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O. A FEW WORDS ON HISTORY
1. REWRITING DICTIONARY
2. TWO THEOREMS IN ABSTRACT REWRITING

3. WORD REWRITING: MONOIDS AND BRAIDS

TEA, COFFEE

4. TERM REWRITING: DIVIDE ET IMPERA; TERMINATION BY STARS
>. LAMBDA CALCULUS AND COMBINATORY LOGIC

6. INFINITARY REWRITING
TEA, COFFEE

7.INFINITARY LAMBDA CALCULUS AND THE THREEFOLD PATH
8.CLOCKED SEMANTICS OF LAMBDA CALCULUS

9.STREAMS RUNNING FOREVER



O. A FEW WORDS ON HISTORY :

Foundations of Logic and Mathematics

I 1900
Theory of Types
) . . | 1920
S 0 m e h ZS tO rl Cal lln eS oo / Lamlada Calculus, Combinatory Logic
1930
Typed Lambda Calculi Turing Machines
/1940
SRSS Formalisation of Computability:

Recursive Functions, Recursion Theory

7

Algebraic Specifications,
Abstract Data Types

/

Term Rewriting Systems (TRSs) | 1970

I

Higher-order TRSs

Functional Programming 1978
1960-1980
Type Theory, Infinite Objects
Theorem Provers,
Proof Assistants Communicating Processes,
(Automath, Coq,...) Process Algebra, CCS, CSP,
1960—1980 ACP, m-calculus, Bigraphs
Coalgebraic Techniques,
Formalization and Verifi- Data & Codata,
cation of Mathematics Recursion & Corecursion
2000 1980
Infinitary TRSs, infinitary Lambda Calculus
I 1990
3 Infinite Sequences, Productivity of Streams

1995-2005
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capita that we would like to E\RS_ ]
d ZS CUSS Decreasing Diagrams

SRS, TRS:
WP, CPC, Modularity

l

termination:
(RPO) ILPO

PML, CR, strategies

l

infinitary rewriting: infinitary rewriting:
iTRSs infinitary lambda calculus

orthogonal rewriting: ]

higher-order rewriting:
CRSs streams:
0110 1001 1001 0110

infinitary higher-order
5 rewriting: iCRSs
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An ARS

The famous Collatz ARS: 3n+1-problem
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1. REWRITING DICTIONARY

b N WCR, weakly

N, normal form ¢ Church-Rosser
/:/b \d/
v
\Cl
g reduction cycle; .
¢ loop if one step ¥ u CR, Church-Rosser
P, " ¥
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o/ \B commiiti
b o/ \C ing
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N, property \ /
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‘s )iq . SN, strongly
X normalizing;terminating; noetherian

¥\« NF, normal form property

“.. \
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ni = 12
nfa_ N \4 UN=, unique normal

Tt nf b form property wrt = UN™, unique

—
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UN—& SN = CR

7N\
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CR = WCR, but not WCR = CR

(i)




shortest proof of Newman’s Lemma:
WCR & SN = CR

WCR & SN = UN—~ & SN = CR

Call a point bad if it reduces to two
different nf’s.

a
/ \Fjg. 3.7: Max Newman, 1897-1984.
A bad point a has a bad one step
d

C
reduct, b or c. /
Hence by SN there are no bad
points, i.e. UN~ holds.

4 4 normal forms



Conception: Alonzo Church 1.1

Supervisor Oswald Veblen

Suggested topic  find an algorithm for the genus
of a manifold {Z€ K" | p(Z) = 0}
(e.g. K =R, n=23)

Sswe

1 2
Church (1903-1995) Church could not do it
Studying mathematics at  Started to wonder what computability is after all
Princeton 1922 or 1924 Invented lambda calculus

Formulated Church's Thesis:
Given a function f: N¥F 5N

Then f is computable iff f is lambda definable

HB Lambda calculus and its view on infinity St. Andrews, 15.06.2012



sophisticated multiset proof of Newman's Lemma:
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completed reduction diagrams
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failed reduction diagrams

2 2 2
1
! 1
1
2 2 0
1
| 1 1
1 2 2 2—2
X 2 2|1 1 1 1
1
2 2 2 222 2 2 1
2
1 -
2 2 2 4
1 7
r
1 1?
2) 1
2
1 1
2 2
L




another failure
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and one more




speaking for itself

WCR=!

l

CR™ «<—» CR —» NF —» UN —» UN™

\—&

wCR & SN ———9» WN
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a vector addition system: indexed ARS




!
!>—>o—>cv>

e.d. splitting in
both directions

(a)

(b)

Va,b,c € Add,e,fe Alc+—a—b=c
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strong conﬂuence

(a) (b)

1.2.1. EXAMPLE. 1.2.2. DEFINITION. For an ARS A = (A, —) we define: —
is strongly confluent if

Va,b,ce Adde€e A(b+—a—c=c—»d«" D)

(See Figure 1.9(a)) (Here «—= is the reflexive closure of «-, so b —= d is zero
or one step.)

1.2.3. LEMMA. (Huet [80]). Let A be strongly confluent. Then A is CR.

25
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Is tiling succesful?  YES!
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Dick de Bruijn

AUTOMATH
ARCHIVE

Institute in Nijmegen and the Formal Methods section of
Eindhoven University of Technology. Started by prof. H.
Barendregt, in cooperation with Rob Nederpelt, this archive
project was launched to digitize valuable historical articles and
other documentation concerning the Automath project.

