
reflections on a geometry of processes

clemens grabmayer
jan willem klop
bas luttik

bertinoro august 2005

Some memories

Some questions

1

2

May 1975, cherry orchard in the
Betuwe

Problem: Expansion Theorem

Problem: we did not know SOS rules

Jos: precursor Bekic;
Hennessy

Jan: aha, this solves
our problem

 We will now state and prove the main theorem of this
paper, saying that every sequence q, s(q), s2(q), ... must
eventually be constant modulo n.

For guarded expressions like e.g.
s(X) = aX + b(cX || X3) + d this is clear since iterating s(X)
yields a tree which develops itself in such a way that an
increasing part of it is fixed.

But even for simple terms as s(X) = (X || X) + ab the
situation is at first sight not at all clear: in each step of the
iteration the whole tree including the top is again in
‘motion’.

THEOREM. Let q ∈ Aω and let s(X) ∈ EXP have only X as
free variable. Then the iteration sequence q, s(q), s(s(q)), ...,
sk(q), ... stabilizes modulo n, for every n ≥ 1.

1983, Massachusetts

Modular structure of ACP

BPA

δPA

communication

abstraction

renaming

priority

state

ready/
failure

time

abstraction rule

Jan: main architect and
prime mover
Jos, JW: contractors and
interior decorators

Modular structure of ACP

BPA

δPA

communication

abstraction

renaming

priority

state

ready/
failure

time

abstraction rule

1984 Rob, Frits

Jan, Jos, Kees

Catuscia, Frank, Gert, Karst,
Hans, Vagelis, Yurek, John,
Alban, Piet, Inge, Jan Friso,
Wan, Judy, Jaco, Stefan,
Mark, Bas, Simone, Yaroslav,
Jun, Natalya,
and many many more

equational
sos

branching

(A1) x + y = y + x

(A2) x + (y + z) = (x + y) + z

(A3) x + x = x

(A4) (x + y) . z = x.z + y.z

(A5) x.(y.z) = (x.y).z

(M1) x || y = x

!

LL y + y

!

LL x

(M2) a

!

LL x = a.x

(M3) ax

!

LL y = a(x || y)

(M4) (x + y)

!

LL z = x

!

LL z + y

!

LL z

Tabel 6.2

6.2.4. OPMERKING. Wat stelt

!

LL eigenlijk voor? Zoals de notatie al suggereert, is x

!

LL y is eigenlijk de ‘linkerhelft’

van het proces x || y, namelijk die helft waarbij de eerste stap uit x komt. En y

!

LL x is omgekeerd de ‘rechterhelft’ van x

|| y, namelijk die helft waarbij de eerste stap uit y komt. Dus inderdaad is x || y = linkerhelft + rechterhelft =

x

!

LL y + y

!

LL x.

6.2.5. VOORBEELD. Als voorbeeld reduceren we de PA-term bab || ab tot een BPA-term:

bab || ab = bab

!

LL ab + ab

!

LL bab

= b(ab || ab) + ab

!

LL bab

= b(ab

!

LL ab + ab

!

LL ab) + ab

!

LL bab

= b(ab

!

LL ab) + ab

!

LL bab

= b(a(b || ab)) + ab

!

LL bab

= b(a(b

!

LL ab + ab

!

LL b)) + ab

!

LL bab

= b(a(bab + ab

!

LL b)) + ab

!

LL bab

= b(a(bab + a(b || b))) + ab

!

LL bab

= b(a(bab + a(b

!

LL b + b

!

LL b))) + ab

!

LL bab

= b(a(bab + a(b

!

LL b))) + ab

!

LL bab

= b(a(bab + abb)) + ab

!

LL bab

= b(a(bab + abb)) + a(b || bab)

= b(a(bab + abb)) + a(b

!

LL bab + bab

!

LL b)

= b(a(bab + abb)) + a(bbab + bab

!

LL b)

= b(a(bab + abb)) + a(bbab + b(ab || b))

= b(a(bab + abb)) + a(bbab + b(ab

!

LL b + b

!

LL ab))

= b(a(bab + abb)) + a(bbab + b(ab

!

