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abstraction rule

abstraction
priority
XTY =YX
x+(y+z) = (x+y)+z
XTX — X

Table 1: BPA (Basic Process Algebra)

Modular structure of ACP



Sy, = push(0).Sg + push(1).S ; S=T.5
Sdo = push(0).Sodo + push(1).S 1do + pop(d).S o T'=push(0).To + push(l). T
(voor d =0 of d = 1, en elke string o) To = pop(0) + T.To

infinite quarded BPA specification Ty =pop(l) + T.T

Y finite quarded BPA specification

Stack




Table 1. BPA (Basic Process Algebra), left, and PA (Process Algebra), on the right

e B =Y+ T

T+ (g -+ 2) = (T+y)+2
T+ = Yy+& i ) o = &
r+(y+z)=(z+y)+=2 (t4y) 2 =z-2+y-2
T+ x (z-y)-z2 =z-(y-2)
(z+y)z2 =z-2+y-2 x|y zll ytyl =
(x-y)-z =x-(y-2) al| = a-x

azly =a-(z|y)

(z+y)|| z==z| z2+y]| =




The left merge is an auxiliary operator necessary for a
finite axiomatization of merge.

Every process which 1s recursively defined in PA and has
an infinite trace, has an eventually periodic trace.

PA has unique prime decomposition:

P =P1 1l... |l Pn

unique modulo permutation of ‘parallel primes’



RN1 prv) = f(v)

RN?2 pr(0) = 0

RN3  prlz+y) = pslx)+ps(y)
RN4 pr(z-y) = pg(@) pry)

renaming axioms

renaming can be performed
by communication




(Al) x+y=y+xXx
(A2) x+(y+z2)=x+y)+z
(A3) xX+x=X
(Ad) (x+y).z=xz+Yyz
(AS) x.(y.z)=(xy).z
basic process algebra
(A6) x+0=x
(A7) 0.x=0

deadlock

(C1) alb=x(a,b)ify(a,b)
defined,
else

(C2) (alb)lc = al(blc)
(C3) odla=0o

communication on atoms

(CMD) xlly=xLy +yLx + xly

(CM2)alx =a.x
(CM3) axlLy = a(x Il y)
(CM4) (x+y)lz=xlLz+yl z
(CM5) axlb = (alb)x
(CM6) albx = (alb)x
(CM7) axlby = (alb)(x Il y)
(CM8) x +y)lz=xlz + ylz
(CMI) xl(y + z) =xly + xlz
communication merge

(D1) ou(a)=a ifaE H
(D2) odu(a)=0 ifae H

(D3)  du(x +y) = ou(x) + du(y)
(D4)  du(x.y)=0u (X) . du(y)

encapsulation operator

ACP



Turing machine

Queue

Bag

Stack

abstraction rule

abstraction

Modular structure of ACP




Difference in expressiveness between PA and ACP

Thue-Morse sequence:

M =100l OIlO OI10I00I OIIOIOOI10010110 ..
M=I1001 OIlO OIl10I0O0I OIIOI00OI10010110 ...

M = zip M inv(M)
M = 1:0:zip(tail(M), inv(tail(M))

M can be defined in ACP with renaming, or in ACP with
ternary communication. With binary communication?

M cannot be defined in PA, since its one single trace is not
eventually periodic.



The process BAG cannot be defined in BPA.

Bergstra-Tiuryn:

Queue cannot be defined in ACP with handshaking
communication

- but it can in ACP with renaming,

- or in ACP with ternary communication
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Table 4. Queue, infinite BPA-specification

Q=Q\= Zdeﬂ ri(d) - Qq
chd —_ F:'E[d} . ch T ZEED ' (E,‘:I ) Ege-:rd
(ford € D, and o € D)




Fig. 9. The canonical process graph QUEUE of Queue
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Table 5. Queue, finite ACP-specification with renaming

Q= X sep r1(d) (Pes—sa © 011 (Pra—ss (Q) [ 52(d) - Z)
Z= zdeﬂ 1‘3({:1) - Z




guard
Q = 24ep FI(d)(Pc3—52 0 IH)(Ps2—53 (Q)l 52(d).Z)

Z =24ep 1r3(d).Z

rl(d) s2(d)