Initiated by prof. N.G. de Bruijn, the project Automath (1967
until the early 80’s) aimed at designing a language for
expressing complete mathematical theories in such a way that a
computer can verify the correctness. This project can be seen as
the predecessor of type theoretical proof assistants such as the
well known Nuprl and Coq. 29
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A note on weak diamond properties.

|.Introduction. Let S be a set with a binary relation >. We assume it

to satisfy x > x for all xe S. We are interested in establishing a
property CR (named after its relevance for the Church-Rosser theorem
of lambda calculus, cf. [1]). We say that x ~y if x > y or y > x. We

* . . P .
say that x > y if there is a finite sequence X X with x=x_, > X >

I 1 2

> eev> X =Y, and also if x=y. We say that (S,>) satisfies CR if for any
sequence X, ,...,X with

. . *
there exist an element xe¢ S with both x] >z and Xn 5* zZ.

It is usual to say that (S,>) has the diamond property (DP) if

for all x,y,z with x > y, x > z there exists a w with y > w, z > w.

This is depicted in the following diagram:

30



This example also shows that CR neither follows from WDP2 where WDP2

is slightly stronger than WDP, and says:"if x > y and x > z then w exists

1
* *
such that y > w and z > w and at least one of y > w and z > w''. Stronger

. . . . *
again 1s WDP expressing:"if x > y and x > z then w exists such that y > w

3’
and z > w.'" This WDP3 does imply CR. Actually WDP3

implies WDPA, which says:
, * * ) ; * * .
"if x > y and x > z then w exists such that bothi y > w and z > w." This

WDP4 1s the DP for (S, >*), and therefore implies CR for (S,>* ), and that

is the same thing as CR for (S, >). The derivation of WDP4 from WDP3 is

illustrated by the following picture (cf. [2Y p. 59) which speaks for itself:

X

In this note we go considerably further. Instead of having just one
relation > we consider a set of relations > where m is taken from an index
set M. The idea behind this is that in the Church-Rosser theorem the relations
represent lambda calculus reductions; there may be reductions of various types,
and diamond properties may depend on these types. It 1s our purpose to establish

weak diamond properties which guarantee CR (where CR has to be interpreted as in

section 4.

31



5. The basic diamond properties. If meM, the diamond property Dl(m) 1s

defined by the following diagram.
m m
Dl(m):

m+

This has to be read as follows (and further diagrams have to be inter-
preted analogously: If x,y,z are such that x >, Y X >n Zs then u,v,w exist

such that

Y e Wo 2> u> Vo> W

(so on the left we have a chain from y to w with all links < m; on the right

we have a chain from z to w with all links < m but with at most one = m).

32



Dz(m,k):

6. Some auxiliary diamond properties. We intend to show that Dl(m) and

Dz(m,k) (for all m,k with k <m) lead to CR. In order to achieve this
we formulate a number of diamond properties that will play a rdle in the

proof.

D3(m,k):

D6(m):

The diagrams D3 and D7 will play their rdle only if k <m, and D4 only if

h<k <m, 1 < m. 33
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1.2.14. THEOREM. (De Bruijn - Van Oostrom) Every ARS with reduction re-
lations indexed by a well-founded partial order I, and satisfying the decreasing
criterion for its e.d.’s, is confluent.

38



Hindley-Rosen )

Winkler-Buchberger )

d %d Huet’s Strong
Confluence
Lemma

Decreasing Diagrams
de Bruijn-van Oostrom

Request Lemma
Staples

extended

%kalerBuehberger)
RS

Newman’s Lemma )
Barthes w# . f .
Relative termination
: Geser-Klop
Yokouchi




Theorem 3.3 (Decreasing Diagrams — De Bruijn). Let o = (A, (—¢)acr) be an
ARS with reduction relations indexed by a well-founded total order (I,>). If for
every peak ¢ <—p a —¢ b there exists an elementary diagram joining this peak of
one of the forms in Figure 3.13, then — is confluent.

o <o B <o
v ; v ;
c l»04[>o—» d c l»04[>o—» d
<o aor= <o <ﬁ agor= <o
for B < a

Fig. 3.13: De Bruijn’s asymmetrical decreasing elementary diagrams.

40



Van Oostrom [vO94b, vO94a] presents a novel proof, and derives the follow-
ing symmetrical version of decreasing elementary diagrams that allows for partial
orders >, see Figure 3.14.

Theorem 3.4 (Decreasing Diagrams — Van Qostrom). Let o7 = (A, (—¢q)acr) be
an ARS with reduction relations indexed by a well-founded partial order (I,>). An

elementary diagram is called decreasing if it is of the form displayed in Figure 3.14.
If for every peak c <—p a — ¢ b there exists a decreasing elementary dzagmm joining

this peak, then — is confluent. a > b
\ \»l< N

<aor<pf
v v
c o

» O » (]
<ﬁ o or = <

or < f3

Fig. 3.14: Decreasing elementary diagram.