LL b + bab))

= b(a(bab + abb)) + a(bbab + b(a(b || b) + bab))

= b(a(bab + abb)) + a(bbab + b(abb + bab))

Hoofdstuk 6: Deadlock en interleaving 4

College Processen 2005 - Radboud Universiteit Sunday, April 3, 2005

Modular structure of ACP

BPA

δPA

communication

abstraction

renaming

priority

state

ready/
failure

time

abstraction rule

The left merge is an auxiliary operator necessary for a finite
axiomatization of merge.

16

PA has unique prime decomposition:

p = p1 ||... || pn

unique modulo permutation of ‘parallel primes’

 Every process which is recursively defined in PA and has
an infinite trace, has an eventually periodic trace.

17

Thue-Morse sequence:

M =1001 0110 01101001 0110100110010110 ...
M =1001 0110 01101001 0110100110010110 ...

M = zip M inv(M)

M can be defined in ACP with
renaming, or in ACP with ternary
communication. With binary communication?

M cannot be defined in PA, since its one single
trace is not eventually periodic.

18

Reflections on a Geometry of Processes

Clemens Grabmayer∗ Jan Willem Klop† Bas Luttik‡

June 10, 2005

Abstract

In this note we discuss some issues concerning a geometric approach to process alge-

bra. We mainly raise questions and are not yet able to present significant answers.

1 Periodic Processes

Our point of departure is the axiom system BPA in Table 1 together with guarded recursion.

x+ y = y+ x

x+(y+ z) = (x+ y)+ z

x+ x = x

(x+ y) · z = x · z+ y · z
(x · y) · z = x · (y · z)

Table 1: BPA (Basic Process Algebra)

We are in particular interested in non-linear recursion, where products of recursion variables

are allowed, in contrast with linear recursion exemplified by 〈X|X = aY+ b, Y = cX+ dY〉
yielding only regular (finite-state) processes. Non-linear recursion also allows infinite-state

processes, such as the counter 〈C|C = uDC, D = uDD+ d〉 (with actions u, d for “up” and
“down”) or the process Stack that is definable by the infinite set of linear recursion equations

over BPA (cf. the left-hand side of Table 2), and more remarkably, by the finite set of non-

linear recursion equations (cf. the right-hand side of Table 2).

This simple framework is already rich in structure. In [1] this framework was linked with

context-free grammars (CFG’s), in particular with those in (restricted) Greibach normal form.

∗Vrije Universiteit Amsterdam. Postal address: Department of Computer Science, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands. E-mail: clemens@cs.vu.nl .

†Vrije Universiteit Amsterdam, Radboud Universiteit, and CWI. Postal address: Department of Computer

Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. E-mail: jwk@cs.vu.nl .
‡Eindhoven Technical University and CWI. Postal address: P.O. Box 513, 5600 MB Eindhoven, The Nether-

lands. E-mail: s.p.luttik@tue.nl .

S → aB | bA

 A →a | aS | bAA
B → b | bS | aBB

context-free grammar in standard form (Greibach
normal form)

S = aB + bA
A = a + aS + bAA
B = b + bS + aBB

guarded nonlinear recursion system over BPA

language equality undecidable

process equality decidable

20

Sλ = 0·S0 +1·S1
Sdσ = 0·S0dσ +1·S1dσ +d·Sσ
(for d = 0 or d = 1, and any string σ)

S = T·S
T = 0·T0 +1·T1
T0 = 0+T·T0
T1 = 1+T·T1

Table 2: Stack, an infinite linear and a finite non-linear BPA-specification

There the fact was established that while the language equality problem for CFG’s is unsolv-

able, the process equality problem for CFG’s is solvable. A priori this is not implausible,

because a process has much more inner ‘structure’ than a language (the set of its finite ter-

minating traces). The decidability was demonstrated by Baeten, Bergstra, and Klop in [1] as

a corollary of a result concerning the periodical geometry or topology of the corresponding

process graph. In Figure 1 the periodicities of two examples are exhibited: of Stack on the

left-hand side, and of the process 〈X|X = bY+ dZ, Y = b+ bX+ dYY, Z = d+ dX+ dZZ〉
on the right-hand side (this graph repeats three finite graph fragments α , β and γ as is also
illustrated in Figure 2 below).

00 0

0

0

0

1

1

1111

10

0 0

0 00 0

10

1

1111

1

b d b bdbd b d b
b d b

bdbb d b dbdb
bdb

d b

d b d b

Figure 1: Tree-like periodic processes

The geometric proof in [1] is complicated. For the corollary of the decidability more

stream-lined approaches have subsequently been found by using tableaux methods and other

arguments (cf. Caucal in [7], Hüttel and Stirling in [11], and Groote in [10]). Also, the geo-

metric aspects have been studied, for example by Caucal in [8] and by Burkart, Caucal, and

Steffen in [5]. Actually, the related notion of context-free graph was introduced by Muller and

Schupp [13] already in 1985.