Ps2—s3 Pc3—s2
actions: r1(d), s2(d)
auxiliary actions:  r3(d), s3(d), c3(d)

communication: r3(d) | s3(d) = c3(d) s3(d) —> c3(d)
ing: s2(d) — s3(d)

Ps2 - 53 TENaming;:
Pe3 -2 Tenaming: c3(d) — 52(d) s3(d) I r3(d) = c3(d)
encapsulation: H={s3(d), r3(d) | d €D} 18
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finite degree

yes

no
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canonical

1/es
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normed

1o
Terminating stack * 0
0 yes
o 1 -
0,/ 0,/
NS 6 N\
052 () () ()



In, Out

In(s, 4) Out(s, 4)
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infinite connected component (icc)

24



Out(r, 6)is a not connected graph with 5 icc’s
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context-free grammar in standard form (Greibach
normal form)

S—=aB | bA

A —al aS | bAA
B—Db | bS | aBB

language equality undecidable

quarded nonlinear recursion system over BPA

S=aB + bA

A=a+aS+DbAA

B=Db+DbS + aBB
process equality decidable




S=T-S

Sﬂ, :OS() ‘|‘181 T:OTO —|—1T1
Sdc — O‘SOdG ‘|‘1'Sld6 ‘|‘Q'SG L
(ford =0 or d = 1, and any string 0) To=0+T-To
ST A e T = I+TT,
—
Table 2: Stack, an infinite linear and a finite n S
periodicity!

STACK
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X =bY +dZ

Y =b +bX +dYY S

Z:d+dX+bZZ KITE :

context free language of words
with just as many b’s as d’s
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normed

d
. X =a+bU X =a+bY + XY
U=cX+dZX Y=cX+dZ
Y=c+dZ Z =¢gX + eXZ.

Z =aY +bUY

30



fragment structure of KITES




(A|A=a+bAB,B=a+bBC, C=a)

my.. ...

TEMPLE

d a a 9 3
d a a ¥ . 5
b a b
d il
a b a b
a X a ¥
. , . |‘i_q i %
surprise! not linear s —
or exponential density a b a b
0w o2 &
a b a b
d ¥ a ¥
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fragment structure of TEMPLE

b el b s b o b ok

a r, a . a
b a b a b
d a a
a b a b

a b a b
a ¥ a ¥ a ¥ a ¥
-fi-q—lf:' [ P | ('i-q—l:' (i-q—l:"

a b a b a b a b
E..H_E %..H_E E"a—‘; E..a_(_!

a b a b a b a b
a ¥ a ¥ a ¥ a ¥

Fig. 2. The labeled transition graph TEMPLE



equivalent notations

system of BPA equations
(A| A=a+bAB,B=a+ bBC(C, C=a)

process rewrite system

R={A%X\ A% AB, B2\, B2 BC, C3% ).
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Theorem (BBK 1986)
(1) BPA graphs have a periodic decomposition
(i1) normed BPA graphs have decidable equality

Theorem (Hiittel, Stirling)
All BPA graphs have decidable equality

Theorem (Caucal 1990)
The class of normed BPA graphs is closed
under minimization.

NB (BCS)
normed is necessary here

NB (Caucal)
the reverse of (i) fails: a graph with periodic
decomposition need not be a BPA graph.
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(X =a+b,U=cX+dZX,YV=c+dZ, Z =al¥ + bYU}.




ZXYX
interpolation




periodically
decomposable,
still not a BPA

qraph

XYX

IXYX
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Z =aAZ + cD
A=aAA+cD+Db
D=dD

G is BPA-graph = (G is BPA-definable,
not v.0.

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.



B= 00! B)+ (LIl B)

0 0 0
.

ID 0 0
i 1|1 It 1|1
0 0 0

-
IU 0 0
‘U—/L_
0 0 0
1| |1 1|1 E |1 1|1
Y o ¥ o Y o
0 0 0

Figure 5: The process Bag.
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class-room question:
1s this graph a BPA-graph?