41



Definition 3.3. An ARS .o = (A, —) is said to be decreasing Church-Rosser (DCR),
if there is an indexed ARS # = (A, (—¢)qer) and a well-founded order > on / such
that % has decreasing elementary diagrams with respect to >, and = = (Jye; —a-

Theorem 3.5 (van OQostrom [vO94b]). For countable ARSs: DCR < CR.

The proof, also present in Bezem, Klop & van Oostrom [BKvO98], employs
the fact mentioned in chapter 1: CR < CP for countable ARSs. It seems to be a
difficult exercise to establish the (conjectured) result that the condition ’countable’
1S necessary.

42
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dihedral group Dy

R
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FE=4 — isa complete TRS for this equality,

RRRR — A ) .
FR— rRRF thus solving its word problem
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Other presentations of Dy

A~B & AéTietzeB

45



free idempotent monoid: xx — x

O BN BN - Ny aE =

/ =,

dabcabc < (dabca)(dabca)bc = dabcad(abc)(abc) — dabcadabc

by Vincent van Oostrom

[ NN - (N NN

el —

v
(.
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Zantema-Geser: does the rule 0011 —> 111000 terminate?

the one-rule SRS 0719 — 170° terminates if and only if

(a) p>sorg>ror
(b) p <s <2pand g < rand g 1s not a divisor of r or
g <r<2qgand p <sand p is not a divisor of s.

(so, does it terminate?)

47



from the Notebook of Gauss

a b ¢ d
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notation of Braids

s T S

49



braiding problem

Girl with two braids
50




Artin’s braid equations

1 3 eq 3 1
- X X
/ /
2
: X X
/ /
1 2 1 eq 2 1 2
- X X X
/ / /
: X X N
/ / /

51




braid equations as e.d.’s

1 J J
- -
: i
1 i 1 T 1

| J

| Y . .Y vy

J 1 J

i — | = i j] 22

Figure 4: Elementary diagrams (1 <1i,7 < n)
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o -0 o >0 o >02
|

1 | 3 3 g !1
|

S S SR D SN

elementary diagrams for confluence problem in braid semi-group
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completed braid reduction diagram

32
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aba = bab and the need for signature extension

Kapur-Narendran 1985:

the monoid aba=bab has decidable
equality (word problem), but there is
no complete SRS generating this
equality, like for Da.

However, with extra symbols
(signature extension) there is.
ab = ¢, ca = bc.

After completion:

ab=c, ca=bc, bcb=cc, ccb=acc.

55



Equality given by E = {aba =bab} on a,b-words 1s
decidable, as each E-equivalence class is finite, because applying E preserves
length.

Can we implement the decidability by a complete TRS R such that

W=EV < W =R V

o

nf(w) = nf(v)
aba = bab
—R
R/
U, in E-equivalence class of aba and bab, must be either aba or bab. In both
case R is cyclic, hence not SN.

56



Another SRS with this phenomenon
1s abba = e, defining even a group.

Question: what signature extension plus
equations would admit a complete TRS?

Same question for: E = {f(x,y) = f(y,x)},
generator o.

Closed terms are finite commutative trees,
decidable equality, but no complete TRS in
same signature.

57



In algebraic data type theory | universal algebra similar: if the
equality is decidable, a signature extension yields a complete
orthogonal TRS for it. (Hidden sorts and functions.)

Theorem 2.14 ((Bergstra & Tucker (80)). Let .o/ be a minimal X-algebra, X a
finite signature. Then the following are equivalent:

(i) o/ is a computable algebra;
(ii) there is an extension of X to a finite I', obtained by adding some function and
constant symbols, and there is a complete TRS (I',R) such that

o =I(I',R7) |5 .

58



Another solution by Burckel-Riviere 2001:
1% = *1

212* = 12%1

2122 — 1212

1211 — 2121

Remarkably, the word problem for
monoids 1s not dependent on the
actual presentation.

Shown by Tietze transformation
rules.

The same holds for a large class of
Sigma-algebras.

(Pers. comm. by V. van Oostrom, June 2012.
59
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axioms in Frobenius algebras

60



Pachner mouves: for transforming
different triangulations of topological surfaces
into each other

\\\\ \\\\ ,",'..\ / "'x.
AN \\\ / \ _‘
P
—— — —
S3 5
S2
61




Het Cola-gen

Kort daarvoor was echter o
de gekke-koeienziekte wo
zaakt door een retro-virus
DNA-volgorde:

CTGCTACTGACT

Wat nu, als onbedoeld koeien met dit

but avoid
BSE virus

TAG CTAG CTAGCT .

ombouwen tot het cola virus ontstaan? Volgens de manipuleer- Zorg dat de oplossing uiterlijk 7

CTGACTGACT ders loopt dit zo'n vaart niet omdat het  januari 2005 bij de

Er zijn technieken ter beschikking om bij al hun experimenten nog nooit Prijsvraagredactie is, NW&T, post-

de volgende DNA-substituties — heen gebeurd is, maar diverse actiegroepen, bus 256, 1110 AG Diemen, of prijs-

en weer — uit te voeren: zich beroepend op het voorzorgbegin- vraagi@natutech.nl o.v.v. Prijsvraag

TCAT & T sel, eisen keiharde garanties. januari.