We feel that there is still much to be explained about the geometric aspects of process

graphs. We present a question concerning the fact that periodic graphs in BPA come in two

kinds: ‘linear’ graphs as on the left-hand side, and ‘branching’ graphs as on the right-hand

side in Figure 2.

Question 1 Is it decidable whether a system E of equations (in Greibach normal form) yields

a linear (type I) or a branching (type II) graph?

Sλ = 0·S0 +1·S1
Sdσ = 0·S0dσ +1·S1dσ +d·Sσ
(for d = 0 or d = 1, and any string σ)

S = T·S
T = 0·T0 +1·T1
T0 = 0+T·T0
T1 = 1+T·T1

Table 2: Stack, an infinite linear and a finite non-linear BPA-specification

There the fact was established that while the language equality problem for CFG’s is unsolv-

able, the process equality problem for CFG’s is solvable. A priori this is not implausible,

because a process has much more inner ‘structure’ than a language (the set of its finite ter-

minating traces). The decidability was demonstrated by Baeten, Bergstra, and Klop in [1] as

a corollary of a result concerning the periodical geometry or topology of the corresponding

process graph. In Figure 1 the periodicities of two examples are exhibited: of Stack on the

left-hand side, and of the process 〈X|X = bY+ dZ, Y = b+ bX+ dYY, Z = d+ dX+ dZZ〉
on the right-hand side (this graph repeats three finite graph fragments α , β and γ as is also
illustrated in Figure 2 below).

00 0

0

0

0

1

1

1111

10

0 0

0 00 0

10

1

1111

1

b d b bdbd b d b
b d b

bdbb d b dbdb
bdb

d b

d b d b

Figure 1: Tree-like periodic processes

The geometric proof in [1] is complicated. For the corollary of the decidability more

stream-lined approaches have subsequently been found by using tableaux methods and other

arguments (cf. Caucal in [7], Hüttel and Stirling in [11], and Groote in [10]). Also, the geo-

metric aspects have been studied, for example by Caucal in [8] and by Burkart, Caucal, and

Steffen in [5]. Actually, the related notion of context-free graph was introduced by Muller and

Schupp [13] already in 1985.

We feel that there is still much to be explained about the geometric aspects of process

graphs. We present a question concerning the fact that periodic graphs in BPA come in two

kinds: ‘linear’ graphs as on the left-hand side, and ‘branching’ graphs as on the right-hand

side in Figure 2.

Question 1 Is it decidable whether a system E of equations (in Greibach normal form) yields

a linear (type I) or a branching (type II) graph?

21

 X = bY + dZ
 Y = b + bX + dYY
 Z = d + dX + bZZ.

context free language of words
with just as many b’s as d’s

22

 X = a + bY + fXY
 Y = cX + dZ
 Z = gX + eXZ.

0

1

2

3

4

5

6

7

a

f
g

c
b

a
d

e a

type I type II

X = a + bU
U = cX + dZX
Y = c + dZ
Z = aY + bUY

23

0

1

2

3

4

5

6

7

a

f
g

c
b

a
d

e a

normed graph normed graph

linear density
exponential

a a a a

bbbb

b b b
c

b b
c

c
b

c

Figure 5: The language L.

Another interesting observation, due to

H.P. Barendregt, is the following. It is well-

known that the language L = {anbncn|n ≥ 0}
is not a CFL. This language can be obtained

as the set of finite traces of the triangular, in-

finite, minimal graph in Figure 5. Intuitively

it is obvious that this graph is not tree-like pe-

riodic. This leads to the next question.

Question 4 Can the fact that the graph in Figure 5

is not a BPA-graph (when established rigorously)
be used to conclude that L is not a CFL, applying

the correspondence between CFL’s and definability

in BPA as well as the ensuing tree-like periodicity?

