a

a

a

a

d

d

d

d

d

d

c

c

c

c

c

c



How to show for unnormed graphs that they are 

not BPA-definable?

Burkart, Caucal, Steffen: if g is a BPA graph,

can(g) is a pattern graph

Caucal: pattern graphs of finite degree are 

context free graphs a la Muller and Schupp

56

pattern graph = 

context free graph = 

graph with periodical decomposition



 Let G be a canonical graph of finite degree without 

periodic decomposition.

    Then G is not BPA-definable.

THEOREM (Corollary of BCS) 
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APPLICATION.

bag, rings, queue are not even BPA-definable

hmmm... 

easy to see, 

hard to prove 

PROOF. Let G be a canonical graph of finite degree without period. 

decomp. Suppose G is BPA-definable. That is, for some BPA-graph G’: G 

↔ G’. Then can(G’) = G is by BCS a pattern graph = graph with period. 

decomp. Contradiction. Hence  G is not BPA-definable.
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Why does BAG not have a p.d. like TEMPLE?

Unwinding the fragment structure graph we obtain infinite 

branches of connected fragments. In a BPA graph (so with 

p.d.), these branches are eventually separated (far apart).

In the chess-board tiling of BAG with identical fragments, 

this separation does not take place.

Actually, we rather use the equivalent criterion context free 

of Muller and Schupp. It is fairly easy to show that BAG is 

not c.f.

hmmm... 

easy to see, 

hard to prove 



 Let G be a canonical graph such that:

 The number of non-bisimilar 

frontier points in Out(r,n, G) 

tends to infinity, with increasing n.

(frontier points in Out(r,n, G) are points with 

distance just n of the root r) 

Then G is not BPA-definable.

FRONTIER THEOREM (a la Muller-Schupp)
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COROLLARY.

bag, rings, queue are not even BPA-definable
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α

β

γ

frontier points α, β,  γ  not bisimilar in 

remainder graph
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