GAG < AG Hoe bewijs je dat dit virus nooit kan De winnaar ontvangt een cadeau-

CTC & TC ontstaan? Het aantal mogelijke combi- bon voor Natuurwetenschap&Tech-

AGTA <A naties van substituties is vrijwel einde- niek-producten van€ 35,-.

TAT & CT loos, dus een slimme redenatie is hier De prijsvraag voor februari staat
nodig. Het maken van het cola-gen vanaf maandag 17 januari al op
vergt wel behoorlijk wat gepuzzel. wiww.natutech.nl.
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Reidemeister moves to transform knots into each other

g B

Q=0
PONZANEEERN @
=

OQ@@
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0. A few words on history
1. rewriting dictionary
2. two theorems in abstract rewriting

3. word rewriting: monoids and braids

lea,coffee .

4. term rewriting: divide et impera; termination by stars
5. Lambda calculus and combinatory logic

6. Infinitary rewriting

tea, coffee

7.infinitary lambda calculus and the threefold path
8.clocked semantics of lambda calculus

9.streams running forever



Higher-order Streams
Rewrite Systems

(CRS, HRS)

Combinatory
Logic (CL) mmmm Orthogonal TRSs

Typed I I

Lambda Term Rewriting
I
Lambdg Calculus Systems (TRS)
Calculi

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)

Term Graph
Rewriting (TGR




slide 1 slide 2 overlap



r: F(C,H(0,L(x))) — L(x)
ra - H(y,L(1)) — H(y,)

The term arising from this superposition, F (C,H(0,L(1))), is now subject to two
rewritings, as follows.

C/F\H
O/ \L
|



F(C,H(0,L(1))) =, L(1)
F(C,H(0,L(1))) —, F(C,H(0,0))

Now (L(1),F(C,H(0,0))) is the critical pair generated by this overlapping be-
tween r; and .



Theorem 5.3. (Huet [Hue80]) A TRS is weakly confluent iff all its critical pairs

(s, t} are convergent, i.e. s . t, in words: s and t have a common reduct. !‘
& ~ /
\ / a

(a) Disjoint redexes (b) Nested redexes

/3\

e oA
. N/

(c) Overlapping redexes (d) Non-left-linear redexes



WCR<1

‘“’*‘*‘*‘
e ® *‘










. term rewriting: divide et impera; termination by stars
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Grassmann 1861, Dedekind 1888

A(x, 0)— x

A(x, S(y)) = S(A(x, y))
M(x, 0) = 0

M(x, S(y)) = AMI(x, y), x)




A(x, 0)— x

left linear
A(X/ S(y)) — S(A(X’ Y)) non-overlapping rules
M(x, 0) = 0

M(x, S(y)) = AM(x, y), x)

I\ S \T I\ S \T

A @ O

— N

0 @



orthogonal TRSs: no overlaps

slide 1 slide 2 overlap

and no repeated variables



1924. "Uber die Bausteine der mathematischen Logik"

Moses Schonfinkel



Combinatory Logic \

Ix — X
Kxy — x

Sxyz —> xz(yz) )

Turing complete |
@
° \
|
A

orthogonal, hence confluent



Alonzo Church

1903- 1995

At the time of his death, Church was
widely regarded as the greatest living
logician in the world




Lambda Calculus

(Ax.Z(x))Y — Z(Y)

Turing complete

STUDIES IN LOGIC

AND
THE FOUNDATIONS OF MATHEMATICS
VOLUME 103

BARWISE "D KAFLAN " HL REISLER P SUFPES (AS TROELSTERA
FINTORS

The Lambda
Calculus

Its Syntax and Semantics

RENVISED EINTION

H P BARENDREGT




(Ax xX)(AX .XX)

ur-cycle

Not in CL!

pure 3-cycle



20

M .H. Sorensen:

A-term has infinite reduction =
(Ax .xx)(Ax.xx) is a subword

(AXy.y(xxy))(Axy.y(xxy))



The TRS of S-terms, fragment of CL
was another favourite passtime

® ;s not SN: SSS(SSS)(SSS) has
infinite reduction (Barendregt earns
25 guilders)

® /ias no cycles (Bergstra)

® is top terminating (Waldmann)



O’Donnell
WIN <€—P> SN

AC <€4—— WN LF

ACfin



SA(M21,1)
SSA(M21,0)
SSM21 SSA(AC2,0)
SSAC2 SSA(A02,0)
SSA02 SSSACI
SSSAO1

M22

SA(AC2,1)
SA(A02,1)
SSA(SACI,0)

A 4

SSA(SAD1,0)

V.
SSSSACO

V'V
SSSSA00

el [eftmost outermost
el fu1ll developments
) parallel outermost
sl [eftmost innermost
A(AC2,2)
A(A02,2) A(SACL,2)
SA(SACL, 1) A(SA01,2) A(SSAC0,2)
SA(SAO01,1)  SA(SSACO,1)  A(SSA00,2)
SSA(SSAC0,0) SA(SSA00,1) SA(SSC, 1)
SSA(SSA00,0)  SSA(SSC,0) SA21
SSSSC SSA20

SSSS0

A(SSC,2)