2 Non-definability of Bag in BPA

The expressiveness of the operations defined by the axioms of BPA is limited; basically only
sequential processes can be defined. The axiom system PA is an extension of BPA with

axioms for the merge ‖ (interleaving) and the auxiliary operator ‖ (left merge). In PA we

00

0 0 0

000

1 1 1 1

1111

1 1 1 1

0

0 0 0

0

0 0 0

1 1 1 1
000

0 0 0

00

1111

1 1 1 1

000

0 0 0

000

0 0 0

1 1 1 1

1111

1 1 1 1

0 0 0

000

0 0 0

000

1 1 1 1

1111

1 1 1 1

t

Figure 6: The minimal process graphs of the process Bag (on the left-hand side), and of a

terminating variant Bagt of Bag (on the right-hand side).

have a succinct recursive definition for the process Bag (over data {0,1}) as follows:

B= 0(0‖B)+1(1‖B).

It has been proved by Bergstra and Klop in [3] that the process Bag cannot be defined by

means of a finite recursive specification over BPA. Considering the minimal process graph
for it in Figure 6, this does not come as a surprise: it is not tree-like, but “grid-like”. Below

we give an alternative proof of this fact.

a a a a

bbbb

b b b
c

b b
c

c
b

c

Figure 5: The language L.

Another interesting observation, due to

H.P. Barendregt, is the following. It is well-

known that the language L = {anbncn|n ≥ 0}
is not a CFL. This language can be obtained

as the set of finite traces of the triangular, in-

finite, minimal graph in Figure 5. Intuitively

it is obvious that this graph is not tree-like pe-

riodic. This leads to the next question.

Question 4 Can the fact that the graph in Figure 5

is not a BPA-graph (when established rigorously)
be used to conclude that L is not a CFL, applying

the correspondence between CFL’s and definability

in BPA as well as the ensuing tree-like periodicity?

2 Non-definability of Bag in BPA

The expressiveness of the operations defined by the axioms of BPA is limited; basically only
sequential processes can be defined. The axiom system PA is an extension of BPA with

axioms for the merge ‖ (interleaving) and the auxiliary operator ‖ (left merge). In PA we

00

0 0 0

000

1 1 1 1

1111

1 1 1 1

0

0 0 0

0

0 0 0

1 1 1 1
000

0 0 0

00

1111

1 1 1 1

000

0 0 0

000

0 0 0

1 1 1 1

1111

1 1 1 1

0 0 0

000

0 0 0

000

1 1 1 1

1111

1 1 1 1

t

Figure 6: The minimal process graphs of the process Bag (on the left-hand side), and of a

terminating variant Bagt of Bag (on the right-hand side).

have a succinct recursive definition for the process Bag (over data {0,1}) as follows:

B= 0(0‖B)+1(1‖B).

It has been proved by Bergstra and Klop in [3] that the process Bag cannot be defined by

means of a finite recursive specification over BPA. Considering the minimal process graph
for it in Figure 6, this does not come as a surprise: it is not tree-like, but “grid-like”. Below

we give an alternative proof of this fact.

L = {anbncn | n ≥ 1}

reopen a cold case: non-BPA definability
of BAG

B = a(a || B) + b(b || B)

PROBLEM

in Figure 3), then bisimulations relate only points on horizontal lines. Collapsing a normed

graph to its canonical form is a compression in horizontal direction.

An important question is whether BPA-definable processes are closed under minimization
(i.e. under compressing a graph such that it is minimal under bisimulation; the resulting graph

is also called the “canonical” graph). The question whether such a statement does in fact

hold was left open in [1]. Making a graph canonical can alter its geometry considerably.

For instance, consider the counter C mentioned above. The process graph g of C is a linear

sequence of nodes C,DC,DDC, . . . connected by u-steps to the right and d-steps to the left.
The merge C‖C in the process algebra PA has a grid-like graph similar to that of the process
Bag on the left side in Figure 6 below. But if we collapse this graph g for C‖C to its canonical
form by identifying the bisimilar nodes on diagonal lines, we obtain again the graph g for C.

So a grid may collapse to a linear graph.

Normedness plays a part when graphs are compressed to their canonical form. In [5]

Burkart, Caucal, and Steffen give the following example of a BPA-graph that after compres-
sion to canonical form no longer is a BPA-graph: For the process with recursive definition
〈Z|Z = aAZ+ cD, A = aAA+ cD+ b, D = dD〉 in BPA, the graph on the left in Figure 4 is
its associated BPA-process graph, while the graph on the right is the respective minimization,

Z AZ AAZ AAAZ

DAAZDAZDZD

a a a
bbb

c c c c

d d d d

a a a

d

c c c
b b b

c

Figure 4: Counterexample against the preservation of BPA-graphs under minimization.

which does not have the periodical structure of a BPA-graph. Note that neither of these graphs
is normed.