\"o b - b 72\\ b | ?:.\. b ?’QT

LIS

Fig. 8. The labeled transition graph RINGS

—_ =
'—\-..+_..-.4—"
fa b}
m
——l—
-—-.*.,-

canonical, not normed
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Ao N PP

BPA graph?
L = {a"b"c"}, not a CFL

42
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density An. #In(r, n, G)

exponential
linear density

44



connectivity: limp—« # icc’s of Out(r, n, G)

Fig. 7. Determining the connectivity of the graph TEMPLE
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connectivity: number of ways to infinity

Fig. 2. The labeled transition graph TEMPLE
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two equivalent ways to infinity

47



™~

two non-equivalent ways to infinity: ¢ = 2
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density = exponential
connectivity =1

(e
(L \\1
0 \\
CL)
1
1
1
) e, o)
1] 1] X.‘L

) ot o

x _ « : a‘gi 1

Fig. 9. The canonical process graph QUEUE of Queue



connectivity versus density for BPA graphs

d

const

linear polynom | exponen

RAILS BAG QUEUE
TOWER NIN@S
TRIANGLE

TEMPLE STACK
KITES

BUTTERFLY



Bas

Corollary 2.3. The possible connectivity-density value pairs (c,d) for context-
free graphs (in the sense of Muller and Schupp) are described by Table 1.

Corollary 2.4. The possible connectivity-density value pairs (c,d) or reqular
graphs (rooted pattern graphs) of finite degree are also described by Table 1.
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Hans Freudenthal

Lincos;: Design of a language for
cosmic intercourse (Studies in logicbi k
and the foundations of

mathematics) > .r""f

Mathematics as an
Educational Task

Uber die Enden topologischer Riume und Gruppen.

Yon

Hans Freudenthal in Laren (Nordhﬂland).

- Obzwar die Eigenschaften im Kleinen einer Lieschen kontinuierlichen
Gruppe in hohem Mafle ihre Eigenschaften im GroBen bestimmen, leistet
die Liesche Theorie doch wenig fiir die Erkenntnis dieser Eigenschaften.
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THEOREM

Let G be a normed canonical graph of finite degree

that is not a BPA-graph.
Then G is not BPA-definable.

PROQOF. Let G be a normed canonical graph of finite
degree that 1s not a BPA-graph. Suppose G is BPA-
definable. That 1s, for some BPA-graph G": G = @G’
Then G’ is also normed and of finite degree. And
can(G’) = G. So can(G’) 1s not a BPA-graph. However,
by Caucal’s theorem can (G’) is again a BPA-graph.
Contradiction. Hence G is not BPA-definable.

54



THEOREM

Let G be a normed canonical graph of finite degree

that is not a BPA-graph.
Then G 1s not BPA-definable.

APPLICATION.

TRIANGLE, TBAG, TOWER
are not even BPA-definable

55
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How to show for unnormed graphs that they are
not BPA-definable?

Burkart, Caucal, Steffen: if ¢ i1s a BPA graph,
can(g) 1s a pattern graph

Caucal: pattern graphs of finite deqree are
context free graphs a la Muller and Schupp

pattern graph =
context free graph =
graph with periodical decomposition

56



THEOREM (Corollary of BCS)

Let G be a canonical graph of finite degree without

periodic decomposition.

Then G is not BPA-definable.

PROOFE. Let G be a canonical graph of finite degree without period.
decomp. Suppose G is BPA-definable. That is, for some BPA-graph G': G
<> G'. Then can(G’) = G is by BCS a pattern graph = graph with period.
decomp. Contradiction. Hence G is not BPA-definable.

APPLICATION.

hmmm...
easy to see,
hard to prove

BAG, RINGS, QUEUE are not even BPAde ﬁmble

.f \
§s
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hmmm...
easy to see,
hard to prove

Why does BAG not have a p.d. like TEMPLE?

Unwinding the fragment structure graph we obtain infinite
branches of connected fragments. In a BPA graph (so with
p.d.), these branches are eventually separated (far apart).

In the chess-board tiling of BAG with identical fragments,
this separation does not take place.

Actually, we rather use the equivalent criterion context free

of Muller and Schupp. It 1s fairly easy to show that BAG is
not c.f.
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FRONTIER THEOREM (a la Muller-Schupp)

Let G be a canonical graph such that:

The number of non-bisimilar
frontier points in Out(r,n, G)

tends to infinity, with increasing n. T

Cra——lyg e e
(frontier points in Out(r,n, G) are points with O
distance just n of the root r) R

Then G is not BPA-definable.

o

COROLLARY. Whes=====sSAW
BAG, RINGS, QUEUE are not even BPA- deﬁnable
; RIS




frontier points ., B, y not bisimilar in
remainder graph
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