M22

A(M21,2)
/ \
A(M21,1) A(AC2,2)
/ \
SSA(M21,0) A(AC2,1) A(A02,2) A(SAC1,2)
SN X
SSM21 SSA( AC2 0) A(A02,1) A(SACI, 1) A(SA01,2) A(SSACO,2)

N X

>

X X

N

SSAC2 SSA(A02,0)  SSA( SACl 0) A(SA01,1) A(SSACO,1)  A(SSA00,2) A(SSC,2)
X XX XX X
SSA02 SSSACI SSA(SA01,0) SSA(SSACO 0) SA(SSA00,1) A(SSC, 1)
NI XX X
SSSA01 SSSSACO SSA(SSA00,0)  SSA(SSC,0)
N X~
SSSSA00 SSSSC SSA20

N7

SSSS0



I::> Infinitary Rewriting

Higher-order Streams
Rewrite Systems
(CRS, HRS)
Combinatory
Logic (CL) Orthogonal TRSs
Typed .
Lambd Lambda Term Rewriting Term Graph
Cal? 1'a Calculus Systems (TRS) Rewriting (TGR
alculi

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)
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Cauchy converging reduction sequence: activity may occur everywhere

IS

Strongly converging reduction sequence, with descendant relations




O 0)’1 602 -3 w-4 -5 06 07 o3 2

09 ©-10 011 0120 130 115 65

—— convergence of depths towards ®?
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Ordinals w? and w3 embedded in the reals, order-respecting.

Exercise: which ordinals can be embedded in the real
segment [0,1]?



(1)(a> 240 44+ 0*)+ (@0 3+ 0* 24+1) =024+ T+’ 2+1
(ii) (w® -3+ @?-442)+ (0* -5+ @) = 0° -3+ w* -5+ 0?
(111)( @12 3—|—60w—|—(0—|-7)°(60w+1°2—|—(0w—|—3):a)w'2+1'2—|—(0w'2—|—a)w+2-9—|—
0°+o+7



But if you don’t like ordinals, there 1s for
orthogonal TRSs the Compression Lemma:

every reduction of length o. can be compressed
to w or less.

use dove-tailing

33



Every countable ordinal can be the
length of an infinite reduction. Consider

the TRS
{lc—f(a, c) and a — b}

34



finite reduction

strongly convergent reduction

infinite reduction

divergent reduction

normal form

(poss. infinite) normal form

CR: finite coinitial reductions
can be joined

CR®: infinite coinitial

reductions can be joined

UN: coinitial reductions to nf
end in same nf

UN®: coinitial reductions to nf
end in same nf

SN: there are no infinite
reductions

SN®: there are no divergent
reductions

WN: there is a reduction to nf

WN®: there 1s a reduction to nf

35



How to define SNOO and WNOO?

WN™ is easy: There 1s a possibly infinite
reduction to the possibly infinite normal form.

SN™ : all reductions will eventually terminate 1n
the normal form. The only way such a reduction
could fail to reach a normal form, 1s that it
stagnates at some point in the tree which 1s
developing, for infinitely many steps. Then no limit
can be taken.

36



Good and bad reductions. In ordinary rewriting
the finite reductions are good, they have an end
point, and the infinite ones are bad, they have no
end point.

Same 1n infinitary rewriting. The good reductions
are the ones that are strongly convergent, they
have an end point. E.g.

a — b(a) reaches after  steps the end point b™.

The bad reductions (divergent, stagnating) are the
ones without an end point. Their reductions may
be long, a limit ordinal long, but there they fail.

37



SNOO states that there are no bad reductions.

In other words: say we select at random 1n each step

a redex and perform this step. We can go on until we reach
a limit ordinal. At that point we look back, and if the
reduction was strongly convergent we take the limit and
go on. If not, we stop there and we had a bad reduction.

CLAIM: we can then 1dentify a stagnating term, a term
where infinitely often a root step was performed.

38



M(0,0) o

o ¢

M(0,5(c))

M(0,5(S()))

M(0,5°)

A(x, 0)— x

A(x, S(y)) = S(A(x, y))
M(x, 0) =0

M(x, S(y)) = AM(x, y), x)
0 — 5()
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Parallel Moves Lemma ,//
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projection R '

infinite reduction R (b)
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infinitary parallel moves lemma

PML®> For first order infinitary term rewriting we have
the infinitary Parallel Moves Lemma PML®

41






Sxyz — xz(yz) @@(@(S, %), Y),7) —@(@(x,7), @(y, 7))
KXy — x @@K,x).,y)  —x

@ @
o \K 7 N

s ¢ b

collapsing contexts

Failure of infinitary confluence for Combinatory Logic







. ABC AC AABC AAC convergent A®

Failure
of CR™ -

)
il S

BBABC BABC

A(x) = x
B(x) — x
C — A(B(Q))

Bw B@ Bw Bw Be  Be divergent
45









o)

for OTRSs: UN .

Corollary: Dershowitz et al:
for OTRSs SN =>CR"".

Proof: as for finite case
SN & UN => CR

48
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N normal form



Confluence in infinitary rewriting

PML CR UN PML* CR= UN=
OTRS yes yes yes yes no yes
w.0. TRS | yes yes yes ? no | /?\
Ap yes yes yes no no < yes >
OCRS yes yes yes no no / T

by CR> for a quotient of Ap>, e.g. mute terms, or
hypercollapsing terms, and applying an abstract lemma of

de Vrijer.