Question 2 How can those BPA-graphs be characterized whose canonical graphs are again

BPA-graphs?

We note that Question 2 has already received quite some attention in Caucal’s work. Con-

trasting with the counterexample for the unnormed case given above, in [7] he has shown the

following theorem.

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.

The (obvious) link between CFG’s and BPA-definable processes was first mentioned in
[1]. An example is the graph on the right in Figure 1 and in Figure 2 above: it determines as

context-free language (CFL) the language of words having equal numbers of letter b and d.

An intriguing question is the following.

Question 3 How does the classical pumping lemma for CFL’s relate to the periodicity present

in BPA-definable processes?

in Figure 3), then bisimulations relate only points on horizontal lines. Collapsing a normed

graph to its canonical form is a compression in horizontal direction.

An important question is whether BPA-definable processes are closed under minimization
(i.e. under compressing a graph such that it is minimal under bisimulation; the resulting graph

is also called the “canonical” graph). The question whether such a statement does in fact

hold was left open in [1]. Making a graph canonical can alter its geometry considerably.

For instance, consider the counter C mentioned above. The process graph g of C is a linear

sequence of nodes C,DC,DDC, . . . connected by u-steps to the right and d-steps to the left.
The merge C‖C in the process algebra PA has a grid-like graph similar to that of the process
Bag on the left side in Figure 6 below. But if we collapse this graph g for C‖C to its canonical
form by identifying the bisimilar nodes on diagonal lines, we obtain again the graph g for C.

So a grid may collapse to a linear graph.

Normedness plays a part when graphs are compressed to their canonical form. In [5]

Burkart, Caucal, and Steffen give the following example of a BPA-graph that after compres-
sion to canonical form no longer is a BPA-graph: For the process with recursive definition
〈Z|Z = aAZ+ cD, A = aAA+ cD+ b, D = dD〉 in BPA, the graph on the left in Figure 4 is
its associated BPA-process graph, while the graph on the right is the respective minimization,

Z AZ AAZ AAAZ

DAAZDAZDZD

a a a
bbb

c c c c

d d d d

a a a

d

c c c
b b b

c

Figure 4: Counterexample against the preservation of BPA-graphs under minimization.

which does not have the periodical structure of a BPA-graph. Note that neither of these graphs
is normed.

Question 2 How can those BPA-graphs be characterized whose canonical graphs are again

BPA-graphs?

We note that Question 2 has already received quite some attention in Caucal’s work. Con-

trasting with the counterexample for the unnormed case given above, in [7] he has shown the

following theorem.

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.

The (obvious) link between CFG’s and BPA-definable processes was first mentioned in
[1]. An example is the graph on the right in Figure 1 and in Figure 2 above: it determines as

context-free language (CFL) the language of words having equal numbers of letter b and d.

An intriguing question is the following.

Question 3 How does the classical pumping lemma for CFL’s relate to the periodicity present

in BPA-definable processes?

in Figure 3), then bisimulations relate only points on horizontal lines. Collapsing a normed

graph to its canonical form is a compression in horizontal direction.

An important question is whether BPA-definable processes are closed under minimization
(i.e. under compressing a graph such that it is minimal under bisimulation; the resulting graph

is also called the “canonical” graph). The question whether such a statement does in fact

hold was left open in [1]. Making a graph canonical can alter its geometry considerably.

For instance, consider the counter C mentioned above. The process graph g of C is a linear

sequence of nodes C,DC,DDC, . . . connected by u-steps to the right and d-steps to the left.
The merge C‖C in the process algebra PA has a grid-like graph similar to that of the process
Bag on the left side in Figure 6 below. But if we collapse this graph g for C‖C to its canonical
form by identifying the bisimilar nodes on diagonal lines, we obtain again the graph g for C.

So a grid may collapse to a linear graph.

