ReEfleCtIONS ON A GEOMETRY Of PROCESSES

clemens GRABMAYER
Jan willem KlLop
BAS LUTTIK

Some memories

Some questions

BERTINORO AUGUST 2005



May 1975, cherry orchard in the
Betuwe




Jan Bergstra and Jan Willem Klop started working on process algebra after a lecture by
Jaco in Utrecht in June 1982. They tackled the open problem he posed of solving
unguarded recursion equations in the topological model of De Bakker and Zucker
[1982]. Their solution was this: in the case of a finite set of atomic actions, they created
the axiomatic system Process Algebra PA for processes. The theory PA had an initial
algebra A and a system of projections A, that modelled the execution of processes for n
steps, forn = 1, 2,.... These projections were also models of PA and the algebras formed
an inverse sequence with inverse or projective limit A.., which was again a model of PA.

They proved that all recursion equations have solutions in all the A, and so in the A..
Since the A, can be embedded in the De Bakker-Zucker model of processes, the problem
was solved.

Problem: Expansion Theorem
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Problem: we did not know SQOS rules
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We will now state and prove the main theorem of this
paper, saying that every sequence (, s(q), s%(q), ... must
eventually be constant modulo n.

For guarded expressions like e.g.
s(X) = aX + b(cX || X3) + d this is clear since iterating s(X)

yields a tree which develops itself in such a way that an
increasing part of it is fixed.

But even for simple terms as s(X) = (X || X) + ab the

situation is at first sight not at all clear: in each step of the
iteration the whole tree including the top i1s again in
‘motion’.

THEOREM. Let q € A® and let s(X) € EXP have only X as

free variable. Then the iteration sequence q, s(q), s(s(q)), ...,
sk(q), ... stabilizes modulo n, for everyn = 1.
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prime mover

Jos, JW: contractors and
interior decorators

abstraction rule

abstraction

priority
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abstraction rule equ ational
SOS
abstraction branchin g
priority
1984 Rob, Frits
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abstraction rule

abstraction

Modular structure of ACP

X+y=y+X
X+(y+z2)=X+y)+z
X+ X=X
X+y).Zz=XzZ+Yy.Z
X.(y.z) = (X.y).z

xlly=xL y+yLL x

all x=ax

ax IL y=a(xIly)
x+y)Lz=xlLz+ylL z

Tabel 6.2

The left merge is an auxiliary operator necessary for a finite

axiomatization of merge.




PA has unique prime decomposition:

p=p1ll... 11 pn
unigue modulo permutation of ‘parallel primes’

Every process which is recursively defined in PA and has
an infinite trace, has an eventually periodic trace.



Thue-Morse sequence:

M=I00l OIl0O OIIOIOOI OIIOIOOITO0IOIIO ..
M =100l OIlO OIl0lIO0OI OIlOI0OI10010110 ..

M = zip M inv(M)

M can be defined in ACP with
renaming, or in ACP with ternary
communication. With binary communication?

M cannot be defined in PA, since its one single
trace is not eventually periodic.
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Table 1: BPA (Basic Process Algebra)



context-free grammar in standard form ( Grezbach -
normal form) T

S—=aB | bA

A —al aS | bAA

B—Db | bS | aBB
language equality undecidable

: ;"& o,

;’ﬁfci . .
’uyﬂ' O

et
Wae AL
 Tub ‘a L A

quarded nonlinear recursion system over BPA

S=aB + bA

A=a+aS+DbAA

B=Db+DbS + aBB
process equality decidable




S=T-S
S; =0-Sg +1-S; o LT
Sdic = 0-Spde +1-S1d6 +d-Se _

(ford =0 or d = 1, and any string ) To =0+T"To
- o d = T, =1+T-T

Table 2: Stack, an infinite linear and a finite non-linear BPA-specification




X =bY +dZ
Y=b+bX+dYY
/Z=d+dX + bZZ.

context free language of words
with just as many b’s as d’s
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type | type 11

. X =a+bU X =a+bY + XY
U=cX+dZX Y=cX+dZ
Y=c+dZ Z =¢gX + eXZ.

Z =aY +bUY
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normed graph normed graph

exponential
linear density
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L={a"brc® | n>1} i i
R

Question 4 Can the fact that the graph in Figure 5
is not a BPA-graph (when established rigorously)
be used to conclude that L is not a CFL, applying
the correspondence between CFL’s and definability
in BPA as well as the ensuing tree-like periodicity?
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reopen a cold case: non-BPA definability
of BAG



B= a(allB) +b(bll B)
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Figure 5: The process Bag.



PROBLEM







Z =aAZ + cl
A=aAA+cD+b
D=db

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.
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How to show for unnormed graphs that they are
not BPA-definable?

Burkart, Caucal, Steffen: if ¢ is a BPA graph,
min(g) 1s a pattern graph

Caucal: pattern graphs of finite deqree are
context free graphs a la Muller and Schupp
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Q=Qx= > 4epri(d)-Qa
Qod = s2(d) - Qo + ZEED ri(e) - Qeod
(for d € D, and ¢ € D*)

Table 2: Queue, infinite BPA-specification

Q = ZdED 1'1((1)(}%3—}53 © aH)(pSE—'rSg(Q) Hﬁ(d) ' Z)
=) 4eprsld)-Z

Table 3: Queue, finite ACP-specification with renaming



guard
Q = 24ep F(d)(Pc3—52 0 IH)(Ps2—53 (Q)l 82(d).Z)

Z =24dep 1r3(d).Z

rl(d) s2(d)

Ps2—s3 Pc3—s2
actions: r1(d), s2(d)
auxiliary actions:  r3(d), s3(d), c3(d)

communication: r3(d) | s3(d) = c3(d) s3(d) —> c3(d)
ing: s2(d) — s3(d)

Ps2 - 53 Tenaming;:
Pe3 -2 Tenaming: c3(d) — s52(d) s3(d) I r3(d) = c3(d)
encapsulation: H = {s3(d), r3(d) | d €D}



Bergstra-Tiuryn:

Queue cannot be defined in ACP with handshaking
communication

- but it can in ACP with renaming,

- or in ACP with ternary communication
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Figure 6: Attempt at drawing Queue in ‘tree space’.



Science fiction

can we derive properties from the topology or
geometry of process graphs of large state spaces?
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