Let (A, —1) and (B, —») be two ARSs with A included in B,

reduction —1 included in —», normal forms nf(A) included in nf(B).

Then CR for B implies UN for A.




Ris AC

Ris SN® = WN® =

WHN =SHN

global properties

N~

R is CR®

R s TUN®

tis SN®

local properties

tis WN®

road map of infinitary
normalization properties

tis SHN

\/

tis WHN




A® :not PML®

= (Ax.J(xx)
M = AX.XX
YI — w1 wp

o =
Zay
ZaN
/ For infinitary lambda calculus

N,
/ \ Parallel Moves Lemma PML>

fails, hence also CR*

I



Yo: Af. (x.FO)(Ax.f(xx))

Y1: (Aab. b(aab)) (Aab. b(aab))

Yo(SI) Y1

Exercise. Prove that Yy =g Y1



infinitary lambda calculus subsumes scott’s induction rule

Yx—— x(Yx) — — x2(Yx) = x©= x(x(x(x...

BY = (Aabc.a(bc)) Y

\4

Mbc.Y(bc)

Abc. (bc)w

= BYS = (habc.a(bc)) YS

-/—'[3 *
Ac.Y(Sc)

¥
hc. Sc(Y(Sc))

¥
hcz. cz(Y(Sc)z)

y k%:z. cz(cz(Y(Sc)z))

hcz. (cz)



A simple proof

BY ?ﬁﬁ ? BYS

BYI BYSI

BYI = (Aabc.a(bc)) YI BYSI = (Aabc.a(bc))YSI
kiz.Y(Ic) i

ki.Yc

Curry’s fpc Turing’s fpc
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Ter™(X)

divergent - -CR”™
root active - - WN™
hypercollapsing - -SN*
-NF
alternatingly .
hypercollapsing

bad good




c — b(c)
b(c) — a(d)
be b(a(x)) — a(a(x))
bd
bbc
d
d bbd bbbC
bbbbc
bad bbbd bbbbbc
bbbbbbc
N
bbad —
aad b®
baad
aaad
aaaad
aaaaad
aaaaaad

aaaaaaaaaa



0. A few words on history
1. rewriting dictionary
2. two theorems in abstract rewriting

3. word rewriting: monoids and braids

tea, coffee

4. term rewriting: divide et impera; termination by stars
5. Lambda calculus and combinatory logic

6. Infinitary rewriting

tea, coffee

7.infinitary lambda calculus and the threefold path
8.clocked semantics of lambda calculus

9.streams running forever



Ter™(X)

divergent - -CR”™
root active - - WN™
hypercollapsing - -SN*
-NF
alternatingly .
hypercollapsing

bad good
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descending sequence
of degrees

ascending sequence
of degrees

prime degree

ultimately periodic streams
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0. A few words on history
1. rewriting dictionary
2. two theorems in abstract rewriting

3. word rewriting: monoids and braids

lea,coffee .

4. term rewriting: divide et impera; termination by stars
5. Lambda calculus and combinatory logic

6. Infinitary rewriting

tea, coffee

7.infinitary lambda calculus and the threefold path
8.clocked semantics of lambda calculus

9.streams running forever



Higher-order Streams
Rewrite Systems

(CRS, HRS)

Combinatory
Logic (CL) mmmm Orthogonal TRSs

Typed I I

Lambda Term Rewriting
I
Lambdg Calculus Systems (TRS)
Calculi

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)

Term Graph
Rewriting (TGR




slide 1 slide 2 overlap



r: F(C,H(0,L(x))) — L(x)
ra - H(y,L(1)) — H(y,)

The term arising from this superposition, F (C,H(0,L(1))), is now subject to two
rewritings, as follows.

C/F\H
O/ \L
|



F(C,H(0,L(1))) =, L(1)
F(C,H(0,L(1))) —, F(C,H(0,0))

Now (L(1),F(C,H(0,0))) is the critical pair generated by this overlapping be-
tween r; and .



Theorem 5.3. (Huet [Hue80]) A TRS is weakly confluent iff all its critical pairs

(s, t} are convergent, i.e. s . t, in words: s and t have a common reduct. !‘
& ~ /
\ / a

(a) Disjoint redexes (b) Nested redexes

/3\

e oA
. N/

(c) Overlapping redexes (d) Non-left-linear redexes



WCR<1

‘“’*‘*‘*‘
e ® *‘










. term rewriting: divide et impera; termination by stars




Some streets we
want to walk

Higher-order Streams
Rewrite Systems

(CRS, HRS)

Coml'n% Orthogonal TRSs
Logic I
Typed I

Lambda Term Rewriting
I
Lambdg Calculus Systems (TRS)
Calculi

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)

Term Graph
Rewriting (TGR




Grassmann 1861, Dedekind 1888

A(x, 0)— x

A(x, S(y)) = S(A(x, y))
M(x, 0) = 0

M(x, S(y)) = AMI(x, y), x)




A(x, 0)— x

left linear
A(X/ S(y)) — S(A(X’ Y)) non-overlapping rules
M(x, 0) = 0

M(x, S(y)) = AM(x, y), x)