Normedness plays a part when graphs are compressed to their canonical form. In [5]

Burkart, Caucal, and Steffen give the following example of a BPA-graph that after compres-
sion to canonical form no longer is a BPA-graph: For the process with recursive definition
〈Z|Z = aAZ+ cD, A = aAA+ cD+ b, D = dD〉 in BPA, the graph on the left in Figure 4 is
its associated BPA-process graph, while the graph on the right is the respective minimization,

Z AZ AAZ AAAZ

DAAZDAZDZD

a a a
bbb

c c c c

d d d d

a a a

d

c c c
b b b

c

Figure 4: Counterexample against the preservation of BPA-graphs under minimization.

which does not have the periodical structure of a BPA-graph. Note that neither of these graphs
is normed.

Question 2 How can those BPA-graphs be characterized whose canonical graphs are again

BPA-graphs?

We note that Question 2 has already received quite some attention in Caucal’s work. Con-

trasting with the counterexample for the unnormed case given above, in [7] he has shown the

following theorem.

Theorem 1 (Caucal, 1990) The class of normed BPA-graphs is closed under minimization.

The (obvious) link between CFG’s and BPA-definable processes was first mentioned in
[1]. An example is the graph on the right in Figure 1 and in Figure 2 above: it determines as

context-free language (CFL) the language of words having equal numbers of letter b and d.

An intriguing question is the following.

Question 3 How does the classical pumping lemma for CFL’s relate to the periodicity present

in BPA-definable processes?

Z = aAZ + cD
A = aAA + cD + b
D = dD

not normed

a a a a

bbbb

b b b
c

b b
c

c
b

c

Figure 5: The language L.

Another interesting observation, due to

H.P. Barendregt, is the following. It is well-

known that the language L = {anbncn|n ≥ 0}
is not a CFL. This language can be obtained

as the set of finite traces of the triangular, in-

finite, minimal graph in Figure 5. Intuitively

it is obvious that this graph is not tree-like pe-

riodic. This leads to the next question.

Question 4 Can the fact that the graph in Figure 5

is not a BPA-graph (when established rigorously)
be used to conclude that L is not a CFL, applying

the correspondence between CFL’s and definability

in BPA as well as the ensuing tree-like periodicity?

2 Non-definability of Bag in BPA

The expressiveness of the operations defined by the axioms of BPA is limited; basically only
sequential processes can be defined. The axiom system PA is an extension of BPA with

axioms for the merge ‖ (interleaving) and the auxiliary operator ‖ (left merge). In PA we

00

0 0 0

000

1 1 1 1

1111

1 1 1 1

0

0 0 0

0

0 0 0

1 1 1 1
000

0 0 0

00

1111

1 1 1 1

000

0 0 0

000

0 0 0

1 1 1 1

1111

1 1 1 1

0 0 0

000

0 0 0

000

1 1 1 1

1111

1 1 1 1

t

Figure 6: The minimal process graphs of the process Bag (on the left-hand side), and of a

terminating variant Bagt of Bag (on the right-hand side).

have a succinct recursive definition for the process Bag (over data {0,1}) as follows:

B= 0(0‖B)+1(1‖B).

It has been proved by Bergstra and Klop in [3] that the process Bag cannot be defined by

means of a finite recursive specification over BPA. Considering the minimal process graph
for it in Figure 6, this does not come as a surprise: it is not tree-like, but “grid-like”. Below

we give an alternative proof of this fact.

quadratic density

How to show for unnormed graphs that they are
not BPA-definable?

Burkart, Caucal, Steffen: if g is a BPA graph,
min(g) is a pattern graph

Caucal: pattern graphs of finite degree are
context free graphs a la Muller and Schupp

Q
r1(d) s2(d)

Z

s3(d) | r3(d) = c3(d)

ρs2→s3 ρc3→s2

s3(d) c3(d)

Q = Σd∈D r1(d)(ρc3→s2 o ∂H)(ρs2→s3(Q)|| s2(d).Z)
Z = Σd∈D r3(d).Z

actions: r1(d), s2(d)
auxiliary actions: r3(d), s3(d), c3(d)
communication: r3(d) | s3(d) = c3(d)
ρs2 → s3 renaming: s2(d) → s3(d)
ρc3 →s2 renaming: c3(d) → s2(d)
encapsulation: H = {s3(d), r3(d) | d ∈ D}

guard

Bergstra-Tiuryn:

Queue cannot be defined in ACP with handshaking
communication

- but it can in ACP with renaming,

- or in ACP with ternary communication

Science fiction

can we derive properties from the topology or
geometry of process graphs of large state spaces?

www.win.tue.nl//~fvham/fsm/

hubert garavel

jan friso groote