I\ S \T I\ S \T

A @ O

— N

0 @



orthogonal TRSs: no overlaps

slide 1 slide 2 overlap

and no repeated variables



1924. "Uber die Bausteine der mathematischen Logik"

Moses Schonfinkel



Combinatory Logic \

Ix — X
Kxy — x

Sxyz —> xz(yz) )

Turing complete |
@
° \
|
A

orthogonal, hence confluent



Alonzo Church

1903- 1995

At the time of his death, Church was
widely regarded as the greatest living
logician in the world




Lambda Calculus

(Ax.Z(x))Y — Z(Y)

Turing complete

STUDIES IN LOGIC

AND
THE FOUNDATIONS OF MATHEMATICS
VOLUME 103

BARWISE "D KAFLAN " HL REISLER P SUFPES (AS TROELSTERA
FINTORS

The Lambda
Calculus

Its Syntax and Semantics

RENVISED EINTION

H P BARENDREGT




(Ax xX)(AX .XX)

ur-cycle

Not in CL!

pure 3-cycle



20

M .H. Sorensen:

A-term has infinite reduction =
(Ax .xx)(Ax.xx) is a subword

(AXy.y(xxy))(Axy.y(xxy))



The TRS of S-terms, fragment of CL
was another favourite passtime

® ;s not SN: SSS(SSS)(SSS) has
infinite reduction (Barendregt earns
25 guilders)

® /ias no cycles (Bergstra)

® is top terminating (Waldmann)



O’Donnell
WIN <€—P> SN

AC <€4—— WN LF

ACfin



SA(M21,1)
SSA(M21,0)
SSM21 SSA(AC2,0)
SSAC2 SSA(A02,0)
SSA02 SSSACI
SSSAO1

M22

SA(AC2,1)
SA(A02,1)
SSA(SACI,0)

A 4

SSA(SAD1,0)

V.
SSSSACO

V'V
SSSSA00

el [eftmost outermost
el fu1ll developments
) parallel outermost
sl [eftmost innermost
A(AC2,2)
A(A02,2) A(SACL,2)
SA(SACL, 1) A(SA01,2) A(SSAC0,2)
SA(SAO01,1)  SA(SSACO,1)  A(SSA00,2)
SSA(SSAC0,0) SA(SSA00,1) SA(SSC, 1)
SSA(SSA00,0)  SSA(SSC,0) SA21
SSSSC SSA20

SSSS0

A(SSC,2)



M22

A(M21,2)
/ \
A(M21,1) A(AC2,2)
/ \
SSA(M21,0) A(AC2,1) A(A02,2) A(SAC1,2)
SN X
SSM21 SSA( AC2 0) A(A02,1) A(SACI, 1) A(SA01,2) A(SSACO,2)

N X

>

X X

N

SSAC2 SSA(A02,0)  SSA( SACl 0) A(SA01,1) A(SSACO,1)  A(SSA00,2) A(SSC,2)
X XX XX X
SSA02 SSSACI SSA(SA01,0) SSA(SSACO 0) SA(SSA00,1) A(SSC, 1)
NI XX X
SSSA01 SSSSACO SSA(SSA00,0)  SSA(SSC,0)
N X~
SSSSA00 SSSSC SSA20

N7

SSSS0



I::> Infinitary Rewriting

Higher-order Streams
Rewrite Systems
(CRS, HRS)
Combinatory
Logic (CL) Orthogonal TRSs
Typed .
Lambd Lambda Term Rewriting Term Graph
Cal? 1'a Calculus Systems (TRS) Rewriting (TGR
alculi

String Rewrite
Systems (SRS)

Abstract Reduction
Systems (ARS)
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Cauchy converging reduction sequence: activity may occur everywhere

IS

Strongly converging reduction sequence, with descendant relations
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—— convergence of depths towards ®?
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Ordinals w? and w3 embedded in the reals, order-respecting.

Exercise: which ordinals can be embedded in the real
segment [0,1]?



(1)(a> 240 44+ 0*)+ (@0 3+ 0* 24+1) =024+ T+’ 2+1
(ii) (w® -3+ @?-442)+ (0* -5+ @) = 0° -3+ w* -5+ 0?
(111)( @12 3—|—60w—|—(0—|-7)°(60w+1°2—|—(0w—|—3):a)w'2+1'2—|—(0w'2—|—a)w+2-9—|—
0°+o+7



But if you don’t like ordinals, there 1s for
orthogonal TRSs the Compression Lemma:

every reduction of length o. can be compressed
to w or less.

use dove-tailing

33



Every countable ordinal can be the
length of an infinite reduction. Consider

the TRS
{lc—f(a, c) and a — b}

34



finite reduction

strongly convergent reduction

infinite reduction

divergent reduction

normal form

(poss. infinite) normal form

CR: finite coinitial reductions
can be joined

CR®: infinite coinitial

reductions can be joined

UN: coinitial reductions to nf
end in same nf

UN®: coinitial reductions to nf
end in same nf

SN: there are no infinite
reductions

SN®: there are no divergent
reductions

WN: there is a reduction to nf

WN®: there 1s a reduction to nf

35



How to define SNOO and WNOO?

WN™ is easy: There 1s a possibly infinite
reduction to the possibly infinite normal form.

SN™ : all reductions will eventually terminate 1n
the normal form. The only way such a reduction
could fail to reach a normal form, 1s that it
stagnates at some point in the tree which 1s
developing, for infinitely many steps. Then no limit
can be taken.

36



Good and bad reductions. In ordinary rewriting
the finite reductions are good, they have an end
point, and the infinite ones are bad, they have no
end point.

Same 1n infinitary rewriting. The good reductions
are the ones that are strongly convergent, they
have an end point. E.g.

a — b(a) reaches after  steps the end point b™.

The bad reductions (divergent, stagnating) are the
ones without an end point. Their reductions may
be long, a limit ordinal long, but there they fail.

37



SNOO states that there are no bad reductions.

In other words: say we select at random 1n each step

a redex and perform this step. We can go on until we reach
a limit ordinal. At that point we look back, and if the
reduction was strongly convergent we take the limit and
go on. If not, we stop there and we had a bad reduction.

CLAIM: we can then 1dentify a stagnating term, a term
where infinitely often a root step was performed.

38



M(0,0) o
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M(0,5(c))

M(0,5(S()))

M(0,5°)

A(x, 0)— x

A(x, S(y)) = S(A(x, y))
M(x, 0) =0

M(x, S(y)) = AM(x, y), x)
0 — 5()
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infinitary parallel moves lemma

PML®> For first order infinitary term rewriting we have
the infinitary Parallel Moves Lemma PML®

41






Sxyz — xz(yz) @@(@(S, %), Y),7) —@(@(x,7), @(y, 7))
KXy — x @@K,x).,y)  —x

@ @
o \K 7 N

s ¢ b

collapsing contexts

Failure of infinitary confluence for Combinatory Logic







. ABC AC AABC AAC convergent A®

Failure
of CR™ -

)
il S

BBABC BABC

A(x) = x
B(x) — x
C — A(B(Q))

Bw B@ Bw Bw Be  Be divergent
45









o)

for OTRSs: UN .

Corollary: Dershowitz et al:
for OTRSs SN =>CR"".

Proof: as for finite case
SN & UN => CR

48
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N normal form



Confluence in infinitary rewriting

PML CR UN PML* CR= UN=
OTRS yes yes yes yes no yes
w.0. TRS | yes yes yes ? no | /?\
Ap yes yes yes no no < yes >
OCRS yes yes yes no no / T

by CR> for a quotient of Ap>, e.g. mute terms, or
hypercollapsing terms, and applying an abstract lemma of

de Vrijer.

Let (A, —1) and (B, —») be two ARSs with A included in B,

reduction —1 included in —», normal forms nf(A) included in nf(B).

Then CR for B implies UN for A.




Ris AC

Ris SN® = WN® =

WHN =SHN

global properties

N~

R is CR®

R s TUN®

tis SN®

local properties

tis WN®

road map of infinitary
normalization properties

tis SHN

\/

tis WHN




A® :not PML®

= (Ax.J(xx)
M = AX.XX
YI — w1 wp

o =
Zay
ZaN
/ For infinitary lambda calculus

N,
/ \ Parallel Moves Lemma PML>

fails, hence also CR*

I



Yo: Af. (x.FO)(Ax.f(xx))

Y1: (Aab. b(aab)) (Aab. b(aab))

Yo(SI) Y1

Exercise. Prove that Yy =g Y1



infinitary lambda calculus subsumes scott’s induction rule

Yx—— x(Yx) — — x2(Yx) = x©= x(x(x(x...

BY = (Aabc.a(bc)) Y

\4

Mbc.Y(bc)

Abc. (bc)w

= BYS = (habc.a(bc)) YS

-/—'[3 *
Ac.Y(Sc)

¥
hc. Sc(Y(Sc))

¥
hcz. cz(Y(Sc)z)

y k%:z. cz(cz(Y(Sc)z))

hcz. (cz)



A simple proof

BY ?ﬁﬁ ? BYS

BYI BYSI

BYI = (Aabc.a(bc)) YI BYSI = (Aabc.a(bc))YSI
kiz.Y(Ic) i

ki.Yc

Curry’s fpc Turing’s fpc
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0. A few words on history
1. rewriting dictionary
2. two theorems in abstract rewriting

3. word rewriting: monoids and braids

tea, coffee

4. term rewriting: divide et impera; termination by stars
5. Lambda calculus and combinatory logic

6. Infinitary rewriting

tea, coffee

7.infinitary lambda calculus and the threefold path
8.clocked semantics of lambda calculus

9.streams running forever
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root active - - WN™
hypercollapsing - -SN*
-NF
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hypercollapsing

bad good
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descending sequence
of degrees

ascending sequence
of degrees

prime degree

ultimately periodic streams
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Ter™(X)

divergent - -CR”™
root active - - WN™
hypercollapsing - -SN*
-NF
alternatingly .
hypercollapsing

bad good




c — b(c)
b(c) — a(d)
be b(a(x)) — a(a(x))
bd
bbc
d
d bbd bbbC
bbbbc
bad bbbd bbbbbc
bbbbbbc
N
bbad —
aad b®
baad
aaad
aaaad
aaaaad
aaaaaad

aaaaaaaaaa



